Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Fractional-order ordinary differential equations.

Dissertationen zum Thema „Fractional-order ordinary differential equations“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-34 Dissertationen für die Forschung zum Thema "Fractional-order ordinary differential equations" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Woods, Patrick Daniel. „Localisation in reversible fourth-order ordinary differential equations“. Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299269.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jenab, Bita. „Asymptotic theory of second-order nonlinear ordinary differential equations“. Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/24690.

Der volle Inhalt der Quelle
Annotation:
The asymptotic behaviour of nonoscillatory solutions of second order nonlinear ordinary differential equations is studied. Necessary and sufficient conditions are given for the existence of positive solutions with specified asymptotic behaviour at infinity. Existence of nonoscillatory solutions is established using the Schauder-Tychonoff fixed point theorem. Techniques such as factorization of linear disconjugate operators are employed to reveal the similar nature of asymptotic solutions of nonlinear differential equations to that of linear equations. Some examples illustrating the asymptotic theory of ordinary differential equations are given.
Science, Faculty of
Mathematics, Department of
Graduate
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sun, Xun. „Twin solutions of even order boundary value problems for ordinary differential equations and finite difference equations“. [Huntington, WV : Marshall University Libraries], 2009. http://www.marshall.edu/etd/descript.asp?ref=1014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Boutayeb, Abdesslam. „Numerical methods for high-order ordinary differential equations with applications to eigenvalue problems“. Thesis, Brunel University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278244.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gray, Michael Jeffery Henderson Johnny L. „Uniqueness implies uniqueness and existence for nonlocal boundary value problems for third order ordinary differential equations“. Waco, Tex. : Baylor University, 2006. http://hdl.handle.net/2104/4185.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Koike, Tatsuya. „On the exact WKB analysis of second order linear ordinary differential equations with simple poles“. 京都大学 (Kyoto University), 2000. http://hdl.handle.net/2433/181093.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Granström, Frida. „Symmetry methods and some nonlinear differential equations : Background and illustrative examples“. Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-48020.

Der volle Inhalt der Quelle
Annotation:
Differential equations, in particular the nonlinear ones, are commonly used in formulating most of the fundamental laws of nature as well as many technological problems, among others. This makes the need for methods in finding closed form solutions to such equations all-important. In this thesis we study Lie symmetry methods for some nonlinear ordinary differential equations (ODE). The study focuses on identifying and using the underlying symmetries of the given first order nonlinear ordinary differential equation. An extension of the method to higher order ODE is also discussed. Several illustrative examples are presented.
Differentialekvationer, framförallt icke-linjära, används ofta vid formulering av fundamentala naturlagar liksom många tekniska problem. Därmed finns det ett stort behov av metoder där det går att hitta lösningar i sluten form till sådana ekvationer. I det här arbetet studerar vi Lie symmetrimetoder för några icke-linjära ordinära differentialekvationer (ODE). Studien fokuserar på att identifiera och använda de underliggande symmetrierna av den givna första ordningens icke-linjära ordinära differentialekvationen. En utvidgning av metoden till högre ordningens ODE diskuteras också. Ett flertal illustrativa exempel presenteras.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Charoenphon, Sutthirut. „Green's Functions of Discrete Fractional Calculus Boundary Value Problems and an Application of Discrete Fractional Calculus to a Pharmacokinetic Model“. TopSCHOLAR®, 2014. http://digitalcommons.wku.edu/theses/1327.

Der volle Inhalt der Quelle
Annotation:
Fractional calculus has been used as a research tool in the fields of pharmacology, biology, chemistry, and other areas [3]. The main purpose of this thesis is to calculate Green's functions of fractional difference equations, and to model problems in pharmacokinetics. We claim that the discrete fractional calculus yields the best prediction performance compared to the continuous fractional calculus in the application of a one-compartmental model of drug concentration. In Chapter 1, the Gamma function and its properties are discussed to establish a theoretical basis. Additionally, the basics of discrete fractional calculus are discussed using particular examples for further calculations. In Chapter 2, we use these basic results in the analysis of a linear fractional difference equation. Existence of solutions to this difference equation is then established for both initial conditions (IVP) and two-point boundary conditions (BVP). In Chapter 3, Green's functions are introduced and discussed, along with examples. Instead of using Cauchy functions, the technique of finding Green's functions by a traditional method is demonstrated and used throughout this chapter. The solutions of the BVP play an important role in analysis and construction of the Green's functions. Then, Green's functions for the discrete calculus case are calculated using particular problems, such as boundary value problems, discrete boundary value problems (DBVP) and fractional boundary value problems (FBVP). Finally, we demonstrate how the Green's functions of the FBVP generalize the existence results of the Green's functions of DVBP. In Chapter 4, different compartmental pharmacokinetic models are discussed. This thesis limits discussion to the one-compartmental model. The Mathematica FindFit command and the statistical computational techniques of mean square error (MSE) and cross-validation are discussed. Each of the four models (continuous, continuous fractional, discrete and discrete fractional) is used to compute the MSE numerically with the given data of drug concentration. Then, the best fit and the best model are obtained by inspection of the resulting MSE. In the last Chapter, the results are summarized, conclusions are drawn, and directions for future work are stated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Šustková, Apolena. „Řešení obyčejných diferenciálních rovnic neceločíselného řádu metodou Adomianova rozkladu“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445455.

