Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Frequency stability“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Frequency stability" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Frequency stability"
Chen, Chaoyong, Chunqing Gao, Huixing Dai und Qing Wang. „Single-frequency Er:YAG ceramic pulsed laser with frequency stability close to 100 kHz“. Chinese Optics Letters 20, Nr. 4 (2022): 041402. http://dx.doi.org/10.3788/col202220.041402.
Der volle Inhalt der QuellePercival, D. B. „Characterization of frequency stability: frequency-domain estimation of stability measures“. Proceedings of the IEEE 79, Nr. 7 (Juli 1991): 961–72. http://dx.doi.org/10.1109/5.84973.
Der volle Inhalt der QuelleWalls, F. L., und D. W. Allan. „Measurements of frequency stability“. Proceedings of the IEEE 74, Nr. 1 (1986): 162–68. http://dx.doi.org/10.1109/proc.1986.13429.
Der volle Inhalt der QuelleJaffe, S. M., M. Rochon und W. M. Yen. „Increasing the frequency stability of single‐frequency lasers“. Review of Scientific Instruments 64, Nr. 9 (September 1993): 2475–81. http://dx.doi.org/10.1063/1.1143906.
Der volle Inhalt der QuelleRutman, J., und F. L. Walls. „Characterization of frequency stability in precision frequency sources“. Proceedings of the IEEE 79, Nr. 7 (Juli 1991): 952–60. http://dx.doi.org/10.1109/5.84972.
Der volle Inhalt der QuelleRongcheng Li, Xiaming Liang, Ziyuan Jin, Liming Li und Yongshi Xia. „NIM frequency stability measurement system“. IEEE Transactions on Instrumentation and Measurement 38, Nr. 2 (April 1989): 537–40. http://dx.doi.org/10.1109/19.192341.
Der volle Inhalt der QuelleLitwin, C. „Fluctuations and low‐frequency stability“. Physics of Fluids B: Plasma Physics 3, Nr. 8 (August 1991): 2170–73. http://dx.doi.org/10.1063/1.859631.
Der volle Inhalt der QuelleJefferies, S. M., P. L. Pallé, H. B. van der Raay, C. Régulo und T. Roca Cortés. „Frequency stability of solar oscillations“. Nature 333, Nr. 6174 (Juni 1988): 646–49. http://dx.doi.org/10.1038/333646a0.
Der volle Inhalt der QuelleMatsko, A. B., A. A. Savchenkov, V. S. Ilchenko, D. Seidel und L. Maleki. „Optical-RF frequency stability transformer“. Optics Letters 36, Nr. 23 (23.11.2011): 4527. http://dx.doi.org/10.1364/ol.36.004527.
Der volle Inhalt der QuelleGelfer, Marylou Pausewang. „Stability in phonational frequency range“. Journal of Communication Disorders 22, Nr. 3 (Juni 1989): 181–92. http://dx.doi.org/10.1016/0021-9924(89)90015-4.
Der volle Inhalt der QuelleDissertationen zum Thema "Frequency stability"
Nocera, Aurelio <1994>. „High Frequency Trading and Financial Stability“. Master's Degree Thesis, Università Ca' Foscari Venezia, 2020. http://hdl.handle.net/10579/16789.
Der volle Inhalt der QuelleIsmael, Alexander. „Comparison of fast frequency reserve strategies for Nordic grid frequency stability“. Thesis, Uppsala universitet, Institutionen för elektroteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-411503.
Der volle Inhalt der QuelleSaarinen, Linn. „The Frequency of the Frequency : On Hydropower and Grid Frequency Control“. Doctoral thesis, Uppsala universitet, Elektricitetslära, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-308441.
Der volle Inhalt der QuelleDahlborg, Elin. „Grid frequency stability from a hydropower perspective“. Licentiate thesis, Uppsala universitet, Elektricitetslära, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444453.
Der volle Inhalt der QuelleMARTINEZ, DIANA MARGARITA GARCIA. „VOLTAGE STABILITY ASSESSMENT CONSIDERING PRIMARY FREQUENCY CONTROL AND FREQUENCY-DEPENDENT LINE PARAMETERS“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=25603@1.
Der volle Inhalt der QuelleCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
A crescente demanda de energia elétrica faz com que a complexidade dos sistemas elétricos de potência seja cada vez maior, associado às limitações na expansão do sistema de transmissão, resulta na operação dos sistemas elétricos mais próximos de seus limites, tornando-os vulneráveis a problemas de estabilidade de tensão. Nesse contexto, faz-se necessário o desenvolvimento de ferramentas computacionais capazes de representar os sistemas elétricos mais adequadamente, melhorando assim as condições de análise. Neste trabalho são apresentadas três modelagens do fluxo de carga mais completas que a modelagem clássica, a saber: a modelagem de múltiplas barras swing, a modelagem com regulação primária e a modelagem com parâmetros da rede de transmissão variáveis com a frequência. Uma vez utilizadas na solução do problema do fluxo de carga estas modelagens são estendidas para a realização do cálculo dos índices de estabilidade de tensão das barras de carga, barras de tensão controlada e barras swing. Testes numéricos com um sistema-teste de 6 barras são apresentados para a verificação da aplicabilidade e adequação dos modelos analisados.
The growing demand for electricity increases the complexity of electric power systems which, when combined with limitations in the expansion of transmission systems, results in the operation of electrical systems closer to their limits, making them vulnerable to voltage stability problems. In this context, there is a gap in the market for the development of computational tools that can represent the electrical systems more appropriately, thereby improving the conditions of analysis. The present study formulates three non-classical load flow representations: multiple swing buses, primary frequency control, and frequency dependent transmission network parameters. Once used in the load flow problem solving, these models are also extended to allow the calculation of voltage stability indices of load buses, controlled voltage buses and swing buses. Numerical tests with a 6-bus test system are presented to verify the applicability and adequacy of the proposed models.
Tan, Hui Boon. „Disentangling low-frequency versus high-frequency economic relationships via regression parameter stability tests“. Diss., Virginia Tech, 1995. http://hdl.handle.net/10919/38575.
Der volle Inhalt der QuelleHewes, Dominic [Verfasser]. „Frequency Stability in Sustainable Power Systems: Effects of Reduced Rotational Inertia on Frequency Stability in the European Transmission System / Dominic Hewes“. München : Verlag Dr. Hut, 2020. http://d-nb.info/1219469866/34.
Der volle Inhalt der QuelleZhang, Xiao Meny. „The mutation frequency and genome stability of measles virus“. Thesis, Queen's University Belfast, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.546455.
Der volle Inhalt der QuelleWan, Kin Wa. „Advanced numerical and digital techniques in frequency stability analysis“. Thesis, University of Portsmouth, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.237843.
Der volle Inhalt der QuelleVirgilio, Gianluca. „Is high-frequency trading a threat to financial stability?“ Thesis, University of Hertfordshire, 2017. http://hdl.handle.net/2299/18841.
Der volle Inhalt der QuelleBücher zum Thema "Frequency stability"
Kroupa, Věnceslav F. Frequency Stability. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118310144.
Der volle Inhalt der QuelleFrequency stability: Introduction and applications. Hoboken, N.J: Wiley, 2012.
Den vollen Inhalt der Quelle findenAltshuller, Dmitry. Frequency Domain Criteria for Absolute Stability. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4234-8.
Der volle Inhalt der QuelleL, Walls F., und National Institute of Standards and Technology (U.S.), Hrsg. Time domain frequency stability calculated from the frequency domain description: Use of the SIGNET software package to calculate time domain frequency stability from the frequency domain. Boulder, Colo: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1990.
Den vollen Inhalt der Quelle findenRubiola, Enrico. Phase noise and frequency stability in oscillators. New York: Cambridge University Press, 2008.
Den vollen Inhalt der Quelle findenS, Sudo, und Sakai Yoshihisa, Hrsg. Frequency stabilization of semiconductor laser diodes. Boston: Artech House, 1995.
