Auswahl der wissenschaftlichen Literatur zum Thema „Fractional spin“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fractional spin" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Fractional spin"

1

Samuel, Joseph. „Fractional spin from gravity“. Physical Review Letters 71, Nr. 2 (12.07.1993): 215–18. http://dx.doi.org/10.1103/physrevlett.71.215.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Genest, Vincent X., Luc Vinet und Alexei Zhedanov. „Exact fractional revival in spin chains“. Modern Physics Letters B 30, Nr. 26 (30.09.2016): 1650315. http://dx.doi.org/10.1142/s0217984916503152.

Der volle Inhalt der Quelle
Annotation:
The occurrence of fractional revival in quantum spin chains is examined. Analytic models where this phenomenon can be exhibited in exact solutions are provided. It is explained that spin chains with fractional revival can be obtained by isospectral deformations of spin chains with perfect state transfer.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Liang, J. Q., und X. X. Ding. „New model of fractional spin“. Physical Review Letters 63, Nr. 8 (21.08.1989): 831–33. http://dx.doi.org/10.1103/physrevlett.63.831.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Nobre, F. A. S., und C. A. S. Almeida. „Pauli's term and fractional spin“. Physics Letters B 455, Nr. 1-4 (Mai 1999): 213–16. http://dx.doi.org/10.1016/s0370-2693(99)00475-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Plyushchay, M. S. „Fractional spin. Majorana-Dirac field“. Physics Letters B 273, Nr. 3 (Dezember 1991): 250–54. http://dx.doi.org/10.1016/0370-2693(91)91679-p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Roy, Ashim Kumar. „Topological Invariance of Fractional Spin of the Abelian CSH Vortex“. International Journal of Modern Physics A 12, Nr. 13 (20.05.1997): 2343–59. http://dx.doi.org/10.1142/s0217751x97001365.

Der volle Inhalt der Quelle
Annotation:
The Abelian Chern–Simons–Higgs model in 2 + 1 dimensions exhibit vortex solutions with fractional spin. Although it is known that the normal, underformed charged vortex has a fractional spin related to its topological charge, it is not clear whether the value of this fractional spin is stable under changes in gauge-fixing conditions and regular deformations of the vortex field configurations. Recently, some authors have reported about the gauge as well as shape dependence of the fractional spin for the CSH vortex, which is contrary to our usual belief. However, their analysis is inconsistent and calls for a careful scrutiny. An explicit analysis is presented in this paper to show that the fractional spin for the Abelian CSH charged vortex may indeed be taken to be a gauge (small) and shape independent and hence, a topologically invariant quantity. The subtle points missed out by the other authors leading to inconsistency and the contradictory result are discussed in all essential details to resolve the issue.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

ROY, ASHIM KUMAR. „GAUGE AND SHAPE INDEPENDENCE OF FRACTIONAL SPIN OF DEFORMED SOLITONS IN THE (2+1)-DIMENSIONAL O(3) σ MODEL“. International Journal of Modern Physics A 11, Nr. 04 (10.02.1996): 759–75. http://dx.doi.org/10.1142/s0217751x96000353.

Der volle Inhalt der Quelle
Annotation:
The O(3) nonlinear σ model with the Hopf term and with a Chern–Simons gauge coupling in 2+1 dimensions is considered for an understanding of the soliton shape and gauge dependence of the fractional spin and statistics exhibited by the particle-like solutions. Some explicit forms of the shape-defining (for the deformed solitons of these models) functions and the adiabatic time-dependent function are used to assess the fractional spin. In two different gauges, a proper and explicit analysis shows that the fractional spin is a truly gauge- as well as shape-independent entity. This demonstrates that the fractional spin of solitons in the O(3) σ model is a topologically invariant quantity — a fact which has been put in doubt by some authors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

FORTE, STEFANO. „RELATIVISTIC PARTICLES WITH FRACTIONAL SPIN AND STATISTICS“. International Journal of Modern Physics A 07, Nr. 05 (20.02.1992): 1025–57. http://dx.doi.org/10.1142/s0217751x92000466.