Der volle Inhalt der Quelle
Annotation:
This master's thesis deals with solving fractional-order ordinary differential equations by the Adomian decomposition method. A part of the work is therefore devoted to the theory of equations containing differential operators of non-integer order, especially the Caputo operator. The next part is devoted to the Adomian decomposition method itself, its properties and implementation in the case of Chen system. The work also deals with bifurcation analysis of this system, both for integer and non-integer case. One of the objectives is to clarify the discrepancy in the literature concerning the fractional-order Chen system, where experiments based on the use of the Adomian decomposition method give different results for certain input parameters compared with numerical methods. The clarification of this discrepancy is based on recent theoretical knowledge in the field of fractional-order differential equations and their systems. The conclusions are supported by numerical experiments, own code implementing the Adomian decomposition method on the Chen system was used.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Shu, Yupeng. „Numerical Solutions of Generalized Burgers' Equations for Some Incompressible Non-Newtonian Fluids“. ScholarWorks@UNO, 2015. http://scholarworks.uno.edu/td/2051.

Der volle Inhalt der Quelle
Annotation:
The author presents some generalized Burgers' equations for incompressible and isothermal flow of viscous non-Newtonian fluids based on the Cross model, the Carreau model, and the Power-Law model and some simple assumptions on the flows. The author numerically solves the traveling wave equations for the Cross model, the Carreau model, the Power-Law model by using industrial data. The author proves existence and uniqueness of solutions to the traveling wave equations of each of the three models. The author also provides numerical estimates of the shock thickness as well as maximum strain $\varepsilon_{11}$ for each of the fluids.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Tapdigoglu, Ramiz. „Inverse problems for fractional order differential equations“. Thesis, La Rochelle, 2019. http://www.theses.fr/2019LAROS004/document.

Der volle Inhalt der Quelle
Annotation:
Dans cette thèse, nous nous intéressons à résoudre certains problèmes inverses pour des équations différentielles aux dérivées fractionnaires. Un problème inverse est généralement mal posé. Un problème mal posé est un problème qui ne répond pas à l’un des trois critères de Hadamard pour être bien posé, c’est-à-dire, soit l’existence, l’unicité ou une dépendance continue aux données n'est plus vraie, à savoir, des petits changements dans les données de mesure entraînent des changements indéfiniment importants dans la solution. La plupart des difficultés à résoudre des problèmes mal posés sont causées par l’instabilité de la solution. D’autre part, les équations différentielles fractionnaires deviennent un outil important dans la modélisation de nombreux problèmes de la vie réelle et il y a eu donc un intérêt croissant pour l’étude des problèmes inverses avec des équations différentielles fractionnaires. Le calcul fractionnaire est une branche des mathématiques qui fait référence à l’extension du concept de dérivation classique à la dérivation d’ordre non entier. Calculer une dérivée fractionnaire à un certain moment exige tous les processus précédents avec des propriétés de mémoire. C’est l’avantage principal du calcul fractionnaire d’expliquer les processus associés aux systèmes physiques complexes qui ont une mémoire à long terme et / ou des interactions spatiales à longue distance. De plus, les équations différentielles fractionnaires peuvent nous aider à réduire les erreurs découlant de paramètres négligés dans la modélisation des phénomènes physiques
In this thesis, we are interested in solving some inverse problems for fractional differential equations. An inverse problem is usually ill-posed. The concept of an ill-posed problem is not new. While there is no universal formal definition for inverse problems, Hadamard [1923] defined a problem as being ill-posed if it violates the criteria of a well-posed problem, that is, either existence, uniqueness or continuous dependence on data is no longer true, i.e., arbitrarily small changes in the measurement data lead to indefinitely large changes in the solution. Most difficulties in solving ill-posed problems are caused by solution instability. Inverse problems come into various types, for example, inverse initial problems where initial data are unknown and inverse source problems where the source term is unknown. These unknown terms are to be determined using extra boundary data. Fractional differential equations, on the other hand, become an important tool in modeling many real-life problems and hence there has been growing interest in studying inverse problems of time fractional differential equations. The Non-Integer Order Calculus, traditionally known as Fractional Calculus is the branch of mathematics that tries to interpolate the classical derivatives and integrals and generalizes them for any orders, not necessarily integer order. The advantages of fractional derivatives are that they have a greater degree of flexibility in the model and provide an excellent instrument for the description of the reality. This is because of the fact that the realistic modeling of a physical phenomenon does not depend only on the instant time, but also on the history of the previous time, i.e., calculating timefractional derivative at some time requires all the previous processes with memory and hereditary properties
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Pal, Kamal K. „Higher order numerical methods for fractional order differential equations“. Thesis, University of Chester, 2015. http://hdl.handle.net/10034/613354.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Yaakub, Abdul Razak Bin. „Computer solution of non-linear integration formula for solving initial value problems“. Thesis, Loughborough University, 1996. https://dspace.lboro.ac.uk/2134/25381.