Den vollen Inhalt der Quelle findenKhapaev, M. M. Averaging in stability theory: A study of resonance multi-frequency systems. Dordrecht: Kluwer Academic Publishers, 1993.
Den vollen Inhalt der Quelle findenMotoichi, Ohtsu, Hrsg. Frequency control of semiconductor lasers. New York: Wiley, 1996.
Den vollen Inhalt der Quelle finden1964-, Ponomarenko D. V., und Smirnova Vera B. 1946-, Hrsg. Frequency-domain methods for nonlinear analysis: Theory and applications. Singapore: World Scientific, 1996.
Den vollen Inhalt der Quelle findenWan, Kin Wa. Advanced numerical and digital techniques in frequency stability analysis. Portsmouth: Portsmouth Polytechnic, School of Systems Engineering, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Frequency stability"
Weik, Martin H. „frequency stability“. In Computer Science and Communications Dictionary, 655. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_7701.
Der volle Inhalt der QuelleWeik, Martin H. „frequency standard stability“. In Computer Science and Communications Dictionary, 655. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_7705.
Der volle Inhalt der QuelleAltshuller, Dmitry. „Stability Multipliers“. In Frequency Domain Criteria for Absolute Stability, 43–80. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4234-8_3.
Der volle Inhalt der QuelleThomsen, Jon Juel. „Special Effects of High-Frequency Excitation“. In Vibrations and Stability, 287–337. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-10793-5_7.
Der volle Inhalt der QuelleThomsen, Jon Juel. „Special Effects of High-Frequency Excitation“. In Vibrations and Stability, 387–447. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68045-9_7.
Der volle Inhalt der QuelleWalls, F. L. „Stability of Frequency Locked Loops“. In Frequency Standards and Metrology, 145–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74501-0_27.
Der volle Inhalt der QuelleHapaev, M. M. „Stability of Multi — Frequency Systems“. In Averaging in Stability Theory, 114–39. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2644-1_4.
Der volle Inhalt der QuelleRamos, Germán A., Ramon Costa-Castelló und Josep M. Olm. „Stability Analysis Methods“. In Digital Repetitive Control under Varying Frequency Conditions, 15–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37778-5_3.
Der volle Inhalt der QuelleYang, Weijia. „Stable Operation Regarding Frequency Stability“. In Hydropower Plants and Power Systems, 53–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17242-8_4.
Der volle Inhalt der QuelleEschauzier, Rudy G. H., und Johan H. Huijsing. „Stability of Feedback Circuits“. In Frequency Compensation Techniques for Low-Power Operational Amplifiers, 29–56. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-2375-5_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Frequency stability"
Dick, G. J. „Frequency stability of 1x10“. In 10th International Conference on European Frequency and Time. IEE, 1996. http://dx.doi.org/10.1049/cp:19960059.
Der volle Inhalt der QuelleVernotte, F., N. Gautherot, H. Locatelli, P. M. Mbaye, E. Meyer, O. Pajot, C. Plantard und E. Tisserand. „High stability composite clock performances“. In 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC). IEEE, 2013. http://dx.doi.org/10.1109/eftf-ifc.2013.6702202.
Der volle Inhalt der QuelleKalivas, G. A., und R. G. Harrison. „Frequency Stability Characterization of Hopping Sources“. In 41st Annual Symposium on Frequency Control. IEEE, 1987. http://dx.doi.org/10.1109/freq.1987.201013.
Der volle Inhalt der QuelleWebster, S. A., M. Oxborrow und P. Gill. „High stability Nd:YAG laser“. In 18th European Frequency and Time Forum (EFTF 2004). IEE, 2004. http://dx.doi.org/10.1049/cp:20040939.
Der volle Inhalt der QuelleLi Rongcheng, Liang Xianming, Jin Ziyuan, Li Liming und Xia Yongshi. „NIM Frequency Stability Measurement System“. In Conference on Precision Electromagnetic Measurements. IEEE, 1988. http://dx.doi.org/10.1109/cpem.1988.671363.
