Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Frequency drift interferometry“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Frequency drift interferometry" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Frequency drift interferometry"
Wu, Wan Duo, Qiang Xian Huang, Chao Qun Wang, Ting Ting Wu und Hong Xie. „The Analysis and Design of a Large Stroke with High-Precision Polarized Laser Interferometer System“. Key Engineering Materials 679 (Februar 2016): 129–34. http://dx.doi.org/10.4028/www.scientific.net/kem.679.129.
Der volle Inhalt der QuelleLiu, Tiegen, Junfeng Shi, Junfeng Jiang, Kun Liu, Shuang Wang, Jinde Yin und Shengliang Zou. „Nonperpendicular Incidence Induced Spatial Frequency Drift in Polarized Low-Coherence Interferometry and Its Compensation“. IEEE Photonics Journal 7, Nr. 6 (Dezember 2015): 1–7. http://dx.doi.org/10.1109/jphot.2015.2494505.
Der volle Inhalt der QuelleQian, Yibin, Jiakun Li, Qibo Feng, Qixin He und Fei Long. „Error Analysis of Heterodyne Interferometry Based on One Single-Mode Polarization-Maintaining Fiber“. Sensors 23, Nr. 8 (19.04.2023): 4108. http://dx.doi.org/10.3390/s23084108.
Der volle Inhalt der QuelleKakuma, Seiichi, und Yasuhiko Katase. „Frequency scanning interferometry immune to length drift using a pair of vertical-cavity surface-emitting laser diodes“. Optical Review 19, Nr. 6 (November 2012): 376–80. http://dx.doi.org/10.1007/s10043-012-0061-3.
Der volle Inhalt der QuelleZhang, Jinge, Hamish A. S. Reid, Eoin Carley, Laurent Lamy, Pietro Zucca, Peijin Zhang und Baptiste Cecconi. „Imaging a Large Coronal Loop Using Type U Solar Radio Burst Interferometry“. Astrophysical Journal 965, Nr. 2 (01.04.2024): 107. http://dx.doi.org/10.3847/1538-4357/ad26fd.
Der volle Inhalt der QuelleMonselesan, D. P., R. J. Morris, P. L. Dyson und M. R. Hyde. „Southern high-latitude Digisonde observations of ionosphere E-region Bragg scatter during intense lacuna conditions“. Annales Geophysicae 22, Nr. 8 (07.09.2004): 2819–35. http://dx.doi.org/10.5194/angeo-22-2819-2004.
Der volle Inhalt der QuelleDenbina, Michael, Marc Simard, Ernesto Rodriguez, Xiaoqing Wu, Albert Chen und Tamlin Pavelsky. „Mapping Water Surface Elevation and Slope in the Mississippi River Delta Using the AirSWOT Ka-Band Interferometric Synthetic Aperture Radar“. Remote Sensing 11, Nr. 23 (21.11.2019): 2739. http://dx.doi.org/10.3390/rs11232739.
Der volle Inhalt der QuelleLiu, Sixun, Zhuo Wang und Yueyang Zhai. „In-Situ Detection for Atomic Density in the K-Rb-21Ne Co-Magnetometer via an Optical Heterodyne Interferometry“. Photonics 10, Nr. 10 (28.09.2023): 1091. http://dx.doi.org/10.3390/photonics10101091.
Der volle Inhalt der QuelleSaito, S., M. Yamamoto, S. Fukao, M. Marumoto und R. T. Tsunoda. „Radar observations of field-aligned plasma irregularities in the SEEK-2 campaign“. Annales Geophysicae 23, Nr. 7 (13.10.2005): 2307–18. http://dx.doi.org/10.5194/angeo-23-2307-2005.
Der volle Inhalt der QuelleMa, Maoli, Guifré Molera Calvés, Giuseppe Cimò, Ming Xiong, Peijia Li, Jing Kong, Peijin Zhang et al. „Detecting the Oscillation and Propagation of the Nascent Dynamic Solar Wind Structure at 2.6 Solar Radii Using Very Long Baseline Interferometry Radio Telescopes“. Astrophysical Journal Letters 940, Nr. 2 (25.11.2022): L32. http://dx.doi.org/10.3847/2041-8213/ac96e7.
Der volle Inhalt der QuelleDissertationen zum Thema "Frequency drift interferometry"
Roubeau-Tissot, Amaël. „Interférométrie à dérive de fréquence pour la mesure de la lumière parasite sur l'instrument spatial LISA“. Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5036.
Der volle Inhalt der QuelleLISA (Laser Interferometer Space Antenna) is a space interferometer dedicated to the detection of gravitational waves in the frequency range [20 µHz-1 Hz], currently under development (phase B). This international project, managed by ESA, will comprise a constellation of three satellites in a triangular formation, each emitting two laser beams towards the other two. There are therefore a total of 6 laser links, and 6 units, called MOSA (Moving Optical Sub-Assembly) responsible for transmitting and receiving the beams, and for measuring inter-satellite distance variations. Each MOSA contains three heterodyne interferometers, and as with any optical device, stray light can compromise measurement accuracy, resolution and dynamics. It is therefore necessary to develop an instrumentation (called the SL-OGSE, Stray Light-Optical Ground Support Equipment) capable of detecting and identifying the contributions of coherent stray light interfering with the device's nominal beams. It will have to meet two requirements in particular: determine the optical path length of the stray light with a resolution better than 2 mm, giving an accuracy of 1 mm on the position of the faulty component, and achieve a measurement floor in fractional optical amplitude of 1,1.10-6 (or 2,2.10-6 in electrical fractional amplitude) in the range of optical paths to be covered.The chosen method is frequency-drift interferometry (FMCW, Frequency Modulated Continuous Wave) by injecting a frequency-swept laser beam into the system under test. The outgoing optical and electrical signals are captured during the optical frequency sweep, and any modulation of these signals will be attributed to the existence of a stray light amplitude, which interferes with the nominal light amplitude. The optical path difference (OPD) between stray and nominal light is deduced from the frequency of these interference fringes. It is by exploiting the OPD value that we can identify the path followed by the stray light, and trace it back to the offending component.The aim of this thesis is to develop a prototype of this instrumentation, comprising a laser diode that can be scanned over 2 nm (to achieve the desired OPD resolution), a laser phase-locked loop, a precise frequency ramp measurement, a real-time ramp calibrator and a data acquisition and processing system.This prototype, tested first on a simplified set-up where we control the presence of stray light, then on a complex system close to the MOSA, has enabled various verifications. The method works for the detection of any type of stray light (stray beam or scattered light type), effectively resolving the contributions from the two sides of a 1mm glass plate and achieving a detection floor below 10-6 in fractional optical amplitude (below 10-12 in fractionnal optical power) in a range of OPD values from 15 mm to over 10 m, covering typical stray light paths in the MOSA. The prototype was finally used to measure stray light in an interferometric demonstrator whose complexity is close to that of a MOSA. This test enabled us to identify certain disturbances, such as changes in the polarization of the injected beam due to the frequency scanning, or imperfections in the frequency scanning, which affect the optical signals recorded. Strategies are proposed to reduce these disturbances, or to take them into account when processing the recorded signals
Konferenzberichte zum Thema "Frequency drift interferometry"
Li, Xiuming. „Analysis on the drift of measured distance in laser frequency scanning interferometry“. In Conference on Advanced Laser Technology and Application, herausgegeben von Zhiyi Wei, Jing Ma, Wei Shi, Xuechun Lin, Wenxue Li, Zhaojun Liu, Xiaodong Xu, Yonglin Song, Yong-Zhen Huang und Jian Zhang. SPIE, 2021. http://dx.doi.org/10.1117/12.2606540.
Der volle Inhalt der QuelleMorrison, G. L., und B. Nelson. „ND-YAG Monitoring for DGV Application (Keynote Paper)“. In ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55306.
Der volle Inhalt der QuelleHjelme, Dag Roar, Alan Rolf Mickelson, L. Hollberg und B. Dahmani. „Novel Optical Frequency Stabilization of Semiconductor Lasers“. In Semiconductor Lasers. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/sla.1987.tub4.
Der volle Inhalt der QuelleDeSlover, Daniel H., Dennis R. Slaughter, William M. Tulloch und William E. White. „A Technique for Measuring Winds in the Lower Atmosphere Using Incoherent Doppler Lidar“. In Optical Remote Sensing of the Atmosphere. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/orsa.1993.pd.13.
Der volle Inhalt der QuelleBourbin, Y., A. Enard, M. Papuchon, C. Moronvalle und M. Werner. „High Frequency Intrinsic Resonance in Traveling Wave Y-fed Directional Couplers“. In Integrated and Guided Wave Optics. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/igwo.1988.wd6.
Der volle Inhalt der QuelleTao, Long, Zhigang Liu und Weibo Zhang. „Auto-elimination of fiber optical path-length drift in a frequency scanning interferometer for absolute distance measurements“. In SPIE Optical Engineering + Applications, herausgegeben von Erik Novak und James D. Trolinger. SPIE, 2015. http://dx.doi.org/10.1117/12.2186377.
Der volle Inhalt der QuelleHall, John L., und Dieter Hills. „Phase-stable laser sources for sub-Hz-linewidth optical spectroscopy“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.wm1.
Der volle Inhalt der QuelleMin, Xiao, und H. J. Kimble. „Propagation of quantum fluctuations through passive optical systems“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.tuj4.
Der volle Inhalt der Quelle