Der volle Inhalt der Quelle
Annotation:
This thesis is concerned with the numerical solutions of initial value problems with ordinary differential equations and covers single step integration methods. focus is to study the numerical the various aspects of Specifically, its main methods of non-linear integration formula with a variety of means based on the Contraharmonic mean (C.M) (Evans and Yaakub [1995]), the Centroidal mean (C.M) (Yaakub and Evans [1995]) and the Root-Mean-Square (RMS) (Yaakub and Evans [1993]) for solving initial value problems. the applications of the second It includes a study of order C.M method for parallel implementation of extrapolation methods for ordinary differential equations with the ExDaTa schedule by Bahoshy [1992]. Another important topic presented in this thesis is that a fifth order five-stage explicit Runge Kutta method or weighted Runge Kutta formula [Evans and Yaakub [1996]) exists which is contrary to Butcher [1987] and the theorem in Lambert ([1991] ,pp 181). The thesis is organized as follows. An introduction to initial value problems in ordinary differential equations and parallel computers and software in Chapter 1, the basic preliminaries and fundamental concepts in mathematics, an algebraic manipulation package, e.g., Mathematica and basic parallel processing techniques are discussed in Chapter 2. Following in Chapter 3 is a survey of single step methods to solve ordinary differential equations. In this chapter, several single step methods including the Taylor series method, Runge Kutta method and a linear multistep method for non-stiff and stiff problems are also considered. Chapter 4 gives a new Runge Kutta formula for solving initial value problems using the Contraharmonic mean (C.M), the Centroidal mean (C.M) and the Root-MeanSquare (RMS). An error and stability analysis for these variety of means and numerical examples are also presented. Chapter 5 discusses the parallel implementation on the Sequent 8000 parallel computer of the Runge-Kutta contraharmonic mean (C.M) method with extrapolation procedures using explicit assignment scheduling Kutta RK(4, 4) method (EXDATA) strategies. A is introduced and the data task new Rungetheory and analysis of its properties are investigated and compared with the more popular RKF(4,5) method, are given in Chapter 6. Chapter 7 presents a new integration method with error control for the solution of a special class of second order ODEs. In Chapter 8, a new weighted Runge-Kutta fifth order method with 5 stages is introduced. By comparison with the currently recommended RK4 ( 5) Merson and RK5(6) Nystrom methods, the new method gives improved results. Chapter 9 proposes a new fifth order Runge-Kutta type method for solving oscillatory problems by the use of trigonometric polynomial interpolation which extends the earlier work of Gautschi [1961]. An analysis of the convergence and stability of the new method is given with comparison with the standard Runge-Kutta methods. Finally, Chapter 10 summarises and presents conclusions on the topics discussed throughout the thesis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Connolly, Joseph Arthur. „The numerical solution of fractional and distributed order differential equations“. Thesis, University of Chester, 2004. http://hdl.handle.net/10034/76687.

Der volle Inhalt der Quelle
Annotation:
Fractional Calculus can be thought of as a generalisation of conventional calculus in the sense that it extends the concept of a derivative (integral) to include non-integer orders. Effective mathematical modelling using Fractional Differential Equations (FDEs) requires the development of reliable flexible numerical methods. The thesis begins by reviewing a selection of numerical methods for the solution of Single-term and Multi-term FDEs. We then present: 1. a graphical technique for comparing the efficiency of numerical methods. We use this to compare Single-term and Multi-term methods and give recommendations for which method is best for any given FDE. 2. a new method for the solution of a non-linear Multi-term Fractional Dif¬ferential Equation. 3. a sequence of methods for the numerical solution of a Distributed Order Differential Equation. 4. a discussion of the problems associated with producing a computer program for obtaining the optimum numerical method for any given FDE.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Shi, Chen Yang. „High order compact schemes for fractional differential equations with mixed derivatives“. Thesis, University of Macau, 2017. http://umaclib3.umac.mo/record=b3691348.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Rocha, Eugénio Alexandre Miguel. „Uma Abordagem Algébrica à Teoria de Controlo Não Linear“. Doctoral thesis, Universidade de Aveiro, 2003. http://hdl.handle.net/10773/21444.

Der volle Inhalt der Quelle
Annotation:
Doutoramento em Matemática
Nesta tese de Doutoramento desenvolve-se principalmente uma abordagem algébrica à teoria de sistemas de controlo não lineares. No entanto, outros tópicos são também estudados. Os tópicos tratados são os seguidamente enunciados: fórmulas para sistemas de controlo sobre álgebras de Lie livres, estabilidade de um sistema de corpos rolantes, algoritmos para aritmética digital, e equações integrais de Fredholm não lineares. No primeiro e principal tópico estudam-se representações para as soluções de sistemas de controlo lineares no controlo. As suas trajetórias são representadas pelas chamadas séries de Chen. Estuda-se a representação formal destas séries através da introdução de várias álgebras não associativas e técnicas específicas de álgebras de Lie livres. Sistemas de coordenadas para estes sistemas são estudados, nomeadamente, coordenadas de primeiro tipo e de segundo tipo. Apresenta-se uma demonstração alternativa para as coordenadas de segundo tipo e obtêm-se expressões explícitas para as coordenadas de primeiro tipo. Estas últimas estão intimamente ligadas ao logaritmo da série de Chen que, por sua vez, tem fortes relações com uma fórmula designada na literatura por “continuous Baker-Campbell- Hausdorff formula”. São ainda apresentadas aplicações à teoria de funções simétricas não comutativas. É, por fim, caracterizado o mapa de monodromia de um campo de vectores não linear e periódico no tempo em relação a uma truncatura do logaritmo de Chen. No segundo tópico é estudada a estabilizabilidade de um sistema de quaisquer dois corpos que rolem um sobre o outro sem deslizar ou torcer. Constroem-se controlos fechados e dependentes do tempo que tornam a origem do sistema de dois corpos num sistema localmente assimptoticamente estável. Vários exemplos e algumas implementações em Maple°c são discutidos. No terceiro tópico, em apêndice, constroem-se algoritmos para calcular o valor de várias funções fundamentais na aritmética digital, sendo possível a sua implementação em microprocessadores. São também obtidos os seus domínios de convergência. No último tópico, também em apêndice, demonstra-se a existência e unicidade de solução para uma classe de equações integrais não lineares com atraso. O atraso tem um carácter funcional, mostrando-se ainda a diferenciabilidade no sentido de Fréchet da solução em relação à função de atraso.
In this PhD thesis several subjects are studied regarding the following topics: formulas for nonlinear control systems on free Lie algebras, stabilizability of nonlinear control systems, digital arithmetic algorithms, and nonlinear Fredholm integral equations with delay. The first and principal topic is mainly related with a problem known as the continuous Baker-Campbell-Hausdorff exponents. We propose a calculus to deal with formal nonautonomous ordinary differential equations evolving on the algebra of formal series defined on an alphabet. We introduce and connect several (non)associative algebras as Lie, shuffle, zinbiel, pre-zinbiel, chronological (pre-Lie), pre-chronological, dendriform, D-I, and I-D. Most of those notions were also introduced into the universal enveloping algebra of a free Lie algebra. We study Chen series and iterated integrals by relating them with nonlinear control systems linear in control. At the heart of all the theory of Chen series resides a zinbiel and shuffle homomorphism that allows us to construct a purely formal representation of Chen series on algebras of words. It is also given a pre-zinbiel representation of the chronological exponential, introduced by A.Agrachev and R.Gamkrelidze on the context of a tool to deal with nonlinear nonautonomous ordinary differential equations over a manifold, the so-called chronological calculus. An extensive description of that calculus is made, collecting some fragmented results on several publications. It is a fundamental tool of study along the thesis. We also present an alternative demonstration of the result of H.Sussmann about coordinates of second kind using the mentioned tools. This simple and comprehensive proof shows that coordinates of second kind are exactly the image of elements of the dual basis of a Hall basis, under the above discussed homomorphism. We obtain explicit expressions for the logarithm of Chen series and the respective coordinates of first kind, by defining several operations on a forest of leaf-labelled trees. It is the same as saying that we have an explicit formula for the functional coefficients of the Lie brackets on a continuous Baker-Campbell-Hausdorff-Dynkin formula when a Hall basis is used. We apply those formulas to relate some noncommutative symmetric functions, and we also connect the monodromy map of a time-periodic nonlinear vector field with a truncation of the Chen logarithm. On the second topic, we study any system of two bodies rolling one over the other without twisting or slipping. By using the Chen logarithm expressions, the monodromy map of a flow and Lyapunov functions, we construct time-variant controls that turn the origin of a control system linear in control into a locally asymptotically stable equilibrium point. Stabilizers for control systems whose vector fields generate a nilpotent Lie algebra with degree of nilpotency · 3 are also given. Some examples are presented and Maple°c were implemented. The third topic, on appendix, concerns the construction of efficient algorithms for Digital Arithmetic, potentially for the implementation in microprocessors. The algorithms are intended for the computation of several functions as the division, square root, sines, cosines, exponential, logarithm, etc. By using redundant number representations and methods of Lyapunov stability for discrete dynamical systems, we obtain several algorithms (that can be glued together into an algorithm for parallel execution) having the same core and selection scheme in each iteration. We also prove their domains of convergence and discuss possible extensions. The last topic, also on appendix, studies the set of solutions of a class of nonlinear Fredholm integral equations with general delay. The delay is of functional character modelled by a continuous lag function. We ensure existence and uniqueness of a continuous (positive) solution of such equation. Moreover, under additional conditions, it is obtained the Fr´echet differentiability of the solution with respect to the lag function.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Rakotonasy, Solonjaka Hiarintsoa. „Modèle fractionnaire pour la sous-diffusion : version stochastique et edp“. Phd thesis, Université d'Avignon, 2012. http://tel.archives-ouvertes.fr/tel-00839892.

Der volle Inhalt der Quelle
Annotation:
Ce travail a pour but de proposer des outils visant 'a comparer des résultats exp'erimentaux avec des modèles pour la dispersion de traceur en milieu poreux, dans le cadre de la dispersion anormale.Le "Mobile Immobile Model" (MIM) a été à l'origine d'importants progrès dans la description du transport en milieu poreux, surtout dans les milieux naturels. Ce modèle généralise l'quation d'advection-dispersion (ADE) e nsupposant que les particules de fluide, comme de solut'e, peuvent ˆetre immo-bilis'ees (en relation avec la matrice solide) puis relˆachées, le piégeage et le relargage suivant de plus une cin'etique d'ordre un. Récemment, une version stochastique de ce modèle a 'eté proposée. Malgré de nombreux succès pendant plus de trois décades, le MIM reste incapable de repr'esenter l''evolutionde la concentration d'un traceur dans certains milieux poreux insaturés. Eneffet, on observe souvent que la concentration peut d'ecroˆıtre comme unepuissance du temps, en particulier aux grands temps. Ceci est incompatible avec la version originale du MIM. En supposant une cinétique de piégeage-relargage diff'erente, certains auteurs ont propos'e une version fractionnaire,le "fractal MIM" (fMIM). C'est une classe d''equations aux d'eriv'ees par-tielles (e.d.p.) qui ont la particularit'e de contenir un op'erateur int'egral li'e'a la variable temps. Les solutions de cette classe d'e.d.p. se comportentasymptotiquement comme des puissances du temps, comme d'ailleurs cellesde l''equation de Fokker-Planck fractionnaire (FFPE). Notre travail fait partie d'un projet incluant des exp'eriences de tra¸cageet de vélocimétrie par R'esistance Magn'etique Nucl'eaire (RMN) en milieuporeux insatur'e. Comme le MIM, le fMIM fait partie des mod'eles ser-vant 'a interpréter de telles exp'eriences. Sa version "e.d.p." est adapt'eeaux grandeurs mesur'ees lors d'exp'eriences de tra¸cage, mais est peu utile pour la vélocimétrie RMN. En effet, cette technique mesure la statistiquedes d'eplacements des mol'ecules excit'ees, entre deux instants fixés. Plus précisément, elle mesure la fonction caractéristique (transform'ee de Fourier) de ces d'eplacements. Notre travail propose un outil d'analyse pour ces expériences: il s'agit d'une expression exacte de la fonction caract'eristiquedes d'eplacements de la version stochastique du mod'ele fMIM, sans oublier les MIM et FFPE. Ces processus sont obtenus 'a partir du mouvement Brown-ien (plus un terme convectif) par des changement de temps aléatoires. Ondit aussi que ces processus sont des mouvement Browniens, subordonnéspar des changements de temps qui sont eux-mˆeme les inverses de processusde L'evy non d'ecroissants (les subordinateurs). Les subordinateurs associés aux modèles fMIM et FFPE sont des processus stables, les subordinateursassoci'es au MIM sont des processus de Poisson composites. Des résultatsexp'erimenatux tr'es r'ecents on sugg'er'e d''elargir ceci 'a des vols de L'evy (plusg'en'eraux que le mouvement Brownien) subordonnés aussi.Le lien entre les e.d.p. fractionnaires et les mod'eles stochastiques pourla sous-diffusion a fait l'objet de nombreux travaux. Nous contribuons 'ad'etailler ce lien en faisant apparaˆıtre les flux de solut'e, en insistant sur une situation peu 'etudiée: nous examinons le cas o'u la cinétique de piégeage-relargage n'est pas la mˆeme dans tout le milieu. En supposant deux cinétiques diff'erentes dans deux sous-domaines, nous obtenons une version du fMIMavec un opérateur intégro-diff'erentiel li'e au temps, mais dépendant de la position.Ces r'esultats sont obtenus au moyen de raisonnements, et sont illustrés par des simulations utilisant la discrétisation d'intégrales fractionnaires etd'e.d.p. ainsi que la méthode de Monte Carlo. Ces simulations sont en quelque sorte des preuves numériques. Les outils sur lesquels elles s'appuient sont présentés aussi.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Erh-Tsung, Chin, und 秦爾聰. „Solutions of a Class of Nth Order Ordinary and Partial Differential Equations via Fractional Calculus“. Thesis, 1997. http://ndltd.ncl.edu.tw/handle/w7dx38.

Der volle Inhalt der Quelle
Annotation:
碩士
中原大學
數學研究所
86
In the vast literature on fractional calculus, one can find many systematicaccounts of its theory and applications in a lot of fields. The method offractional calculus is very simple and useful for obtaining the solutions of certain non-homogeneous linear differential equations. Many papers have been published. After studying these papers, the motive of this thesis arises: Is it possible to deduce a general formula for obtaining the solutions of certain Nth order differential equations with n singular points? Therefore, aboveall, we carry on the idea of "Solution of a class of third order ordinary andpartial differential equations via fractional calculus" and deal with the solutions of another certain third order differential equations . Consequently, all the solutions of certin third order differential equations (ordinary or partial) with three singular points are discussed. Finally, we extend this concept to certain Nth order differential equations with n singular points . Actually, this thesis is a synthesis of two published papers. Some results given by Nishimoto, Al-Saqabi, Kalla, and Tu can be included as particular cases of our theorems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Wu, Wen Hsien, und 吳文賢. „On the oscillation properties of some second order nonlinear ordinary differential equations“. Thesis, 1995. http://ndltd.ncl.edu.tw/handle/37640683068982389182.

Der volle Inhalt der Quelle
Annotation:
碩士
中原大學
應用數學研究所
83
In the last two decades the problem of finding sufficient conditions for the oscillation of all solutions of ordinary differential equations has begun to receive more and more attention. The aim of this paper is to discuss the oscillatory behavior of solutions of the nonlinear differential equations: (a(t)x'(t))'+P(t)f(x'(t))+Q(t)g(x(t),x(q(t)))=r(t) and (r(t)ψ( y(t))φ(y'(t)))'+P(t)K(t,y(t),y'(t))y'(t) +Q(t)f(y(t))=0 and the more general equation (r(t)ψ(y(t))φ(y'(t)))'+P(t)K(t,y(t), y'(t))φ(y'(t)) +Q(t,y(t))=H(t,y(t),φ(y'(t))) A solution is said to be oscillatory if it has arbitrarily large zeros, and otherwise it is said to be nonoscillatory. Equation is called oscillatory if all its solutions are oscillatory. The results we obtained defend and extend some of those of [2],[3],[4]. We also extend and improve the result of [1].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Yu, Chi-Jer, und 余啟哲. „The Bifurcation Analysis of the N-th Order, Nonlinear Ordinary Differential Equations“. Thesis, 1994. http://ndltd.ncl.edu.tw/handle/20155518528129413382.

Der volle Inhalt der Quelle
Annotation:
碩士
國立交通大學
應用數學研究所
82
In this thesis, we develped both the theoretic and numerical tools to investigate the bifurcation dynamics of the general nonlinear,high-dimensional ODEs. Our numerical code is then developed and applied to the N-mode truncated, perturbed nonlinear Schrodinger equation (which is specified later) to do the pratical computations. The results are completely consistent with the previous work done by Chuyu Xiong [11], which is also the main reference in our study.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

CHIEN, HSIU-CHUN, und 簡秀純. „Existence of Anti-periodic Solution for Nonlinear Higher Order Ordinary Differential Equations“. Thesis, 2008. http://ndltd.ncl.edu.tw/handle/6nhq7h.

Der volle Inhalt der Quelle
Annotation:
碩士
國立臺北教育大學
數學暨資訊教育學系(含數學教育碩士班)
96
In this paper, we prove several new existence results for a nonlinear anti-periodic nth-order problem using a Leray-Schauder alternative to find the existence of solutions for (BVP).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

„A study of heteroclinic orbits for a class of fourth order ordinary differential equations“. Université catholique de Louvain, 2004. http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-11292004-111053/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

SU, GUI-FANG, und 蘇貴芳. „The order of convergence and error estimates for (A, B) methods for ordinary differential equations“. Thesis, 1986. http://ndltd.ncl.edu.tw/handle/01862740075271195671.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Chuang, Hsiao-Chin, und 莊筱秦. „Existence of solutions for high order ordinary differential equations with some periodic-type boundary condition“. Thesis, 2010. http://ndltd.ncl.edu.tw/handle/6c9pxy.

Der volle Inhalt der Quelle
Annotation:
碩士
國立臺北教育大學
數學暨資訊教育學系(含數學教育碩士班)
98
We consider the following high order periodic-type boundary value problem and satisfies the so-called Nagumo’s condition. In this article, we will use a general upper and lower solution method to establish an existence theorem for solutions of .
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Hung, Jen-Huei, und 洪鎮暉. „Study on the Solutions of Some Certain Families of Ordinary and Partial Differential Equations by Means of Fractional Calculus“. Thesis, 2008. http://ndltd.ncl.edu.tw/handle/74228127955900762921.

Der volle Inhalt der Quelle
Annotation:
碩士
中原大學
應用數學研究所
96
When we deal some of the linear second-order differential equations with variable coefficients (or constant coefficients), $P(z)phi^{'}(z)+Q(z)phi^{'}(z)+R(z)phi(z)=f(z)$, the method of using regularly requests by the method of Frobenius. However, the transformation of the solutions of series cannot be solved by the closed form of the differentiation or the integration. Recently, from Professor Katsuyaki Nishimoto in Japan, Professor Shih-Tong Tu and Professor Shy-Der Lin in Taiwan, and so on, it drinks a lot of special differential equation types and is searched out by using the method of fractional calculus. Such as, Legendre equation, Bessel equation, Gauss equation, Jacobi equation, and so on. To exceed a very wide thing to use hypergeometric function on mathematics, so in this paper, making the above-mentioned functions will exceed the form of hypergeometric function. Ahead of this, it introduces the basic definitions and results of fractional calculus, the particular solutions of the Gauss, Jacobi and to discuss and compare $z(1-z)frac{partial^{2}phi}{partial z^{2}}+[( ho-2lambda)z+lambda+sigma]frac{partialphi}{partial z}+lambda( ho-lambda+1)phi=Mfrac{partial^{2}phi}{partial t^{2}}+Nfrac{partial phi}{partial t}$ .
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Sibiya, Abram Hlophane. „Numerical methods for a four dimensional hyperchaotic system with applications“. Diss., 2019. http://hdl.handle.net/10500/26398.

Der volle Inhalt der Quelle
Annotation:
This study seeks to develop a method that generalises the use of Adams-Bashforth to solve or treat partial differential equations with local and non-local differentiation by deriving a two-step Adams-Bashforth numerical scheme in Laplace space. The resulting solution is then transformed back into the real space by using the inverse Laplace transform. This is a powerful numerical algorithm for fractional order derivative. The error analysis for the method is studied and presented. The numerical simulations of the method as applied to the four-dimensional model, Caputo-Lu-Chen model and the wave equation are presented. In the analysis, the bifurcation dynamics are discussed and the periodic doubling processes that eventually caused chaotic behaviour (butterfly attractor) are shown. The related graphical simulations that show the existence of fractal structure that is characterised by chaos and usually called strange attractors are provided. For the Caputo-Lu-Chen model, graphical simulations have been realised in both integer and fractional derivative orders.
Mathematical Sciences
M. Sc. (Applied Mathematics)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

You, L. H., Hassan Ugail, B. P. Tang, X. Jin, X. Y. You und J. J. Zhang. „Blending using ODE swept surfaces with shape control and C1 continuity“. 2014. http://hdl.handle.net/10454/8167.

Der volle Inhalt der Quelle
Annotation:
No
Surface blending with tangential continuity is most widely applied in computer-aided design, manufacturing systems, and geometric modeling. In this paper, we propose a new blending method to effectively control the shape of blending surfaces, which can also satisfy the blending constraints of tangent continuity exactly. This new blending method is based on the concept of swept surfaces controlled by a vector-valued fourth order ordinary differential equation (ODE). It creates blending surfaces by sweeping a generator along two trimlines and making the generator exactly satisfy the tangential constraints at the trimlines. The shape of blending surfaces is controlled by manipulating the generator with the solution to a vector-valued fourth order ODE. This new blending methods have the following advantages: (1) exact satisfaction of C1C1 continuous blending boundary constraints, (2) effective shape control of blending surfaces, (3) high computing efficiency due to explicit mathematical representation of blending surfaces, and (4) ability to blend multiple (more than two) primary surfaces.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Singh, Satwinder Jit. „New Solution Methods For Fractional Order Systems“. Thesis, 2007. http://hdl.handle.net/2005/885.