Der volle Inhalt der QuelleVoreck, Richard, und Craig Lin. „Telemetry transmitter frequency stability evaluation“. In 2016 IEEE Aerospace Conference. IEEE, 2016. http://dx.doi.org/10.1109/aero.2016.7500877.
Der volle Inhalt der QuelleKljajic, Ruzica, Predrag Maric, Hrvoje Glavas und Matej Znidarec. „Microgrid Stability: A Review on Voltage and Frequency Stability“. In 2020 IEEE 3rd International Conference and Workshop in Óbuda on Electrical and Power Engineering (CANDO-EPE). IEEE, 2020. http://dx.doi.org/10.1109/cando-epe51100.2020.9337800.
Der volle Inhalt der QuelleBai, Lina, und Wei Zhou. „The measurement of transient stability with high resolution“. In 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC). IEEE, 2013. http://dx.doi.org/10.1109/eftf-ifc.2013.6702129.
Der volle Inhalt der QuelleAllan, D. W. „Millisecond Pulsar Rivals Best Atomic Clock Stability“. In 41st Annual Symposium on Frequency Control. IEEE, 1987. http://dx.doi.org/10.1109/freq.1987.200994.
Der volle Inhalt der QuelleNewbury, N. R., W. C. Swann, I. Coddington, L. Lorini, J. C. Bergquist und S. A. Diddams. „Fiber laser-based frequency combs with high relative frequency stability“. In 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum. IEEE, 2007. http://dx.doi.org/10.1109/freq.2007.4319226.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Frequency stability"
Riley, W. J., und W. J. Riley. Handbook of frequency stability analysis. Gaithersburg, MD: National Institute of Standards and Technology, 2008. http://dx.doi.org/10.6028/nist.sp.1065.
Der volle Inhalt der QuelleWalls, F. L., John Gary, Abbie O'Gallagher, Roland Sweet und Linda Sweet. Time domain frequency stability calculated from the frequency domain description :. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.89-3916.
Der volle Inhalt der QuelleWalls, F. L., John Gary, Abbie O'Gallagher, Roland Sweet und Linda Sweet. Time domain frequency stability calculated from the frequency domain description :. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.89-3916r1991.
Der volle Inhalt der QuelleBrennan M. J., J. Gabusi, E. Gill und A. Zaltsman. Flattop? Frequency Studies for the VHF Cavity; Stability, Reproducibility, Resolution. Office of Scientific and Technical Information (OSTI), Februar 1988. http://dx.doi.org/10.2172/1131566.
Der volle Inhalt der QuelleArveson, Paul, und Ralph Goodman. Low-frequency Sea Surface Scattering Levels as a Function of Stability. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada629296.
Der volle Inhalt der QuelleWu, Lingqi. Micromechanical Disk Array for Enhanced Frequency Stability Against Bias Voltage Fluctuations. Fort Belvoir, VA: Defense Technical Information Center, November 2014. http://dx.doi.org/10.21236/ada624236.
Der volle Inhalt der QuelleFrueholz, Robert P. The Effects of Ambient Temperature Fluctuations on the Long-Term Frequency Stability of a Miniature Rubidium Atomic Frequency Standard. Fort Belvoir, VA: Defense Technical Information Center, Februar 1998. http://dx.doi.org/10.21236/ada349664.
Der volle Inhalt der QuelleMiller, N. W., M. Shao, S. Pajic und R. D'Aquila. Western Wind and Solar Integration Study Phase 3 – Frequency Response and Transient Stability. Office of Scientific and Technical Information (OSTI), Dezember 2014. http://dx.doi.org/10.2172/1167065.
Der volle Inhalt der QuelleNicholls, David P. High-Order Numerical Methods for the Simulation of Linear and Nonlinear Waves: High-Frequency Radiation and Dynamic Stability. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1129414.
Der volle Inhalt der QuelleHurricane, Omar Al. The kinetic theory and stability of a stochastic plasma with respect to low frequency perturbations and magnetospheric convection. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/654355.
Der volle Inhalt der Quelle