Der volle Inhalt der Quelle
Annotation:
We develop the relativistic quantum mechanics of particles with fractional spin and statistics in 2 + 1 dimensions in the path-integral approach. We endow the elementary excitations of the theory with fractional spin through the coupling of the particle number current with a topological term. We work out the dynamics of the spin degrees of freedom, and display the relation between the spin action and the knot invariants of the paths contributing to the path integral. We show that the explicit spin-changing interaction can be traded for multivaluedness of the wave function, and we relate this to the representation theory of the Lorentz and Poincaré groups in 2 + 1 dimensions. We discuss the multiparticle dynamics and derive the spin–statistics theorem.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Su, Neil Qiang, Chen Li und Weitao Yang. „Describing strong correlation with fractional-spin correction in density functional theory“. Proceedings of the National Academy of Sciences 115, Nr. 39 (10.09.2018): 9678–83. http://dx.doi.org/10.1073/pnas.1807095115.

Der volle Inhalt der Quelle
Annotation:
An effective fractional-spin correction is developed to describe static/strong correlation in density functional theory. Combined with the fractional-charge correction from recently developed localized orbital scaling correction (LOSC), a functional, the fractional-spin LOSC (FSLOSC), is proposed. FSLOSC, a correction to commonly used functional approximations, introduces the explicit derivative discontinuity and largely restores the flat-plane behavior of electronic energy at fractional charges and fractional spins. In addition to improving results from conventional functionals for the prediction of ionization potentials, electron affinities, quasiparticle spectra, and reaction barrier heights, FSLOSC properly describes the dissociation of ionic species, single bonds, and multiple bonds without breaking space or spin symmetry and corrects the spurious fractional-charge dissociation of heteroatom molecules of conventional functionals. Thus, FSLOSC demonstrates success in reducing delocalization error and including strong correlation, within low-cost density functional approximation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

LIU, YONG-KAI, und SHI-JIE YANG. „FRACTIONAL WINDINGS OF THE SPINOR CONDENSATES ON A RING“. International Journal of Modern Physics B 27, Nr. 16 (07.06.2013): 1350070. http://dx.doi.org/10.1142/s0217979213500707.

Der volle Inhalt der Quelle
Annotation:
We study the uniform solutions to the one-dimensional (1D) spinor Bose–Einstein condensates on a ring. These states explicitly display the associated motion of the super-current and the spin rotation, which give rise to fractional winding numbers according to the various compositions of the hyperfine states. It simultaneously yields a fractional factor to the global phase due to the spin-gauge symmetry. All fractional windings can be denoted as nk/(m+n), with nk<m+n<2F, for arbitrary spin-F Bose–Einstein condensation (BEC). Our method can be applied to explore the fractional vortices by identifying the ring as the boundary of two-dimensional (2D) spinor condensates.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Fractional spin"

1

Thomale, Ronny. „Fractional excitations in low-dimensional spin systems“. Aachen Shaker, 2008. http://d-nb.info/992564492/04.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Thomale, Ronny [Verfasser]. „Fractional Excitations in low–dimensional spin systems / Ronny Thomale“. Aachen : Shaker, 2009. http://d-nb.info/1161309616/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Stern, Omar I. „Spin phenomena in the fractional quantum hall effect NMR and magnetotransport studies /“. [S.l. : s.n.], 2005. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11759367.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mariani, Eros. „On the role of spin, pairing and statistics for composite fermions in the fractional quantum Hall effect“. [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=968875653.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lu, Yuan-Ming. „Exotic phases of correlated electrons in two dimensions“. Thesis, Boston College, 2011. http://hdl.handle.net/2345/2363.

Der volle Inhalt der Quelle
Annotation:
Thesis advisor: Ziqiang Wang
Exotic phases and associated phase transitions in low dimensions have been a fascinating frontier and a driving force in modern condensed matter physics since the 80s. Due to strong correlation effect, they are beyond the description of mean-field theory based on a single-particle picture and Landau's symmetry-breaking theory of phase transitions. These new phases of matter require new physical quantities to characterize them and new languages to describe them. This thesis is devoted to the study on exotic phases of correlated electrons in two spatial dimensions. We present the following efforts in understanding two-dimensional exotic phases: (1) Using Zn vertex algebra, we give a complete classification and characterization of different one-component fractional quantum Hall (FQH) states, including their ground state properties and quasiparticles. (2) In terms of a non-unitary transformation, we obtain the exact form of statistical interactions between composite fermions in the lowest Landau level (LLL) with v=1/(2m), m=1,2... By studying the pairing instability of composite fermions we theoretically explains recently observed FQHE in LLL with v=1/2,1/4. (3) We classify different Z2 spin liquids (SLs) on kagome lattice in Schwinger-fermion representation using projective symmetry group (PSG). We propose one most promising candidate for the numerically discovered SL state in nearest-neighbor Heisenberg model on kagome lattice}. (4) By analyzing different Z2 spin liquids on honeycomb lattice within PSG classification, we find out the nature of the gapped SL phase in honeycomb lattice Hubbard model, labeled sublattice pairing state (SPS) in Schwinger-fermion representation. We also identify the neighboring magnetic phase of SPS as a chiral-antiferromagnetic (CAF) phase and analyze the continuous phase transition between SPS and CAF phase. For the first time we identify a SL called 0-flux state in Schwinger-boson representation with one (SPS) in Schwinger-fermion representation by a duality transformation. (5) We show that when certain non-collinear magnetic order coexists in a singlet nodal superconductor, there will be Majorana bound states in vortex cores/on the edges of the superconductor. This proposal opens a window for discovering Majorana fermions in strongly correlated electrons. (6) Motivated by recent numerical discovery of fractionalized phases in topological flat bands, we construct wavefunctions for spin-polarized fractional Chern insulators (FCI) and time reversal symmetric fractional topological insulators (FTI) by parton approach. We show that lattice symmetries give rise to different FCI/FTI states even with the same filling fraction. For the first time we construct FTI wavefunctions in the absence of spin conservation which preserve all lattice symmetries. The constructed wavefunctions also set up the framework for future variational Monte Carlo simulations
Thesis (PhD) — Boston College, 2011
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Marut, Clotilde. „La théorie de la fonctionnelle de la densité d'ensemble : une alternative pour décrire les états excités et pour pallier aux limitations des méthodes ab initio standard“. Electronic Thesis or Diss., Toulouse 3, 2023. http://www.theses.fr/2023TOU30312.

Der volle Inhalt der Quelle
Annotation:
Au cours des dernières décennies, la théorie de la fonctionnelle de la densité (DFT) s'est imposée comme une approche rigoureuse pour la description de l'état fondamental des systèmes électroniques. Grâce à son faible coût computationnel et à l'élaboration d'approximations sophistiquées pour la fonctionnelle d'échange-corrélation (xc-DFA), la DFT est devenue la méthode de choix pour le calcul de structure électronique. Néanmoins, il subsiste nombre de défis que la DFT ne parvient pas à surmonter. En réalité, ces carences ne sont pas le fruit de la théorie elle-même mais plutôt du fait de défauts intrinsèques des approximations utilisées. Il existe une formulation plus générale de la DFT pour les nombres fractionnaires d'occupation qui permet la description de systèmes avec nombre fractionnaire d'électrons, la PPLB-DFT. Cette formulation grand canonique de la DFT peut être mise en place à l'aide d'un formalisme d'ensemble et permet une extraction directe d'énergies d'excitation chargée et d'autres propriétés à partir d'un seul calcul de type DFT. Malheureusement, l'incapacité des DFAs à reproduire la fameuse dérivée discontinue (DD) s'est avérée être particulièrement préjudiciable pour la prédiction d'énergies d'excitation chargée, telles que les potentiels d'ionisation et les affinités électroniques, donnant lieu à des erreurs conséquentes, et connue comme le problème du gap fondamental. Dans ce contexte, la DFT d'ensemble (eDFT) offre une alternative très attrayante du fait de sa capacité à user de DFAs dépendantes du poids de l'ensemble pour reproduire la DD via leur dérivée. La DFT est connue pour montrer des limites vis-à-vis du calcul d'énergies d'excitation chargée et neutre. La procédure standard pour accéder aux états excités neutralement dans le cadre de la DFT est à travers son extension dépendante du temps, la TD-DFT. En effet, l'usage est de recourir à la TD-DFT pour obtenir des prédictions acceptables pour les énergies de transition des niveaux excités les plus bas, cela avec un coût computationnel relativement modéré. Bien que la TD-DFT se soit avérée incroyablement fructueuse pour accéder aux énergies d'excitation neutre, elle a également montré certaines limites lors de la description de certains phénomènes et propriétés physiques. En cela, l'eDFT constitue une alternative prometteuse à la TD-DFT pour le calcul des énergies d'excitation électroniques. En eDFT, il est possible d'extraire n'importe quelle énergie d'excitation neutre d'un système électronique en un seul calcul à l'aide d'un ensemble Gross-Oliveira-Kohn (GOK), et cela avec un coût computationnel et un niveau d'approximation pour la fonctionnelle d'xc, similaires à ceux de la DFT standard. La GOK-DFT est une alternative moins connue mais tout autant rigoureuse que la TD-DFT, où le large choix de poids de l'ensemble et la dépendance en poids de la fonctionnelle xc peuvent significativement influer sur la qualité des énergies calculées. En temps normal, accéder aux énergies d'excitation chargée nécessite de faire varier le nombre d'électrons du système, ce qui peut s'avérer problématique dans certains cas. Très récemment, un nouveau formalisme canonique a été développé, l'eDFT N-centrée, rendant possible l'extraction d'énergies d'excitation chargée sans altération du nombre d'électrons. Le comportement des DFAs standard dans le cadre de l'eDFT peut offrir une compréhension plus poussée de la nature intrinsèque des erreurs systématiques dont elles souffrent, telles que la violation des conditions exactes de linéarité par morceaux et de constance de l'énergie. En outre, la mauvaise description des systèmes avec charge et spin fractionnaires a prouvé avoir un impact majeur dans la description des systèmes fortement corrélés ainsi que dans les processus de dissociation et la prédiction de gaps d'énergie. Tout cela pourrait donner un nouvel essor au développement futur de la DFT et à des applications émergentes jusqu'alors inaccessibles
Over the last few decades, density-functional theory (DFT) has proved to be a rigorous approach for describing the ground-state of any electronic system. Due to a relatively low computational cost and the elaboration of sophisticated density-functional approximations (DFAs), DFT became the prevailing method used in electronic-structure calculations. Still, there remain numerous challenges that standard DFAs fail to overcome. These limitations are not attributed to failures of the theory itself but are rather due to deficiencies of the currently used approximate exchange-correlation (xc) functionals. There exists a generalization of ground-state DFT to fractional occupation numbers which allows for the description of systems with fractional number of electrons, PPLB-DFT. Such grand canonical extension of DFT can be achieved through the use of the ensemble formalism and enables direct extraction of charged excitation energies and other properties from a single DFT-like calculation. Unfortunately, the inability of commonly used exchange-correlation DFAs to mimic the infamous derivative discontinuity (DD) has proved to be highly detrimental to the prediction of charged excitations such as ionization potentials and electron affinities, yielding substantial errors, and known as the fundamental-gap problem. Regarding this matter, ensemble DFT (eDFT) offers a very appealing alternative benefiting from the possibility for explicitly weight-dependent xc-functionals to mimic the infamous DD through their derivatives with respect to the ensemble weights. DFT is known to possess deficiencies when it comes to computing charged and neutral excitations. The most popular way to access neutrally excited states within the scope of DFT is through its time-dependent extension, TD-DFT. Indeed, one would usually turn to TD-DFT to get accurate transition energies for low-lying excited-states with a relatively moderate computational cost. Although TD-DFT has been incredibly successful to access neutral excitation energies, it still suffers from some limitations and fails to provide accurate descriptions of some phenomena and properties. eDFT constitutes a promising alternative to TD-DFT for computing electronic excitation energies. In eDFT, it is possible to extract any neutral excitation energies of a N-electron system from a single calculation through the use of a Gross-Oliveira-Kohn (GOK) ensemble, with a similar computational cost and level of approximation for the xc-functional than in an usual DFT calculation. GOK-DFT is a less well-known but comparably rigorous alternative to TD-DFT where the large choice of ensemble weights and the weight-dependence of DFAs can significantly impact the accuracy of the energies. In DFT, it is well-known that the HOMO-LUMO gap can be a very poor estimation of the fundamental gap of the system, whereas eDFT may provide better predictions. Nevertheless, accessing charged excitations usually require to vary the number of electrons of the system, which can be problematic for some systems. Very recently, a new canonical eDFT formalism has been developed, the N-centered formalism, which allows for the extraction of charged excitation energies without any alteration of the number of electrons of the system. The behaviour of standard approximations in the scope of eDFT may provide additional insight into the intrinsic systematic errors of DFAs, such as the violation of the piecewise-linearity and constancy-condition exact properties. Indeed, poor descriptions of systems with fractional charges and fractional spins have shown to have major implications on the description of strongly correlated systems, which are known to suffer from large static-correlation errors, as well as on the prediction of asymptotic integer dissociations and band-gap predictions. These considerations may lead the way to further development and refinement of the DFT scheme towards both current and emerging applications
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Johansson, Bergholtz Emil. „One-dimensional theory of the quantum Hall system“. Doctoral thesis, Stockholms universitet, Fysikum, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7545.

Der volle Inhalt der Quelle
Annotation:
The quantum Hall (QH) system---cold electrons in two dimensions in a perpendicular magnetic field---is a striking example of a system where unexpected phenomena emerge at low energies. The low-energy physics of this system is effectively one-dimensional due to the magnetic field. We identify an exactly solvable limit of this interacting many-body problem, and provide strong evidence that its solutions are adiabatically connected to the observed QH states in a similar manner as the free electron gas is related to real interacting fermions in a metal according to Landau's Fermi liquid theory. The solvable limit corresponds to the electron gas on a thin torus. Here the ground states are gapped periodic crystals and the fractionally charged excitations appear as domain walls between degenerate ground states. The fractal structure of the abelian Haldane-Halperin hierarchy is manifest for generic two-body interactions. By minimizing a local k+1-body interaction we obtain a representation of the non-abelian Read-Rezayi states, where the domain wall patterns encode the fusion rules of the underlying conformal field theory. We provide extensive analytical and numerical evidence that the Laughlin/Jain states are continuously connected to the exact solutions. For more general hierarchical states we exploit the intriguing connection to conformal field theory and construct wave functions that coincide with the exact ones in the solvable limit. If correct, this construction implies the adiabatic continuation of the pertinent states. We provide some numerical support for this scenario at the recently observed fraction 4/11. Non-QH phases are separated from the thin torus by a phase transition. At half-filling, this leads to a Luttinger liquid of neutral dipoles which provides an explicit microscopic example of how weakly interacting quasiparticles in a reduced (zero) magnetic field emerge at low energies. We argue that this is also smoothly connected to the bulk state.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Fiala, Jan. „Statistical Mechanics of Farey Fraction Spin Chain Models“. Fogler Library, University of Maine, 2004. http://www.library.umaine.edu/theses/pdf/FialaJ2004.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Brown, Natalie. „Matrix continued fraction approach to the relativistic quantum mechanical spin-zero Feshbach-Villars equations“. Thesis, California State University, Long Beach, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1597738.

Der volle Inhalt der Quelle
Annotation:

In this thesis we solve the Feshbach-Villars equations for spin-zero particles through use of matrix continued fractions. The Feshbach-Villars equations are derived from the Klein-Gordon equation and admit, for the Coulomb potential on an appropriate basis, a Hamiltonian form that has infinite symmetric band-matrix structure. The corresponding representation of the Green's operator of such a matrix can be given as a matrix continued fraction. Furthermore, we propose a finite dimensional representation for the potential operator such that it retains some information about the whole Hilbert space. Combining these two techniques, we are able to solve relativistic quantum mechanical problems of a spin-zero particle in a Coulomb-like potential with a high level of accuracy.

APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Nabti, Abderrazak. „Non linear, non-local evolution equations : theory and application“. Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS032.

Der volle Inhalt der Quelle
Annotation:
Cette thèse concerne l’étude qualitative (existence locale, existence globale, explosion en temps fini) de quelques équations de Schrödinger non-linéaires non-locales. Dans le cas où les solutions explosent en temps fini, l’estimation du temps maximal d’existence des solutions sera présentée. Le chapitre 1 concerne l’étude d’une équation de Schrödinger non-linéaire sur RN. On s’intéresse à l’existence locale d’une solution pour toute condition initiale donnée dans L2(RN). De plus, on montre que la norme-L2 de la solution explose en temps fini T < 1. Les démonstrations reposent essentiellement sur le théorème de point fixe de Banach et les estimations de Strichartz, et aussi sur le choix convenable de la fonction test dans la formulation faible du problème. Dans le chapitre 2, on considère une équation de Schrödinger non-linéaire non-locale en temps, et on démontre que les solutions de notre problème explosent en temps fini ; ensuite on obtient des conditions nécessaires d’existence globale. Finalement, on obtient une borne inférieure du temps maximal d’existence de la solution. Le chapitre 3 porte sur la non-existence de solutions d’une équation de Schrödinger non-linéaire posée dans RN. Dans un premier temps, sous certaines conditions sur la donnée initiale, on montre qu’il n’existe pas de solution faible globale ; puis on donne une estimation du temps maximal d’existence de la solution. Enfin, on établit des conditions d’existence locale, ou globale de l’équation considérée. En plus, on généralise les résultats précédents au cas d’un système 2 _ 2. Le dernier chapitre traite une équation de Schrödinger non-linéaire non-locale en temps sur le groupe de Heisenberg H. En utilisant la méthode de la fonction test, on démontre que l’équation n’admet pas de solution faible globale. De plus, on obtient, sous certaines conditions sur les données initiales, une estimation inférieure du temps maximal d’existence de la solution
Our objective in this thesis is to study the existence of local solutions, existence global and blow up of solutions at a finite time to some nonlinear nonlocal Schrödinger equations. In the case when a solution blows-up at a finite time T < 1, we obtain an upper estimate of the life span of solutions. In the first chapter, we consider a nonlinear Schrödinger equation on RN. We first prove local existence of solution for any initial condition in L2 space. Then we prove nonexistence of a nontrivial global weak solution. Furthermore, we prove that the L2-norm of the local intime L2-solution blows up at a finite time. The second chapter is dedicated to study an initial value problem for the nonlocal intime nonlinear Schrödinger equation. Using the test function method, we derive a blow-up result. Then based on integral inequalities, we estimate the life span of blowing-up solutions. In the chapter 3, we prove nonexistence result of a space higher-order nonlinear Schrödinger equation. Then, we obtain an upper bound of the life span of solutions. Furthermore, the necessary conditions for the existence of local or global solutions are provided. Next, we extend our results to the 2 _ 2-system. Our method of proof rests on a judicious choice of the test function in the weak formulation of the equation. Finally, we consider a nonlinear nonlocal in time Schrödinger equation on the Heisenberg group. We prove nonexistence of non-trivial global weak solution of our problem. Furthermore, we give an upper bound of the life span of blowing up solutions
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Fractional spin"

1

Garvey, David Raymond. Thickness and packing fraction of ammonia used in SLAC E143 experiment. Monterey, Calif: Naval Postgraduate School, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Cortés, Luis Domínguez. Fractional ownership in resort developments in the south of Spain. 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Agarwala, Adhip. Excursions in Ill-Condensed Quantum Matter: From Amorphous Topological Insulators to Fractional Spins. Springer International Publishing AG, 2020.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Agarwala, Adhip. Excursions in Ill-Condensed Quantum Matter: From Amorphous Topological Insulators to Fractional Spins. Springer, 2019.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bergen, William Von. Rare Coins of America, England, Ireland, Scotland, France, Germany, and Spain ...: A Complete List of and Prices Paid for Rare American ... Coins, Fractional Currency, Colonial, Continental and Confederate Paper Money. Creative Media Partners, LLC, 2015.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Rare Coins of America, England, Ireland, Scotland, France, Germany, and Spain ...: A Complete List of and Prices Paid for Rare American ... Coins, Fractional Currency, Colonial, Continental and Confederate Paper Money. Creative Media Partners, LLC, 2022.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kahn, Aaron M., Hrsg. The Oxford Handbook of Cervantes. Oxford University Press, 2021. http://dx.doi.org/10.1093/oxfordhb/9780198742913.001.0001.

Der volle Inhalt der Quelle
Annotation:
Although best known the world over for his masterpiece novel, Don Quixote de la Mancha, published in two parts in 1605 and 1615, the antics of the would-be knight-errant and his simple squire only represent a fraction of the trials and tribulations, both in the literary world and in society at large, of this complex man. Poet, playwright, soldier, slave, satirist, novelist, political commentator, and literary outsider, Cervantes achieved a minor miracle by becoming one of the rarest of things in the early modern world of letters: an international best-seller during his lifetime, with his great novel being translated into multiple languages before his death in 1616. The principal objective of the Oxford Handbook of Cervantes is to create a resource in English that provides a fully comprehensive overview of the life, works, and influences of Miguel de Cervantes Saavedra (1547–1616). This volume contains seven sections, exploring in depth Cervantes’s life and how the trials, tribulations, and hardships endured influenced his writing. Cervantistas from numerous countries, including the United Kingdom, Spain, Ireland, the United States, Canada, and France offer their expertise with the most up-to-date research and interpretations to complete this wide-ranging, but detailed, compendium of a writer not known for much other than his famous novel outside of the Spanish-speaking world. This handbook explores his famous novel Don Quixote, his other prose works, his theatrical output, his poetry, his sources, influences, and contemporaries, and finally reception of his works over the last four hundred years.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Fractional spin"

1

Li, Dingping. „Quasiparticle’s Spin and Fractional Statistics in the Fractional Quantum Hall Effect“. In On Three Levels, 471–76. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2460-1_61.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Valenzuela, Mauricio. „3D Higher spin gravity and the fractional quantum Hall effect“. In Physical and Mathematical Aspects of Symmetries, 337–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69164-0_50.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yonaga, Kouki. „Spin, Valley, and Mass Effects on Fractional Quantum Hall States“. In Mass Term Effect on Fractional Quantum Hall States of Dirac Particles, 61–77. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9166-9_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chaichian, Masud, und Rolf Hagedorn. „Peculiarities of Two-Dimensional Rotations: Anyons, Fractional Spin and Statistics“. In Symmetries in Quantum Mechanics, 227–38. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003417187-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Meisels, R., I. Kulaç, G. Sundaram, F. Kuchar, B. D. Mccombe, G. Weimann und W. Schlapp. „Electron Spin Resonance in the Domain of the Fractional Quantum Hall Effect“. In Quantum Transport in Semiconductor Submicron Structures, 375–81. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1760-6_20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Jena, Jagannath. „Stability, Collapse Dynamics and Fractional Form of Antiskyrmions and Elliptical Bloch Skyrmions“. In Discovery of Co-existing Non-collinear Spin Textures in D2d Heusler Compounds, 81–96. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-03910-2_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Chakraborty, T., und P. Pietiläinen. „Tilted-Field Effect, Optical Transitions and Spin Configurations of the Fractional Quantum Hall States“. In Springer Series in Solid-State Sciences, 199–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84408-9_30.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Maksym, P. A., R. G. Clark, S. R. Haynes, J. R. Mallett, J. J. Harris und C. T. Foxon. „The Spin Configuration of Fractional QHE Ground States in the N=0 Landau Level“. In High Magnetic Fields in Semiconductor Physics II, 138–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83810-1_21.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Mezincescu, Luca, und Rafael I. Nepomechie. „Boundary S Matrix for the Boundary Sine-Gordon Model from Fractional-Spin Integrals of Motion“. In Neutrino Mass, Dark Matter, Gravitational Waves, Monopole Condensation, and Light Cone Quantization, 359–67. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-1564-1_33.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Volkov, D. V., D. P. Sorokin und V. I. Tkach. „On the Relativistic Field Theories with Fractional Statistics and Spin in D = (2 + 1), (3 + 1)“. In Research Reports in Physics, 132–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-84000-5_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Fractional spin"

1

Pradhan, Amiyajeet, und R. K. Sharma. „Generalised Fractional-Order Oscillators using OTA“. In 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN). IEEE, 2018. http://dx.doi.org/10.1109/spin.2018.8474177.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Soni, Ashu, und Maneesha Gupta. „Analysis of fractional order low pass Elliptic filters“. In 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN). IEEE, 2018. http://dx.doi.org/10.1109/spin.2018.8474232.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kawaguchi, Haruki, Kei Umesato, Keisaku Yamane, Katsuhiko Miyamoto und Takashige Omatsu. „Fractional optical vortex creates a curved "spin-jet"“. In Optical Manipulation and Structured Materials Conference, herausgegeben von Takashige Omatsu, Hajime Ishihara, Keiji Sasaki und Kishan Dholakia. SPIE, 2020. http://dx.doi.org/10.1117/12.2573523.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Výborný, K. „Spin structures in inhomogeneous fractional quantum Hall systems“. In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994218.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

VÝBORNÝ, KAREL, und DANIELA PFANNKUCHE. „SPIN STRUCTURES IN INHOMOGENEOUS FRACTIONAL QUANTUM HALL SYSTEMS“. In Proceedings of the 16th International Conference. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701923_0079.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kumar, Manjeet, Abhishek Mittal und Tarun Kumar Rawat. „Fractional constraints based designing of 2-dimensional FIR filters“. In 2016 3rd International Conference on Signal Processing and Integrated Networks (SPIN). IEEE, 2016. http://dx.doi.org/10.1109/spin.2016.7566743.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Joshi, Rahul, und Himesh Handa. „Synchronization of Similar and Dissimilar Fractional Order Chaotic System“. In 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN). IEEE, 2019. http://dx.doi.org/10.1109/spin.2019.8711665.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Barsainya, Richa, Meenakshi Aggarwal und Tarun Kumar Rawat. „Design and implementation of fractional order integrator with reduced hardware“. In 2016 3rd International Conference on Signal Processing and Integrated Networks (SPIN). IEEE, 2016. http://dx.doi.org/10.1109/spin.2016.7566763.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kumar, Manjeet, Tarun Kumar Rawat, Rohan Anand, Rishabh Karwayun und Aman Jain. „Design of Riesz fractional order differentiator using discrete sine transform“. In 2016 3rd International Conference on Signal Processing and Integrated Networks (SPIN). IEEE, 2016. http://dx.doi.org/10.1109/spin.2016.7566788.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sharma, Abhay, und Tarun Kumar Rawat. „Optimum Design and FPGA Implementation of Fractional Order Digital Integrator“. In 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN). IEEE, 2019. http://dx.doi.org/10.1109/spin.2019.8711650.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Fractional spin"

1

Mietlicki, David John. Measurement of $t \bar{t}$ Helicity Fractions and Spin Correlation in $p \bar{p}$ Collisions at $\sqrt{s} =$1.96~TeV. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/1249476.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie