Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Friction modification“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Friction modification" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Friction modification"
Chen, Shi, und Zhinan Zhang. „Modification of friction for straightforward implementation of friction law“. Multibody System Dynamics 48, Nr. 2 (10.09.2019): 239–57. http://dx.doi.org/10.1007/s11044-019-09694-0.
Der volle Inhalt der QuelleSadowski, Piotr, und Emil Czajka. „Modification of tribological tester t-01m allowing testing in conditions of lubrication“. MATEC Web of Conferences 252 (2019): 08004. http://dx.doi.org/10.1051/matecconf/201925208004.
Der volle Inhalt der QuelleRautkari, Lauri, Milena Properzi, Frédéric Pichelin und Mark Hughes. „Surface modification of wood using friction“. Wood Science and Technology 43, Nr. 3-4 (27.09.2008): 291–99. http://dx.doi.org/10.1007/s00226-008-0227-0.
Der volle Inhalt der QuelleLI, Jin-Qi, und Takeshi SHINODA. „Surface Modification by Friction Coating under Water“. Journal of the Society of Materials Science, Japan 49, Nr. 9Appendix (2000): 193–97. http://dx.doi.org/10.2472/jsms.49.9appendix_193.
Der volle Inhalt der QuelleR??TTGER, J??RGEN, und REGINALD ELSON. „A Modification of Charnley Low-friction Arthroplasty“. Clinical Orthopaedics and Related Research &NA;, Nr. 211 (Oktober 1986): 154???163. http://dx.doi.org/10.1097/00003086-198610000-00023.
Der volle Inhalt der QuelleDing, Yuan-sheng. „Surface modification of calcium carbonate nanoparticles as hydraulic oil additives friction performance research“. Functional materials 25, Nr. 3 (27.09.2018): 564–67. http://dx.doi.org/10.15407/fm25.03.564.
Der volle Inhalt der QuelleKOMVOPOULOS, K. „PLASMA-ENHANCED SURFACE MODIFICATION OF LOW LINEAR-DENSITY POLYETHYLENE CATHETERS“. Journal of Mechanics in Medicine and Biology 01, Nr. 01 (Mai 2001): 17–31. http://dx.doi.org/10.1142/s0219519401000064.
Der volle Inhalt der QuelleYu, Zhang, Tang und Gao. „Friction and Wear Behavior of Polyimide Composites Reinforced by Surface-Modified Poly-p-Phenylenebenzobisoxazole (PBO) Fibers in High Ambient Temperatures“. Polymers 11, Nr. 11 (03.11.2019): 1805. http://dx.doi.org/10.3390/polym11111805.
Der volle Inhalt der QuelleKwon, Yong-Jai, Ichinori Shigematsu und Naobumi Saito. „Surface Modification of Aluminum Foams Using Friction Phenomena“. Journal of the Japan Institute of Metals 73, Nr. 7 (2009): 527–32. http://dx.doi.org/10.2320/jinstmet.73.527.
Der volle Inhalt der QuelleJanakiraman, S., Jayachandra Reddy, Satish V. Kailash und K. Udaya Bhat. „Surface Modification of Steels Using Friction Stir Surfacing“. Materials Science Forum 710 (Januar 2012): 258–63. http://dx.doi.org/10.4028/www.scientific.net/msf.710.258.
Der volle Inhalt der QuelleDissertationen zum Thema "Friction modification"
Galas, Radovan. „Friction Modification within Wheel-Rail Contact“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-367508.
Der volle Inhalt der QuelleChitsaz-Zadeh, Majid R. „The effects of rubber modification on friction and wear of epoxy networks“. Diss., Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/76092.
Der volle Inhalt der QuellePh. D.
Bates, William. „Casting repair and Surface Modification of Aluminum Alloys using Friction Stir Processing (FSP)“. Thesis, Högskolan Väst, Avdelningen för Industriell ekonomi, Elektro- och Maskinteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-16675.
Der volle Inhalt der QuelleHorvat, Frank E. „A Numerical and Experimental Investigation for the Modification and Design of a Gerolor Using Low Viscoscity Fluids“. University of Akron / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=akron1342585429.
Der volle Inhalt der QuelleChu, Yanyan. „Surface modification to aramid and UHMWPE fabrics to increase inter-yarn friction for improved ballistic performance“. Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/surface-modification-to-aramid-and-uhmwpe-fabrics-to-increase-interyarn-friction-for-improved-ballistic-performance(d6e35803-9a2c-478a-a96d-a658292f8890).html.
Der volle Inhalt der QuelleSkurka, Šimon. „Vývoj maziva pro temeno kolejnice“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443457.
Der volle Inhalt der QuelleKilman, Laureline. „Modification des propriétés de surface de couches DLC obtenues par PECVD/PVD dans le but d'optimiser leur comportement tribologique en milieu lubrifié : application aux moteurs thermiques pour véhicules terrestres“. Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0077.
Der volle Inhalt der QuelleDiamond-Like Carbon thin films are commonly used in automotive engines. Thanks to their very low friction coefficient and high hardness, it is indeed possible to optimize the performances and the lifetime of vehicles. However, most of the lubricants that are used in engines are designed to be in contact with metallic surfaces. So it might be possible to improve the global tribological behaviour of DLC films by giving them a metallic character. This can be achieved with the introduction of doping elements in limited and controlled amount (maximum 15 at. %) in the amorphous carbon matrix. An industrial scale reactor has been used with a hybrid coating technology combining PECVD for the deposition of hydrogenated DLC and magnetron sputtering for the introduction of the dopants. Four elements have been tested with various amounts in the DLC: aluminium, copper, molybdenum and niobium. The physico-chemical properties of the films have been characterized by XPS (chemical composition and bonding) and Raman spectroscopy (structure). Hardness, friction and wear in both dry and lubricated conditions, and surface energy have also been determined. Two in situ studies under temperature have been conducted by Raman spectroscopy for deposited thin films. Compared to a pure DLC, doping led to a modification of the structure resulting in a decrease in hardness. However, except for copper doping, a significant reduction of friction and wear in dry conditions is observed. Despite this promising result, the impact of doping on lubricated tribological behaviour is limited and strongly dependent on the composition of the lubricant itself. Finally, the industrial transfer of DLC metallic doping has been studied and validated
Kluge, Axel, Johannes Henneberg, Chokri Cherif und Andreas Nocke. „Methods for adhesion/friction reduction of novel wire-shaped actuators, based on shape memory alloys, for use in adaptive fiber-reinforced plastic composites“. Sage, 2015. https://tud.qucosa.de/id/qucosa%3A35612.
Der volle Inhalt der QuelleKománek, Jiří. „Konstrukce zařízení pro modifikaci topografie třecích povrchů“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230576.
Der volle Inhalt der QuelleCoupe, Richard. „Towards faster skis : the development of new surface modifications and treatments to reduce overall friction in alpine skiing“. Thesis, University of Sheffield, 2013. http://etheses.whiterose.ac.uk/4798/.
Der volle Inhalt der QuelleBücher zum Thema "Friction modification"
Surface modification and mechanisms: Friction, stress and reaction engineering. New York: Marcel Dekker, 2004.
Den vollen Inhalt der Quelle findenLiang, Hong, und George E. Totten. Surface modification and mechanisms: Friction, stress and reaction engineering. New York: Marcel Dekker, 2004.
Den vollen Inhalt der Quelle findenVityaz, P. A. Tribomechanical modification of friction surface by running-in in lubricants with nano-sized diamonds. Hauppauge, N.Y: Nova Science Publishers, 2010.
Den vollen Inhalt der Quelle findenFriction Stir Casting Modification for Enhanced Structural Efficiency. Elsevier, 2016. http://dx.doi.org/10.1016/c2014-0-02214-9.
Der volle Inhalt der Quelle(Editor), George E. Totten, und Hong Liang (Editor), Hrsg. Surface Modification and Mechanisms: Friction, Stress, and Reaction Engineering. CRC, 2004.
Den vollen Inhalt der Quelle findenLiang, Hong, und Fasm, George E., Ph.d. Totten. Surface Modification And Mechanisms: Friction, Stress And Reaction Engineering. Marcel Dekker Inc, 2004.
Den vollen Inhalt der Quelle findenMishra, Rajiv S., Glenn Grant und Saumyadeep Jana. Friction Stir Casting Modification for Enhanced Structural Efficiency: A Volume in the Friction Stir Welding and Processing Book Series. Elsevier Science & Technology Books, 2015.
Den vollen Inhalt der Quelle findenEffect of Surface Modification of Magnesium Alloy AZ91D by Friction Stir Processing. Karur, India: ASDF International, 2017.
Den vollen Inhalt der Quelle findenRajeev, S. G. The Navier–Stokes Equations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805021.003.0003.
Der volle Inhalt der QuelleBuchteile zum Thema "Friction modification"
Berman, Alan, und Jacob Israelachvili. „Control and Minimization of Friction via Surface Modification“. In Micro/Nanotribology and Its Applications, 317–29. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5646-2_23.
Der volle Inhalt der QuelleWallstabe, R., J. Schneider und K. H. Zum Gahr. „Influence of Surface Modification on Dry Friction Performance of Alumina Mated Against Steel“. In Friction, Wear and Wear Protection, 369–75. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527628513.ch46.
Der volle Inhalt der QuelleWang, Guorui. „Interfacial Friction and Adhesion Between Graphene and Silicon“. In Characterization and Modification of Graphene-Based Interfacial Mechanical Behavior, 67–96. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8029-1_4.
Der volle Inhalt der QuelleRodelas, Jeff, John Lippold, James Rule und Jason Livingston. „Friction Stir Processing as a Base Metal Preparation Technique for Modification of Fusion Weld Microstructures“. In Friction Stir Welding and Processing VI, 323–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118062302.ch38.
Der volle Inhalt der QuelleEliseev, Alexander A., Tatiana A. Kalashnikova, Andrey V. Filippov und Evgeny A. Kolubaev. „Material Transfer by Friction Stir Processing“. In Springer Tracts in Mechanical Engineering, 169–88. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60124-9_8.
Der volle Inhalt der QuelleWu, Yujuan, Liming Peng, Feiyan Zheng, Xuewen Li, Dejiang Li und Wenjiang Ding. „Microstructure Modification and Performance Improvement of Mg-RE Alloys by Friction Stir Processing“. In Magnesium Technology 2013, 189–96. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118663004.ch31.
Der volle Inhalt der QuelleWu, Yujuan, Liming Peng, Feiyan Zheng, Xuewen Li, Dejiang Li und Wenjiang Ding. „Microstructure modification and performance improvement of Mg-RE alloys by friction stir processing“. In Magnesium Technology 2013, 191–96. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-48150-0_31.
Der volle Inhalt der QuelleVenkatrao, Mane, G. Ranga Janardana, U. Satish Naidu und S. Venkatesh. „Surface Modification of AA 6351 for Improvement of Mechanical Properties Using Friction Stir Processing“. In Lecture Notes on Multidisciplinary Industrial Engineering, 139–58. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7643-6_12.
Der volle Inhalt der QuelleHarrison, J. A., S. B. Sinnott, C. T. White, D. W. Brenner und R. J. Colton. „Molecular Dynamics Simulation of Atomic-Scale Adhesion, Deformation, Friction, and Modification of Diamond Surfaces“. In Forces in Scanning Probe Methods, 175–81. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0049-6_18.
Der volle Inhalt der QuellePatel, Surendra Kumar, Virendra Pratap Singh und Basil Kuriachen. „Modification of Aluminium Alloy Surface Composite Reinforced with ZrO2 Particles Fabricated Through Friction Stir Processing“. In Lecture Notes on Multidisciplinary Industrial Engineering, 579–86. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9433-2_50.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Friction modification"
Bolander, Nathan W., Farshid Sadeghi und Gordon R. Gerber. „Piston Ring Friction Reduction Through Surface Modification“. In ASME 2005 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/icef2005-1346.
Der volle Inhalt der QuelleSzeri, Andras Z. „Low Friction Composite Film Bearings“. In ASME/STLE 2007 International Joint Tribology Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ijtc2007-44083.
Der volle Inhalt der QuelleChen, Wengang, Xueyuan Liu und Lili Zhen. „Friction Characteristics Of Surface Modification 304 Steel Under Wind Lubrication“. In 2016 5th International Conference on Advanced Materials and Computer Science (ICAMCS 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icamcs-16.2016.212.
Der volle Inhalt der QuelleSuzuki, Yoshihiko, und Gan Chen. „A Modification of the LuGre Friction Model for Potential Energy“. In 2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). IEEE, 2020. http://dx.doi.org/10.23919/sice48898.2020.9240466.
Der volle Inhalt der QuelleQuinn, D. Dane. „A New Regularization of Coulomb Friction“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32402.
Der volle Inhalt der QuelleKomvopoulos, K. „Surface Adhesion and Friction in Microelectromechanical Systems: Measurement and Modification Techniques“. In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-64107.
Der volle Inhalt der QuelleAbdulmalik, S. S., R. Ahmad und M. B. A. Asmael. „Surface modification of hypereutectic Al-Si alloy via friction stir process“. In 7TH INTERNATIONAL CONFERENCE ON MECHANICAL AND MANUFACTURING ENGINEERING: Proceedings of the 7th International Conference on Mechanical and Manufacturing Engineering, Sustainable Energy Towards Global Synergy. Author(s), 2017. http://dx.doi.org/10.1063/1.4981178.
Der volle Inhalt der QuelleMusey, Kimberley, Seri Park und John McFadden. „Exploring Friction Modification to Improve the Safety of Horizontal Curve Roadways“. In International Conference on Transportation and Development 2016. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784479926.081.
Der volle Inhalt der QuelleYu, Zhenzhen, Zhili Feng, Hahn Choo und Sven Vogel. „Texture Modification and Ductility Enhancement in Mg Alloy Through Friction Stir Processing“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65693.
Der volle Inhalt der QuelleMichaux, Michael A., Al Ferri und Kenneth A. Cunefare. „Modification of Friction-Induced Instability in a Disk System Through Dither Excitation Forces“. In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35176.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Friction modification"
Blau, Peter Julian, Jun Qu, Yan Zhou, Kevin M. Cooley, DONALD L. ERDMAN, III und Stephen M. Hsu. Friction Reduction through Surface Modification. Office of Scientific and Technical Information (OSTI), Oktober 2014. http://dx.doi.org/10.2172/1162088.
Der volle Inhalt der QuelleSneed, Lesley H., und Dane M. Shaw. Lightweight Concrete Modification Factor for Shear Friction. Precast/Prestressed Concrete Institute, 2013. http://dx.doi.org/10.15554/pci.rr.comp-007.
Der volle Inhalt der QuelleWei, Fulu, Ce Wang, Xiangxi Tian, Shuo Li und Jie Shan. Investigation of Durability and Performance of High Friction Surface Treatment. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317281.
Der volle Inhalt der Quelle