Der volle Inhalt der Quelle
Annotation:
This thesis deals with developing Galerkin based solution strategies for several important classes of differential equations involving derivatives and integrals of various fractional orders. Fractional order calculus finds use in several areas of science and engineering. The use of fractional derivatives may arise purely from the mathematical viewpoint, as in controller design, or it may arise from the underlying physics of the material, as in the damping behavior of viscoelastic materials. The physical origins of the fractional damping motivated us to study viscoelastic behavior of disordered materials at three levels. At the first level, we review two first principles models of rubber viscoelasticity. This leads us to study, at the next two levels, two simple disordered systems. The study of these two simplified systems prompted us towards an infinite dimensional system which is mathematically equivalent to a fractional order derivative or integral. This infinite dimensional system forms the starting point for our Galerkin projection based approximation scheme. In a simplified study of disordered viscoelastic materials, we show that the networks of springs and dash-pots can lead to fractional power law relaxation if the damping coefficients of the dash-pots follow a certain type of random distribution. Similar results are obtained when we consider a more simplified model, which involves a random system coefficient matrix. Fractional order derivatives and integrals are infinite dimensional operators and non-local in time: the history of the state variable is needed to evaluate such operators. This non-local nature leads to expensive long-time computations (O(t2) computations for solution up to time t). A finite dimensional approximation of the fractional order derivative can alleviate this problem. We present one such approximation using a Galerkin projection. The original infinite dimensional system is replaced with an equivalent infinite dimensional system involving a partial differential equation (PDE). The Galerkin projection reduces the PDE to a finite system of ODEs. These ODEs can be solved cheaply (O(t) computations). The shape functions used for the Galerkin projection are important, and given attention. Calculations with both global shape functions as well as finite elements are presented. The discretization strategy is improved in a few steps until, finally, very good performance is obtained over a user-specifiable frequency range (not including zero). In particular, numerical examples are presented showing good performance for frequencies varying over more than 7 orders of magnitude. For any discretization held fixed, however, errors will be significant at sufficiently low or high frequencies. We discuss why such asymptotics may not significantly impact the engineering utility of the method. Following this, we identify eight important classes of fractional differential equations (FDEs) and fractional integrodifferential equations (FIEs), and develop separate Galerkin based solution strategies for each of them. Distinction between these classes arises from the fact that both Riemann-Liouville as well as Caputo type derivatives used in this work do not, in general, follow either the law of exponents or the commutative property. Criteria used to identify these classes include; the initial conditions used, order of the highest derivative, integer or fractional order highest derivative, single or multiterm fractional derivatives and integrals. A key feature of our approximation scheme is the development of differential algebraic equations (DAEs) when the highest order derivative is fractional or the equation involves fractional integrals only. To demonstrate the effectiveness of our approximation scheme, we compare the numerical results with analytical solutions, when available, or with suitably developed series solutions. Our approximation scheme matches analytical/series solutions very well for all classes considered.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Yang, Mei-Chen, und 楊美真. „On the Existence of Positive Solutions for Higher Order Ordinary Differential Equation“. Thesis, 1995. http://ndltd.ncl.edu.tw/handle/38910321751065601271.

Der volle Inhalt der Quelle
Annotation:
碩士
淡江大學
數學系
83
In this paper we are concerned with the existence of positive solutions of boundary value problems of the form #1 ,in the case that f is either superlinear or sublinear.The methods involve application of fixed point theorem for operators on a cone.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Medri, Ivan Vladimir. „Soluciones positivas para problemas elípticos sublineales y singulares“. Doctoral thesis, 2018. http://hdl.handle.net/11086/6148.

Der volle Inhalt der Quelle
Annotation:
Tesis (Doctor en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2018.
En esta tesis se estudiaron tres problemas relacionados a ecuaciones de reacción difusión elípticas sublineales y singulares cuando el término de reacción cambia de signo. En primer lugar se trató la existencia y no existencia de soluciones estrictamente positivas para problemas sublineales asociados a un operador elíptico lineal de segundo orden en el caso unidimensional. Además, se consideró la existencia y unicidad de soluciones no negativas en el caso multidimensional. En segundo lugar, también en una dimensión, se estudiaron problemas sublineales asociados a operadores que involucran al p-Laplaciano. Finalmente, se estudió la existencia y no existencia de soluciones positivas asociadas al p-Laplaciano cuando el término de reacción es singular. En este último caso se obtuvieron resultados cuantitativos en dimensión uno y cualitativos en dimensiones mayores.
Fil: Medri, Ivan Vladimir. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Exnerová, Vendula. „Bifurkace obyčejných diferenciálních rovnic z bodů Fučíkova spektra“. Master's thesis, 2011. http://www.nusl.cz/ntk/nusl-300427.

Der volle Inhalt der Quelle
Annotation:
Title: Bifurcation of Ordinary Differential Equations from Points of Fučík Spectrum Author: Vendula Exnerová Department: Department of Mathematical Analysis Supervisor: doc. RNDr. Jana Stará, CSc., Department of Mathematical Analysis MFF UK, Prague Abstract: The main subject of the thesis is the Fučík spectrum of a system of two differential equations of the second order with mixed boundary conditions. In the first part of the thesis there are described Fučík spectra of problems of a differential equation with Dirichlet, mixed and Neumann boundary conditions. The other part deals with systems of two differential equations. It attends to basic properties of systems and their nontrivial solutions, to a possibility of a reduction of number of parameters and to a dependance of a problem with mixed boundary condition on one with Dirichlet boundary conditions. The thesis takes up the results of E. Massa and B. Ruff about the Dirichlet problem and improves some of their proofs. In the end the Fučík spectrum of a problem with mixed boundary conditions is described as the union of countably many continuously differentiable surfaces and there is proven that this spectrum is closed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Δημαρέση, Ελένη. „Συνήθεις διαφορικές εξισώσεις κλασματικής τάξης“. Thesis, 2008. http://nemertes.lis.upatras.gr/jspui/handle/10889/1694.

Der volle Inhalt der Quelle
Annotation:
Η παρούσα εργασία αποτελεί μια ανασκόπηση των βασικότερων στοιχείων της θεωρίας της κλασματικής ανάλυσης, των γραμμικών συνήθων διαφορικών εξισώσεων κλασματικής τάξης, καθώς και εφαρμογές αυτών. Η εργασία αυτή αποτελείται από τρία μέρη: Στο πρώτο μέρος αναφέρουμε ειδικές συναρτήσεις (Γάμμα συνάρτηση, Βήτα συνάρτηση και συνάρτηση Mittag – Leffler) που χρησιμοποιούνται στην κλασματική ανάλυση, καθώς και ιδιότητες αυτών. Επιπλέον, ορίζεται το κλασματικό ολοκλήρωμα, οι κλασματικές παράγωγοι Riemann – Liouville και Caputo καθώς και οι σειριακές (sequential) κλασματικές παράγωγοι και δίνονται ιδιότητες αυτών. Το δεύτερο μέρος περιλαμβάνει εισαγωγικά ιστορικά στοιχεία μελέτης των συνήθων διαφορικών εξισώσεων κλασματικής τάξης. Αναφέρεται το θεώρημα ύπαρξης και μοναδικότητας της λύσης ενός προβλήματος αρχικών τιμών και δίνονται κάποιοι τρόποι επίλυσης γραμμικών διαφορικών εξισώσεων κλασματικής τάξης με σταθερούς συντελεστές. Το τρίτο μέρος αφορά σε εφαρμογές των συνήθων διαφορικών εξισώσεων κλασματικής τάξης. Αρχικά, παραθέτουμε κάποιες εφαρμογές σε διάφορους κλάδους των επιστημών και προσεγγίζουμε τη γραμμική βισκοελαστικότητα διαμέσου της κλασματικής ανάλυσης. Στη συνέχεια πιο αναλυτικά με τη βοήθεια των κλασματικών διαφορικών εξισώσεων μελετάμε το πρόβλημα του Basset και ταλαντωτικές διαδικασίες με κλασματική απόσβεση.
This dissertation is a review of the fractional analysis theory for linear ordinary differential equations (ODE)of fractional order. The first part of our work is a review of some special functions (Gamma, Beta and Mittag - Leffler) which are used in the fractional analysis as well as their properties. We also define the fractional integral, the Riemann - Liouville and Caputo fractional derivatives, the sequential derivative of fractional order and their properties. In the second part, we introduce the basic theory of fractional order ODE's. We present the theorem of existence and uniqueness of the solution of an initial values problem and we give some algorithms for solving linear fractional order ODE's with constant coefficients. In the last part we present some applications of fractional order ODE's. Some of these are: viscoelasticity, Basset's problem and oscillatory processes of fractional damping.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

(9216107), Jordan D. F. Petty. „Modeling a Dynamic System Using Fractional Order Calculus“. Thesis, 2020.

Den vollen Inhalt der Quelle finden
Annotation:

Fractional calculus is the integration and differentiation to an arbitrary or fractional order. The techniques of fractional calculus are not commonly taught in engineering curricula since physical laws are expressed in integer order notation. Dr. Richard Magin (2006) notes how engineers occasionally encounter dynamic systems in which the integer order methods do not properly model the physical characteristics and lead to numerous mathematical operations. In the following study, the application of fractional order calculus to approximate the angular position of the disk oscillating in a Newtonian fluid was experimentally validated. The proposed experimental study was conducted to model the nonlinear response of an oscillating system using fractional order calculus. The integer and fractional order mathematical models solved the differential equation of motion specific to the experiment. The experimental results were compared to the integer order and the fractional order analytical solutions. The fractional order mathematical model in this study approximated the nonlinear response of the designed system by using the Bagley and Torvik fractional derivative. The analytical results of the experiment indicate that either the integer or fractional order methods can be used to approximate the angular position of the disk oscillating in the homogeneous solution. The following research was in collaboration with Dr. Richard Mark French, Dr. Garcia Bravo, and Rajarshi Choudhuri, and the experimental design was derived from the previous experiments conducted in 2018.

APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Held, Joachim. „Ein Gebietszerlegungsverfahren für parabolische Probleme im Zusammenhang mit Finite-Volumen-Diskretisierung“. Doctoral thesis, 2006. http://hdl.handle.net/11858/00-1735-0000-0006-B39E-E.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie