Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Fractionnement de la lignocellulose“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fractionnement de la lignocellulose" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Fractionnement de la lignocellulose"
Roulot, Jean-François. „Le crime contre l’humanité devant les juridictions répressives françaises : un exemple du fractionnement du droit international pénal“. Revue française de criminologie et de droit pénal N° 4, Nr. 1 (01.04.2015): 41–70. http://dx.doi.org/10.3917/rfcdp.004.0041.
Der volle Inhalt der QuelleBoulahdid, S., R. Alami, A. Benahadi, B. Adouani, A. Tazi-Mokha, A. Laouina, A. Soulaymani, A. Mokhtari, K. Hajjout und M. Benajiba. „Le fractionnement plasmatique : expérience Marocaine“. Transfusion Clinique et Biologique 21, Nr. 4-5 (November 2014): 276–77. http://dx.doi.org/10.1016/j.tracli.2014.08.109.
Der volle Inhalt der QuelleFunaoka, Masamitsu. „Lignocellulose“. JAPAN TAPPI JOURNAL 67, Nr. 8 (2013): 875–80. http://dx.doi.org/10.2524/jtappij.67.875.
Der volle Inhalt der QuelleBurnouf, T. „Fractionnement plasmatique international : état des lieux“. Transfusion Clinique et Biologique 14, Nr. 1 (Mai 2007): 41–50. http://dx.doi.org/10.1016/j.tracli.2007.04.002.
Der volle Inhalt der QuelleAllirot, X., J. Graeppi-Dulac, L. Saulais, E. Disse, H. Roth und M. Laville. „O21 Fractionnement alimentaire, satiété et métabolisme“. Cahiers de Nutrition et de Diététique 46 (Dezember 2011): S30—S31. http://dx.doi.org/10.1016/s0007-9960(11)70042-6.
Der volle Inhalt der QuelleAllirot, X., J. Graeppi-Dulac, L. Saulais, E. Disse, H. Roth und M. Laville. „O21 Fractionnement alimentaire, satiété et métabolisme“. Nutrition Clinique et Métabolisme 25 (Dezember 2011): S30—S31. http://dx.doi.org/10.1016/s0985-0562(11)70025-5.
Der volle Inhalt der QuelleLinder, Michel, Jacques Fanni und Michel Parmentier. „Extraction, fractionnement et concentration des huiles marines“. Oléagineux, Corps gras, Lipides 11, Nr. 2 (März 2004): 123–30. http://dx.doi.org/10.1051/ocl.2004.0123.
Der volle Inhalt der QuelleHannus, J., und G. Smets. „Méthodes de préparation et fractionnement du Polystyrène“. Bulletin des Sociétés Chimiques Belges 60, Nr. 1-2 (01.09.2010): 76–98. http://dx.doi.org/10.1002/bscb.19510600110.
Der volle Inhalt der QuelleAkin, Danny E. „Grass lignocellulose“. Applied Biochemistry and Biotechnology 137-140, Nr. 1-12 (April 2007): 3–15. http://dx.doi.org/10.1007/s12010-007-9035-5.
Der volle Inhalt der QuelleHuang, Jintian, Shaobo Zhang, Feiran Zhang, Zhiqing Guo, Liping Jin, Yefei Pan, Yu Wang und Tongcheng Guo. „Enhancement of lignocellulose-carbon nanotubes composites by lignocellulose grafting“. Carbohydrate Polymers 160 (März 2017): 115–22. http://dx.doi.org/10.1016/j.carbpol.2016.12.053.
Der volle Inhalt der QuelleDissertationen zum Thema "Fractionnement de la lignocellulose"
Ghizzi, Damasceno da Silva Gabriela. „Fractionnement par voie sèche de la biomasse ligno-cellulosique : broyage poussé de la paille de blé et effets sur ses bioconversions“. Thesis, Montpellier, SupAgro, 2011. http://www.theses.fr/2011NSAM0031/document.
Der volle Inhalt der QuelleIn a context of plant biorefinery for the production of molecules and energy, pretreatments are necessary to increase the reactivity of the lignocellulosic biomass. This thesis is part of a general project aiming to establish the bases for a dry plant refinery. This study aimed to develop and understand advanced mechanical fractionation of wheat straw down to sub-millimeter sizes and to assess its effects on bioconversion processes for bioenergy. Wheat straw exhibited a high heterogeneity at several scale levels (from cm to μm). A multistep diagram of dry grinding at pilot-scale (> 1 kg) produced a wide range of particle sizes by three distinct mode of action: i) sieve-based grinding producing particle sizes from coarse (800 μm) to fine (50 μm), ii) air-jet milling (ultra-fine, ~ 20 μm) and iii) ball milling (ultra-fine, ~ 10 "m). A morphological analysis of particles was developed by image analysis from light microscopy. Subjecting wheat straw to the complex breaking mechanisms during grinding produced particles highly variable in shapes and compositions. A multiple co-inertia analysis allowed the evaluation of the overall particle morphologies. Generally, grinding reduced the size and shape descriptors of particles, with some exceptions due to equipment configurations. The enzymatic degradability (saccharification) of produced powders was improved by reducing their particle size. Until ~ 100 μm the polysaccharides solubilisation was increased and then stabilised at 36% total polysaccharides and 40% cellulose. Only samples from ball milling overcome this limit and attained hydrolysis yields of 46% total polysaccharides and 72% cellulose. This is due to an increase in enzymatic efficiency by the reduction of cellulose crystallinity (from 22 to 13%). These results of ball milling are comparable to those of steam explosion process, with a better preservation of hemicelluloses. This improved enzymatic efficiency resulted in faster and slightly more extensive (ball milling case) anaerobic degradations (biogas). Aerobic decomposition in the soil was improved by coarse grinding, but finer grinding did not result in a further increase. The characteristics of ground straw varied depending on grinding intensity and mode. Although all grindings could reduce the size, sieve-based grinding and air-jet milling did not allow changes in the fine structure of cell wall polymers. Only ball milling led to changethe internal structure of particles especially reducing cellulose crystallinity and partially solubilising hemicelluloses. These results demonstrate that advanced mechanical fragmentation by dry processes is a possible alternative for pretreatments in a plant refinery
Bassil, Sabina. „Etude de la répartition structurale des acides féruliques et p-coumarique dans la chènevotte et la poudre organique de chanvre (Cannabis sativa) : exploration des voies de fractionnement pour l'obtention d'extraits à valeur ajoutée“. Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30257/document.
Der volle Inhalt der QuelleThe industrial transformation of common cultivated crops generates significant amounts of by-products that can often be valorized as a source of value- added molecules for biochemistry. The present work focuses on an original raw material: hemp (Cannabis sativa L.), rich in a particularly, more accessible, lignin having different characteristics than that of wood. Hemp defibering process (Cannabis sativa L.) generates 30% fibers and 70% lignocellulosic by-products: hemp shives (50%) and hemp dust (20%) which were studied in this work as a potential source of hydroxycinnamic acids (HCA) such as ferulic (FA) and p-coumaric (pCA) acids. Their structural distribution in the lignocellulosic matrix was analytically evaluated by multistage hydrolysis. FA is mostly etherified to the lignocellulosic structure, while pCA is mainly esterified in hemp dust and equally bound through ester and ether linkages in hemp shives. Biorefinery of hemp by-products, to obtain extracts and raffinates which are rich in phenolic acids, was studied by using microwave-assisted extraction and thermo-mechano-chemical extraction using twin-screw extruder. Both methods have helped to intensify the extraction of HCA. For hemp shives, alkaline-hydro alcoholic solvent lead to the optimum yields of pCA by microwave extraction and of FA by twin-screw extrusion, while for hemp dust, the same solvent is the most effective for the extraction of both phenolic acids using twin-screw extraction. The enrichment of HCA extracts by adsorption on different microporous solids has been investigated. The zeolite *BEA (beta) showed a high potential of HCA adsorption from both model solutions and extracts obtained from fractionation
Oriez, Vincent. „Production of biopolymers and synthons from lignocellulosic wastes“. Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0016/document.
Der volle Inhalt der QuelleAgricultural and forestry residues, also known as lignocellulosic residues, have a unique potential based on their quantity and structure for the production of renewable energy and molecules, inorder to solve the issues raised by the increasing scarcity of fossil hydrocarbons and the environmental disorder caused by their use. Lignocellulosic biomasses are essentially made ofcellulose, hemicelluloses and lignin. Fractionation and purification of these three compounds are necessary for their valorization as substitutes of fossil hydrocarbons. In the first place, this studydescribed the chemical fractionation of lignocellulose under acidic and alkaline conditions, and their related purification pathways. The experimental work was carried out on two raw materials:sugarcane bagasse and sunflower oil cake. A thorough characterization of the raw materials as well as the acid and alkaline extracts produced from these materials was performed. The purification steps focused on the sugarcane bagasse mild alkaline extract. Indeed, sugarcane bagasse can be considered a model lignocellulosic biomass and the purification of lignocellulosicmild alkaline extract has not been widely studied despite the numerous assets of this fractionation process. Membrane filtration and elution chromatography on strong acid cationic exchange resins were assessed individually then combined, for the separation of the five main pools of molecules that constitute the extract: lignin oligomers, sugar oligomers, phenolic monomers, acetic acid and inorganic salts. Ultrafiltration trials run on several membranes under various filtration conditions showed that lignin and sugar oligomers, recovered in the retentate, were separated from phenolicmonomers, acetic acid and inorganic salts, recovered in the permeate. A hollow fiber membrane of 10 kDa in polysulfone exhibited the best separation performance and was selected for further trials in concentration and diafiltration modes. Elution chromatography tests using water as eluent and various strong acid cationic exchange resins resulted in the production of a very pure lignin andsugar oligomers fraction with a macroporous-type resin, whereas a gel-type resin led to the separation of phenolic monomers from each other depending on the presence or absence in their structure of a carboxyl group. From a sugarcane bagasse mild alkaline extract, an integrated purification process was developed combining membrane filtration then chromatography on the permeate and precipitation by acid addition on the retentate. It resulted in the production of four purified fractions: phenolic monomers with a carboxyl group, inorganic salts and phenolicmonomers without carboxyl group, lignin oligomers, and sugar oligomers
Katrib, Fouad al. „Utilisation du solvant n-méthyl morpholine n-oxyde (MMNO) pour le fractionnement des constituants de la biomasse lignocellulosique et leur saccharification enzymatique : [thèse soutenue sur un ensemble de travaux]“. Grenoble 1, 1987. http://www.theses.fr/1987GRE10084.
Der volle Inhalt der QuelleChuetor, Santi. „Couplage de procédés de prétraitements chimio-mécaniques de la paille de riz en voie semi-humide : effets sur les propriétés physicochimiques, rhéologiques et réactivité“. Thesis, Montpellier, SupAgro, 2015. http://www.theses.fr/2015NSAM0017/document.
Der volle Inhalt der QuelleLa biomasse lignocellulosique (LC) est considérée comme une alternative prometteuse pour produire des biocarburants, mais aussi extraire des biomolécules et synthons pour la synthèse de polymères et des matériaux afin de les substituer à ceux issues de la pétrochimie. La biomasse LC est principalement composée de cellulose, d'hémicellulose et de lignine. Sa nature composite et sa microstructure matricielle hétérogène rendent difficiles sa digestibilité et sa bioconversion. Le prétraitement de la biomasse LC est une étape indispensable permettant de dissocier la matrice LC et d'améliorer l'accessibilité des polymères pariétaux, étape-clé notamment pour la production de synthons. Le fractionnement par voie sèche des LC s'insère dans les schémas de bioraffinerie de la biomasse avec des arguments favorable à la durabilité (pas d'eau consommée, pas de séchage, pas d'effluents). L'amélioration de la résolution du fractionnement, la réduction de la dépense énergétique et l'amplification de la réactivité/fonctionnalité des produits constituent des objectifs de recherche prioritaires dans le champ du fractionnement sec. Un des inconvénients de l'opération de broyage de la LC native est son importante consommation énergétique. La mise en œuvre de prétraitements modérés qui favorisent la broyabilité de la matrice LC et l'accessibilité aux molécules d'intérêt, peut permettre (i) d'améliorer la résolution du fractionnement, (ii) réduire très significativement l'énergie de broyage et (iii) amplifier la réactivité des produits.L'objectif de la thèse porte sur l'analyse de la mise en œuvre de prétraitements chimiques couplés au fractionnement mécanique de paille de riz, qui a été choisie comme substrat valorisable de référence. Cette étude s'appuie notamment sur un procédé innovant de prétraitement chimique par voie semi-humide, qui permet de fragiliser et déstructurer la matrice LC afin de faciliter une déconstruction mécanique. Le couplage de procédés chimio-mécaniques semi-humide ont permis à la fois d'augmenter la réactivé des produits et de diminuer la consommation énergétique ainsi que supprimer certaines étapes et ne pas générer des effluents. Les résultats du fractionnement par voie sèche ont montré que la combinaison d'un broyage ultrafin et d'une séparation est une alternative de bioraffinerie technique pour obtenir des fractions intéressantes pour différentes propriétés. Ces résultats permettent d'améliorer les méthodes de prétraitements adaptées aux plusieurs types de biomasse dans la bioraffinerie des LC. Une approche hydro-texturale à l'échelle des particules est ensuite proposée pour identifier les mécanismes de fractionnement et évaluer l'impact des prétraitements chimiques. Le rôle de la microstructure dans les prétraitements chemo-mécaniques est notamment analysé par le biais de l'étude des transferts d'eau dans les poudres (imbibition et séchage). Une caractérisation physique des poudres complète la description des propriétés conférées aux pailles de riz broyées. Au-delà des résultats spécifiques aux pailles de riz, cette étude a été conduite de façon a présenter un degré de généricité suffisant pour extrapoler la démarche et les connaissances acquises au traitement d'autres biomasses annuelles ou pérennes
Restrepo-Leal, Julian David. „Optimisation de la production d’effecteurs de Botryosphaeriacées pour maîtriser leur phytopathogénicité et exploiter leurs enzymes pour le bioraffinage du végétal“. Electronic Thesis or Diss., Reims, 2024. http://www.theses.fr/2024REIMS027.
Der volle Inhalt der QuelleViticulture is constantly threatened by plant diseases, especially those caused by fungi. In the last decades, Grapevine Trunk Diseases (GTDs) have arisen as highly destructive and rapidly expanding pathologies. One of the most worldwide prevalent GTDs is Botryosphaeria dieback, caused by Botryosphaeriaceae. These fungal species may rely on many biochemical weapons, including Plant Cell Wall-Degrading Enzymes (PCWDEs) and phytotoxic secondary metabolites, to successfully colonize the grapevine. Here, we aimed to produce, purify, and characterize PCWDEs and phytotoxins from Botryosphaeriaceae to increase knowledge of their mechanisms underlying pathogenicity and virulence. We were also interested in taking advantage of Botryosphaeriaceae pathogens to obtain novel lignocellulolytic enzymes that may benefit plant biorefining. Using genomic comparisons, we highlighted the remarkable richness of Carbohydrate-Active Enzymes (CAZymes), potentially involved in the plant cell wall degradation, in the genome of Neofusicoccum parvum. When cultured in submerged fermentations, N. parvum could produce numerous CAZymes and secondary metabolites, notably in growth media containing lignocellulosic biomasses. Furthermore, we established a purification method for the virulence-factor-candidate phytotoxin (R)-mellein using an innovative approach via Centrifugal Partition Chromatography. We also started an approach to heterologously produce three novel CAZymes: an acetylxylan esterase, a pectate lyase, and an uncharacterized cellulase. Overall, our results provided insights into the influence of lignocellulosic biomass in the expression of pathogenicity and virulence factors in N. parvum. This study may also be helpful for the discovery of more efficient enzymes for industrial applications
Warsame, Mohamed. „Saccharification of lignocellulose“. Thesis, Malmö högskola, Fakulteten för hälsa och samhälle (HS), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-25910.
Der volle Inhalt der QuelleThe increasing energy demand and the anticipated decline in crude oil production has led to an immense search for new energy sources. Plant cell walls contain lignocellulose that conserve great amounts of energy. These polysaccharides are of high importance for the search of renewable energy sources. Pretreatment of the cell wall is necessary in order to hydrolyse it to its component sugars. Once degraded to monomeric sugars it can be fermented to either ethanol or biogas through established fermentation technologies.The aim of this thesis was to compare and evaluate some of the methods used for sacchrification of lignocellulose. Three treatments where compared to determine which is highest yielding. These are enzymatic hydrolysis, microwave irradiation and steam explosion.Wheat straw was used as substrate and hydrolysed by three commercial enzyme mixtures. Samples were pretreated before the enzymatic reaction with either microwave or steam explosion. Results showed that a treatment of either microwave irradiation or steam explosion combined with enzyme hydrolysis gives the highest yield in monomeric sugars. The conclusions that can be drawn are that mechanical pretreatment increases yield drastically but is insufficient in its self. Further enzymatic treatment of wheat straw is necessary to obtain high amounts of simple sugars.
Garcia, Susana. „Biodégradation des lignocelluloses : étude microbiologique, physiologique et ultrastructurale“. Paris 7, 1988. http://www.theses.fr/1988PA077057.
Der volle Inhalt der QuelleKeränen, A. (Anni). „Water treatment by quaternized lignocellulose“. Doctoral thesis, Oulun yliopisto, 2017. http://urn.fi/urn:isbn:9789526215143.
Der volle Inhalt der QuelleTiivistelmä Edullisia ja kestäviä vedenkäsittelytekniikoita tarvitaan kasvavien vesiongelmien ratkaisemiseen. Lignoselluloosaa, kuten sahanpurua, syntyy suuria määriä teollisuuden sivutuotteena. Sen reaktiivisia funktionaalisia ryhmiä voidaan modifioida kemiallisesti ja valmistaa siten biopohjaisia vedenkäsittelykemikaaleja. Tutkimustietoa oikeiden jätevesien puhdistuksesta biopohjaisilla ioninvaihtomateriaaleilla tarvitaan lisää, jotta materiaalien käyttöä voidaan kehittää ja edistää. Tässä väitöstyössä valmistettiin anioninvaihtomateriaaleja modifioimalla kemiallisesti viittä suomalaista lignoselluloosamateriaalia: männyn sahanpurua ja kuorta (Pinus sylvestris), kuusen kuorta (Picea abies), koivun kuorta (Betula pendula/pubescens) ja turvetta. Menetelmässä käytettiin epikloorihydriiniä, etyleenidiamiinia ja trietyyliamiinia orgaanisessa liuotinfaasissa. Työssä keskityttiin erityisesti nitraatin poistoon sekä synteettisistä että oikeista jätevesistä. Materiaalien soveltuvuutta teollisiin sovelluksiin arvioitiin maksimisorptiokapasiteetin, sorptioisotermien, kinetiikka- ja kolonnikokeiden sekä pH:n, lämpötilan ja muiden anionien vaikutusta tutkivien kokeiden avulla. Kaikki viisi kationisoitua tuotetta poistivat yli 70 % nitraatista laajalla pH-alueella (3–10). Kationisoitu männyn sahanpuru osoittautui parhaaksi materiaaliksi (32,8 mg NO3-N/g), ja se toimi laajalla lämpötila-alueella (5–70°C). Kolonnikokeet osoittivat sen olevan helposti regeneroitavissa ja uudelleenkäytettävissä. Tuotetta testattiin myös kaivos- ja kemiantehtaan jäteveden käsittelyyn, ja kokeissa havaittiin hyviä nikkeli-, uraani-, vanadiini- ja kobolttireduktioita. Männyn sahanpurua modifioitiin vertailun vuoksi myös kationisella monomeerilla, N-(3-kloro-2-hydroksipropyyli)trimetyyliammoniumkloridilla. Tuotteen maksimisorptiokapasiteetiksi saatiin 15,3 mg NO3-N/g ja se poisti nitraattia saastuneesta pohjavedestä. Kokonaisuudessaan väitöskirjatyö tarjoaa uutta tietoa biopohjaisten ioninvaihtomateriaalien valmistamisesta ja niiden soveltuvuudesta oikeiden teollisuusjätevesien käsittelyyn
Van, Dyk Jacoba Susanna. „Characterisation of the cellulolytic and hemicellulolytic system of Bacillus Licheniformis SVD1 and the isolation and characterisation of a multi-enzyme complex“. Thesis, Rhodes University, 2009. http://hdl.handle.net/10962/d1003995.
Der volle Inhalt der QuelleBücher zum Thema "Fractionnement de la lignocellulose"
Faraco, Vincenza, Hrsg. Lignocellulose Conversion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4.
Der volle Inhalt der QuelleSaha, Badal C., und Kyoshi Hayashi, Hrsg. Lignocellulose Biodegradation. Washington, DC: American Chemical Society, 2004. http://dx.doi.org/10.1021/bk-2004-0889.
Der volle Inhalt der Quelle1949-, Saha Badal C., Hayashi Kyoshi 1952-, American Chemical Society. Cellulose and Renewable Materials Division und American Chemical Society Meeting, Hrsg. Lignocellulose biodegradation. Washington, DC: American Chemical Society, 2004.
Den vollen Inhalt der Quelle findenKarimi, Keikhosro, Hrsg. Lignocellulose-Based Bioproducts. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14033-9.
Der volle Inhalt der QuelleChen, Hongzhang. Biotechnology of Lignocellulose. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-6898-7.
Der volle Inhalt der QuelleChander, Kuhad Ramesh, und Singh Ajay 1963-, Hrsg. Lignocellulose biotechnology: Future prospects. Tunbridge Wells: Anshan, 2007.
Den vollen Inhalt der Quelle findenP, Coughlan Michael, Hrsg. Enzyme systems for lignocellulose degradation. London: Elsevier, 1989.
Den vollen Inhalt der Quelle findenSmith, Micholas Dean, Hrsg. Understanding Lignocellulose: Synergistic Computational and Analytic Methods. Washington, DC: American Chemical Society, 2019. http://dx.doi.org/10.1021/bk-2019-1338.
Der volle Inhalt der QuelleEuropean, Workshop on Lignocellulosics and Pulp (1st 1990 Bergedorf (Hamburg Germany). Utilization and analysis of lignins: 1st European Workshop on Lignocellulosics and Pulp (EWLP) : Hamburg-Bergedorf, Federal Republic of Germany, September 18-20, 1990 : proceedings. Hamburg: Buchhandlung M. Wiedebusch, 1991.
Den vollen Inhalt der Quelle findenPalonen, Hetti. Role of lignin in the enzymatic hydrolysis of lignocellulose. Espoo [Finland]: VTT Technical Research Centre of Finland, 2004.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Fractionnement de la lignocellulose"
Akin, Danny E. „Grass Lignocellulose“. In Applied Biochemistry and Biotecnology, 3–15. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-60327-181-3_2.
Der volle Inhalt der QuelleWatanabe, Takashi. „Introduction: Potential of Cellulosic Ethanol“. In Lignocellulose Conversion, 1–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_1.
Der volle Inhalt der QuelleHadar, Yitzhak. „Sources for Lignocellulosic Raw Materials for the Production of Ethanol“. In Lignocellulose Conversion, 21–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_2.
Der volle Inhalt der QuelleWoiciechowski, Adenise Lorenci, Luciana Porto de Souza Vandenberghe, Susan Grace Karp, Luiz Alberto Junior Letti, Júlio Cesar de Carvalho, Adriane Bianchi Pedroni Medeiros, Michele Rigon Spier, Vincenza Faraco, Vanete Thomaz Soccol und Carlos Ricardo Soccol. „The Pretreatment Step in Lignocellulosic Biomass Conversion: Current Systems and New Biological Systems“. In Lignocellulose Conversion, 39–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_3.
Der volle Inhalt der QuelleBalan, Venkatesh, Mingjie Jin, Alan Culbertson und Nirmal Uppugundla. „The Saccharification Step: Trichoderma Reesei Cellulase Hyper Producer Strains“. In Lignocellulose Conversion, 65–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_4.
Der volle Inhalt der QuelleCouturier, Marie, und Jean-Guy Berrin. „The Saccharification Step: The Main Enzymatic Components“. In Lignocellulose Conversion, 93–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_5.
Der volle Inhalt der QuelleCobucci-Ponzano, Beatrice, Elena Ionata, Francesco La Cara, Alessandra Morana, Maria Carmina Ferrara, Luisa Maurelli, Andrea Strazzulli, Rosa Giglio und Marco Moracci. „Extremophilic (Hemi)cellulolytic Microorganisms and Enzymes“. In Lignocellulose Conversion, 111–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_6.
Der volle Inhalt der QuelleBinod, Parameswaran, Raveendran Sindhu und Ashok Pandey. „The Alcohol Fermentation Step: The Most Common Ethanologenic Microorganisms Among Yeasts, Bacteria and Filamentous Fungi“. In Lignocellulose Conversion, 131–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_7.
Der volle Inhalt der QuelleCastro, Eulogio. „Other Ethanologenic Microorganisms“. In Lignocellulose Conversion, 151–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_8.
Der volle Inhalt der QuelleAmore, Antonella, Simona Giacobbe und Vincenza Faraco. „Consolidated Bioprocessing for Improving Cellulosic Ethanol Production“. In Lignocellulose Conversion, 169–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Fractionnement de la lignocellulose"
Stepacheva, Antonina, Mariia Markova, Oleg Manaenkov, Elena Shimanskaya und Valentina Matveeva. „SAWDUST LIQUIEFACTION OVER SCHUNGITE-BASED CATALYST“. In 24th SGEM International Multidisciplinary Scientific GeoConference 24, 197–204. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024/4.1/s17.26.
Der volle Inhalt der QuelleZhu, Kuihong, Tong Liu, Jia Liu, Xu Cao, Jiaojiao Liu und Jie Wang. „Microbial degradation of lignocellulose“. In 3RD INTERNATIONAL CONFERENCE ON FRONTIERS OF BIOLOGICAL SCIENCES AND ENGINEERING (FBSE 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0048528.
Der volle Inhalt der QuelleMeurs, Marie-Jean, Caitlin Murphy, Ingo Morgenstern, Nona Naderi, Greg Butler, Justin Powlowski, Adrian Tsang und René Witte. „Semantic text mining for lignocellulose research“. In the ACM fifth international workshop. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2064696.2064705.
Der volle Inhalt der QuelleYuliar, Nursaida Setiyowati, Sri Pujiyanto und Wijanarka. „Isolation of Brevibacillus sp. B1 from fig stems against post-harvest chilli fungal disease“. In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184356.
Der volle Inhalt der QuelleRuhimat, Riki, Tirta Kumala Dewi, Tiwit Widowati, Rahayu Fitriani Wangsa Putrie, Nani Mulyani, Entis Sutisna und Sarjiya Antonius. „Fungal producing lignolytic and cellulolytic enzyme from the various habitat of natural forest in East Kalimantan“. In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184758.
Der volle Inhalt der QuelleTogatorop, Ester Rimma Suryani, Ria Yolanda Arundina, Prabu Satria Sejati, Sukma Surya Kusumah und Resti Marlina. „Proximate and structural analysis of activated carbon with different structures from oil palm biomass“. In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184530.
Der volle Inhalt der QuelleRestasari, Afni, Yeyen Nurhamiyah, Retno Ardianingsih, Luthfia Hajar Abdillah und Kendra Hartaya. „Preliminary study of effect of palm oil as secondary plasticizer on flow behavior of hydroxyl terminated polybutadiene (HTPB)“. In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184713.
Der volle Inhalt der QuelleSaputra, Suroto Hadi, Andrian Fernandes und Rizki Maharani. „Effect of combustion method on the yield, specific gravity, and color of oleoresin of Dipterocarpus grandiflorus“. In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184803.
Der volle Inhalt der QuelleSubyakto, Eko Widodo, Triyati, Naomi Dameria Lidya Andini Hutauruk, Rabiah Al Adawiyah und Kenji Umemura. „Properties of moulding products from sorghum bagasse combined with alang-alang leaves, sengon wood or bamboo using citric acid-sucrose“. In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184618.
Der volle Inhalt der QuelleChitraningrum, Nidya, Resti Marlina, Sutistyaningsih, Hana Arisesa, Ismail Budiman, Pamungkas Daud, Ardita Septiani, Ria Yolanda Arundina und Ester Rimma Suryani Togatorop. „Preparation and characterization of porous carbon-based oil palm empty fruit bunch as a candidate material for an electromagnetic waves absorber application“. In THE 2ND INTERNATIONAL CONFERENCE OF LIGNOCELLULOSE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0184349.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Fractionnement de la lignocellulose"
O'Malley, Michelle Ann. Engineering Anaerobic Gut Fungi for Lignocellulose Breakdown. Office of Scientific and Technical Information (OSTI), Dezember 2018. http://dx.doi.org/10.2172/1485149.
Der volle Inhalt der QuelleCosgrove, Daniel. Center for Lignocellulose Structure and Formation (CLSF). Office of Scientific and Technical Information (OSTI), November 2024. http://dx.doi.org/10.2172/2476020.
Der volle Inhalt der QuelleHancock, William, Charles Anderson und Ming Tien. Single-molecule imaging of lignocellulose deconstruction by SCATTIRSTORM microscopy. Office of Scientific and Technical Information (OSTI), April 2024. http://dx.doi.org/10.2172/2335452.
Der volle Inhalt der QuelleTorok, Tamas. Targeted Discovery of Lignocellulose-Deconstructing Enzymes from Extremohilic Fungi. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1462736.
Der volle Inhalt der QuelleDixon, Richard A. Systematic Modification of Monolignol Pathway Gene Expression for Improved Lignocellulose Utilization. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/985404.
Der volle Inhalt der QuelleMurton, Jaclyn K., James Bryce Ricken und Amy Jo Powell. Efficient breakdown of lignocellulose using mixed-microbe populations for bioethanol production. Office of Scientific and Technical Information (OSTI), November 2009. http://dx.doi.org/10.2172/974402.
Der volle Inhalt der QuelleHammel, Kenneth E., John Ralph, Christopher G. Hunt und Carl J. Houtman. Fungal Biodegradative Oxidants in Lignocellulose: Fluorescence Mapping and Correlation With Gene Expression. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1319808.
Der volle Inhalt der QuelleZerbe, John, und David Nicholls. Lignocellulose to transportation fuels—historical perspectives and status of worldwide facilities in 2010–2011. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 2013. http://dx.doi.org/10.2737/pnw-gtr-885.
Der volle Inhalt der QuelleSLACK, JEFFREY, M. IDENTIFICATION, PRODUCTION AND CHARACTERIZATION OF NOVEL LIGNASE PROTEINS FROM TERMITES FOR DEPOLYMERIZATION OF LIGNOCELLULOSE. Office of Scientific and Technical Information (OSTI), Dezember 2012. http://dx.doi.org/10.2172/1056676.
Der volle Inhalt der QuelleHerring, Christopher D., William R. Kenealy, A. Joe Shaw, Babu Raman, Timothy J. Tschaplinski, Steven D. Brown, Brian H. Davison et al. Final Report on Development of Thermoanaerobacterium saccharolyticum for the conversion of lignocellulose to ethanol. Office of Scientific and Technical Information (OSTI), Januar 2012. http://dx.doi.org/10.2172/1033560.
Der volle Inhalt der Quelle