Dissertationen zum Thema „Fractional-order ordinary differential equations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-34 Dissertationen für die Forschung zum Thema "Fractional-order ordinary differential equations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Woods, Patrick Daniel. „Localisation in reversible fourth-order ordinary differential equations“. Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299269.
Der volle Inhalt der QuelleJenab, Bita. „Asymptotic theory of second-order nonlinear ordinary differential equations“. Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/24690.
Der volle Inhalt der QuelleScience, Faculty of
Mathematics, Department of
Graduate
Sun, Xun. „Twin solutions of even order boundary value problems for ordinary differential equations and finite difference equations“. [Huntington, WV : Marshall University Libraries], 2009. http://www.marshall.edu/etd/descript.asp?ref=1014.
Der volle Inhalt der QuelleBoutayeb, Abdesslam. „Numerical methods for high-order ordinary differential equations with applications to eigenvalue problems“. Thesis, Brunel University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278244.
Der volle Inhalt der QuelleGray, Michael Jeffery Henderson Johnny L. „Uniqueness implies uniqueness and existence for nonlocal boundary value problems for third order ordinary differential equations“. Waco, Tex. : Baylor University, 2006. http://hdl.handle.net/2104/4185.
Der volle Inhalt der QuelleKoike, Tatsuya. „On the exact WKB analysis of second order linear ordinary differential equations with simple poles“. 京都大学 (Kyoto University), 2000. http://hdl.handle.net/2433/181093.
Der volle Inhalt der QuelleGranström, Frida. „Symmetry methods and some nonlinear differential equations : Background and illustrative examples“. Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-48020.
Der volle Inhalt der QuelleDifferentialekvationer, framförallt icke-linjära, används ofta vid formulering av fundamentala naturlagar liksom många tekniska problem. Därmed finns det ett stort behov av metoder där det går att hitta lösningar i sluten form till sådana ekvationer. I det här arbetet studerar vi Lie symmetrimetoder för några icke-linjära ordinära differentialekvationer (ODE). Studien fokuserar på att identifiera och använda de underliggande symmetrierna av den givna första ordningens icke-linjära ordinära differentialekvationen. En utvidgning av metoden till högre ordningens ODE diskuteras också. Ett flertal illustrativa exempel presenteras.
Charoenphon, Sutthirut. „Green's Functions of Discrete Fractional Calculus Boundary Value Problems and an Application of Discrete Fractional Calculus to a Pharmacokinetic Model“. TopSCHOLAR®, 2014. http://digitalcommons.wku.edu/theses/1327.
Der volle Inhalt der QuelleŠustková, Apolena. „Řešení obyčejných diferenciálních rovnic neceločíselného řádu metodou Adomianova rozkladu“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445455.
Der volle Inhalt der QuelleShu, Yupeng. „Numerical Solutions of Generalized Burgers' Equations for Some Incompressible Non-Newtonian Fluids“. ScholarWorks@UNO, 2015. http://scholarworks.uno.edu/td/2051.
Der volle Inhalt der QuelleTapdigoglu, Ramiz. „Inverse problems for fractional order differential equations“. Thesis, La Rochelle, 2019. http://www.theses.fr/2019LAROS004/document.
Der volle Inhalt der QuelleIn this thesis, we are interested in solving some inverse problems for fractional differential equations. An inverse problem is usually ill-posed. The concept of an ill-posed problem is not new. While there is no universal formal definition for inverse problems, Hadamard [1923] defined a problem as being ill-posed if it violates the criteria of a well-posed problem, that is, either existence, uniqueness or continuous dependence on data is no longer true, i.e., arbitrarily small changes in the measurement data lead to indefinitely large changes in the solution. Most difficulties in solving ill-posed problems are caused by solution instability. Inverse problems come into various types, for example, inverse initial problems where initial data are unknown and inverse source problems where the source term is unknown. These unknown terms are to be determined using extra boundary data. Fractional differential equations, on the other hand, become an important tool in modeling many real-life problems and hence there has been growing interest in studying inverse problems of time fractional differential equations. The Non-Integer Order Calculus, traditionally known as Fractional Calculus is the branch of mathematics that tries to interpolate the classical derivatives and integrals and generalizes them for any orders, not necessarily integer order. The advantages of fractional derivatives are that they have a greater degree of flexibility in the model and provide an excellent instrument for the description of the reality. This is because of the fact that the realistic modeling of a physical phenomenon does not depend only on the instant time, but also on the history of the previous time, i.e., calculating timefractional derivative at some time requires all the previous processes with memory and hereditary properties
Pal, Kamal K. „Higher order numerical methods for fractional order differential equations“. Thesis, University of Chester, 2015. http://hdl.handle.net/10034/613354.
Der volle Inhalt der QuelleYaakub, Abdul Razak Bin. „Computer solution of non-linear integration formula for solving initial value problems“. Thesis, Loughborough University, 1996. https://dspace.lboro.ac.uk/2134/25381.
Der volle Inhalt der QuelleConnolly, Joseph Arthur. „The numerical solution of fractional and distributed order differential equations“. Thesis, University of Chester, 2004. http://hdl.handle.net/10034/76687.
Der volle Inhalt der QuelleShi, Chen Yang. „High order compact schemes for fractional differential equations with mixed derivatives“. Thesis, University of Macau, 2017. http://umaclib3.umac.mo/record=b3691348.
Der volle Inhalt der QuelleRocha, Eugénio Alexandre Miguel. „Uma Abordagem Algébrica à Teoria de Controlo Não Linear“. Doctoral thesis, Universidade de Aveiro, 2003. http://hdl.handle.net/10773/21444.
Der volle Inhalt der QuelleNesta tese de Doutoramento desenvolve-se principalmente uma abordagem algébrica à teoria de sistemas de controlo não lineares. No entanto, outros tópicos são também estudados. Os tópicos tratados são os seguidamente enunciados: fórmulas para sistemas de controlo sobre álgebras de Lie livres, estabilidade de um sistema de corpos rolantes, algoritmos para aritmética digital, e equações integrais de Fredholm não lineares. No primeiro e principal tópico estudam-se representações para as soluções de sistemas de controlo lineares no controlo. As suas trajetórias são representadas pelas chamadas séries de Chen. Estuda-se a representação formal destas séries através da introdução de várias álgebras não associativas e técnicas específicas de álgebras de Lie livres. Sistemas de coordenadas para estes sistemas são estudados, nomeadamente, coordenadas de primeiro tipo e de segundo tipo. Apresenta-se uma demonstração alternativa para as coordenadas de segundo tipo e obtêm-se expressões explícitas para as coordenadas de primeiro tipo. Estas últimas estão intimamente ligadas ao logaritmo da série de Chen que, por sua vez, tem fortes relações com uma fórmula designada na literatura por “continuous Baker-Campbell- Hausdorff formula”. São ainda apresentadas aplicações à teoria de funções simétricas não comutativas. É, por fim, caracterizado o mapa de monodromia de um campo de vectores não linear e periódico no tempo em relação a uma truncatura do logaritmo de Chen. No segundo tópico é estudada a estabilizabilidade de um sistema de quaisquer dois corpos que rolem um sobre o outro sem deslizar ou torcer. Constroem-se controlos fechados e dependentes do tempo que tornam a origem do sistema de dois corpos num sistema localmente assimptoticamente estável. Vários exemplos e algumas implementações em Maple°c são discutidos. No terceiro tópico, em apêndice, constroem-se algoritmos para calcular o valor de várias funções fundamentais na aritmética digital, sendo possível a sua implementação em microprocessadores. São também obtidos os seus domínios de convergência. No último tópico, também em apêndice, demonstra-se a existência e unicidade de solução para uma classe de equações integrais não lineares com atraso. O atraso tem um carácter funcional, mostrando-se ainda a diferenciabilidade no sentido de Fréchet da solução em relação à função de atraso.
In this PhD thesis several subjects are studied regarding the following topics: formulas for nonlinear control systems on free Lie algebras, stabilizability of nonlinear control systems, digital arithmetic algorithms, and nonlinear Fredholm integral equations with delay. The first and principal topic is mainly related with a problem known as the continuous Baker-Campbell-Hausdorff exponents. We propose a calculus to deal with formal nonautonomous ordinary differential equations evolving on the algebra of formal series defined on an alphabet. We introduce and connect several (non)associative algebras as Lie, shuffle, zinbiel, pre-zinbiel, chronological (pre-Lie), pre-chronological, dendriform, D-I, and I-D. Most of those notions were also introduced into the universal enveloping algebra of a free Lie algebra. We study Chen series and iterated integrals by relating them with nonlinear control systems linear in control. At the heart of all the theory of Chen series resides a zinbiel and shuffle homomorphism that allows us to construct a purely formal representation of Chen series on algebras of words. It is also given a pre-zinbiel representation of the chronological exponential, introduced by A.Agrachev and R.Gamkrelidze on the context of a tool to deal with nonlinear nonautonomous ordinary differential equations over a manifold, the so-called chronological calculus. An extensive description of that calculus is made, collecting some fragmented results on several publications. It is a fundamental tool of study along the thesis. We also present an alternative demonstration of the result of H.Sussmann about coordinates of second kind using the mentioned tools. This simple and comprehensive proof shows that coordinates of second kind are exactly the image of elements of the dual basis of a Hall basis, under the above discussed homomorphism. We obtain explicit expressions for the logarithm of Chen series and the respective coordinates of first kind, by defining several operations on a forest of leaf-labelled trees. It is the same as saying that we have an explicit formula for the functional coefficients of the Lie brackets on a continuous Baker-Campbell-Hausdorff-Dynkin formula when a Hall basis is used. We apply those formulas to relate some noncommutative symmetric functions, and we also connect the monodromy map of a time-periodic nonlinear vector field with a truncation of the Chen logarithm. On the second topic, we study any system of two bodies rolling one over the other without twisting or slipping. By using the Chen logarithm expressions, the monodromy map of a flow and Lyapunov functions, we construct time-variant controls that turn the origin of a control system linear in control into a locally asymptotically stable equilibrium point. Stabilizers for control systems whose vector fields generate a nilpotent Lie algebra with degree of nilpotency · 3 are also given. Some examples are presented and Maple°c were implemented. The third topic, on appendix, concerns the construction of efficient algorithms for Digital Arithmetic, potentially for the implementation in microprocessors. The algorithms are intended for the computation of several functions as the division, square root, sines, cosines, exponential, logarithm, etc. By using redundant number representations and methods of Lyapunov stability for discrete dynamical systems, we obtain several algorithms (that can be glued together into an algorithm for parallel execution) having the same core and selection scheme in each iteration. We also prove their domains of convergence and discuss possible extensions. The last topic, also on appendix, studies the set of solutions of a class of nonlinear Fredholm integral equations with general delay. The delay is of functional character modelled by a continuous lag function. We ensure existence and uniqueness of a continuous (positive) solution of such equation. Moreover, under additional conditions, it is obtained the Fr´echet differentiability of the solution with respect to the lag function.
Rakotonasy, Solonjaka Hiarintsoa. „Modèle fractionnaire pour la sous-diffusion : version stochastique et edp“. Phd thesis, Université d'Avignon, 2012. http://tel.archives-ouvertes.fr/tel-00839892.
Der volle Inhalt der QuelleErh-Tsung, Chin, und 秦爾聰. „Solutions of a Class of Nth Order Ordinary and Partial Differential Equations via Fractional Calculus“. Thesis, 1997. http://ndltd.ncl.edu.tw/handle/w7dx38.
Der volle Inhalt der Quelle中原大學
數學研究所
86
In the vast literature on fractional calculus, one can find many systematicaccounts of its theory and applications in a lot of fields. The method offractional calculus is very simple and useful for obtaining the solutions of certain non-homogeneous linear differential equations. Many papers have been published. After studying these papers, the motive of this thesis arises: Is it possible to deduce a general formula for obtaining the solutions of certain Nth order differential equations with n singular points? Therefore, aboveall, we carry on the idea of "Solution of a class of third order ordinary andpartial differential equations via fractional calculus" and deal with the solutions of another certain third order differential equations . Consequently, all the solutions of certin third order differential equations (ordinary or partial) with three singular points are discussed. Finally, we extend this concept to certain Nth order differential equations with n singular points . Actually, this thesis is a synthesis of two published papers. Some results given by Nishimoto, Al-Saqabi, Kalla, and Tu can be included as particular cases of our theorems.
Wu, Wen Hsien, und 吳文賢. „On the oscillation properties of some second order nonlinear ordinary differential equations“. Thesis, 1995. http://ndltd.ncl.edu.tw/handle/37640683068982389182.
Der volle Inhalt der Quelle中原大學
應用數學研究所
83
In the last two decades the problem of finding sufficient conditions for the oscillation of all solutions of ordinary differential equations has begun to receive more and more attention. The aim of this paper is to discuss the oscillatory behavior of solutions of the nonlinear differential equations: (a(t)x'(t))'+P(t)f(x'(t))+Q(t)g(x(t),x(q(t)))=r(t) and (r(t)ψ( y(t))φ(y'(t)))'+P(t)K(t,y(t),y'(t))y'(t) +Q(t)f(y(t))=0 and the more general equation (r(t)ψ(y(t))φ(y'(t)))'+P(t)K(t,y(t), y'(t))φ(y'(t)) +Q(t,y(t))=H(t,y(t),φ(y'(t))) A solution is said to be oscillatory if it has arbitrarily large zeros, and otherwise it is said to be nonoscillatory. Equation is called oscillatory if all its solutions are oscillatory. The results we obtained defend and extend some of those of [2],[3],[4]. We also extend and improve the result of [1].
Yu, Chi-Jer, und 余啟哲. „The Bifurcation Analysis of the N-th Order, Nonlinear Ordinary Differential Equations“. Thesis, 1994. http://ndltd.ncl.edu.tw/handle/20155518528129413382.
Der volle Inhalt der Quelle國立交通大學
應用數學研究所
82
In this thesis, we develped both the theoretic and numerical tools to investigate the bifurcation dynamics of the general nonlinear,high-dimensional ODEs. Our numerical code is then developed and applied to the N-mode truncated, perturbed nonlinear Schrodinger equation (which is specified later) to do the pratical computations. The results are completely consistent with the previous work done by Chuyu Xiong [11], which is also the main reference in our study.
CHIEN, HSIU-CHUN, und 簡秀純. „Existence of Anti-periodic Solution for Nonlinear Higher Order Ordinary Differential Equations“. Thesis, 2008. http://ndltd.ncl.edu.tw/handle/6nhq7h.
Der volle Inhalt der Quelle國立臺北教育大學
數學暨資訊教育學系(含數學教育碩士班)
96
In this paper, we prove several new existence results for a nonlinear anti-periodic nth-order problem using a Leray-Schauder alternative to find the existence of solutions for (BVP).
„A study of heteroclinic orbits for a class of fourth order ordinary differential equations“. Université catholique de Louvain, 2004. http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-11292004-111053/.
Der volle Inhalt der QuelleSU, GUI-FANG, und 蘇貴芳. „The order of convergence and error estimates for (A, B) methods for ordinary differential equations“. Thesis, 1986. http://ndltd.ncl.edu.tw/handle/01862740075271195671.
Der volle Inhalt der QuelleChuang, Hsiao-Chin, und 莊筱秦. „Existence of solutions for high order ordinary differential equations with some periodic-type boundary condition“. Thesis, 2010. http://ndltd.ncl.edu.tw/handle/6c9pxy.
Der volle Inhalt der Quelle國立臺北教育大學
數學暨資訊教育學系(含數學教育碩士班)
98
We consider the following high order periodic-type boundary value problem and satisfies the so-called Nagumo’s condition. In this article, we will use a general upper and lower solution method to establish an existence theorem for solutions of .
Hung, Jen-Huei, und 洪鎮暉. „Study on the Solutions of Some Certain Families of Ordinary and Partial Differential Equations by Means of Fractional Calculus“. Thesis, 2008. http://ndltd.ncl.edu.tw/handle/74228127955900762921.
Der volle Inhalt der Quelle中原大學
應用數學研究所
96
When we deal some of the linear second-order differential equations with variable coefficients (or constant coefficients), $P(z)phi^{'}(z)+Q(z)phi^{'}(z)+R(z)phi(z)=f(z)$, the method of using regularly requests by the method of Frobenius. However, the transformation of the solutions of series cannot be solved by the closed form of the differentiation or the integration. Recently, from Professor Katsuyaki Nishimoto in Japan, Professor Shih-Tong Tu and Professor Shy-Der Lin in Taiwan, and so on, it drinks a lot of special differential equation types and is searched out by using the method of fractional calculus. Such as, Legendre equation, Bessel equation, Gauss equation, Jacobi equation, and so on. To exceed a very wide thing to use hypergeometric function on mathematics, so in this paper, making the above-mentioned functions will exceed the form of hypergeometric function. Ahead of this, it introduces the basic definitions and results of fractional calculus, the particular solutions of the Gauss, Jacobi and to discuss and compare $z(1-z)frac{partial^{2}phi}{partial z^{2}}+[( ho-2lambda)z+lambda+sigma]frac{partialphi}{partial z}+lambda( ho-lambda+1)phi=Mfrac{partial^{2}phi}{partial t^{2}}+Nfrac{partial phi}{partial t}$ .
Sibiya, Abram Hlophane. „Numerical methods for a four dimensional hyperchaotic system with applications“. Diss., 2019. http://hdl.handle.net/10500/26398.
Der volle Inhalt der QuelleMathematical Sciences
M. Sc. (Applied Mathematics)
You, L. H., Hassan Ugail, B. P. Tang, X. Jin, X. Y. You und J. J. Zhang. „Blending using ODE swept surfaces with shape control and C1 continuity“. 2014. http://hdl.handle.net/10454/8167.
Der volle Inhalt der QuelleSurface blending with tangential continuity is most widely applied in computer-aided design, manufacturing systems, and geometric modeling. In this paper, we propose a new blending method to effectively control the shape of blending surfaces, which can also satisfy the blending constraints of tangent continuity exactly. This new blending method is based on the concept of swept surfaces controlled by a vector-valued fourth order ordinary differential equation (ODE). It creates blending surfaces by sweeping a generator along two trimlines and making the generator exactly satisfy the tangential constraints at the trimlines. The shape of blending surfaces is controlled by manipulating the generator with the solution to a vector-valued fourth order ODE. This new blending methods have the following advantages: (1) exact satisfaction of C1C1 continuous blending boundary constraints, (2) effective shape control of blending surfaces, (3) high computing efficiency due to explicit mathematical representation of blending surfaces, and (4) ability to blend multiple (more than two) primary surfaces.
Singh, Satwinder Jit. „New Solution Methods For Fractional Order Systems“. Thesis, 2007. http://hdl.handle.net/2005/885.
Der volle Inhalt der QuelleYang, Mei-Chen, und 楊美真. „On the Existence of Positive Solutions for Higher Order Ordinary Differential Equation“. Thesis, 1995. http://ndltd.ncl.edu.tw/handle/38910321751065601271.
Der volle Inhalt der Quelle淡江大學
數學系
83
In this paper we are concerned with the existence of positive solutions of boundary value problems of the form #1 ,in the case that f is either superlinear or sublinear.The methods involve application of fixed point theorem for operators on a cone.
Medri, Ivan Vladimir. „Soluciones positivas para problemas elípticos sublineales y singulares“. Doctoral thesis, 2018. http://hdl.handle.net/11086/6148.
Der volle Inhalt der QuelleEn esta tesis se estudiaron tres problemas relacionados a ecuaciones de reacción difusión elípticas sublineales y singulares cuando el término de reacción cambia de signo. En primer lugar se trató la existencia y no existencia de soluciones estrictamente positivas para problemas sublineales asociados a un operador elíptico lineal de segundo orden en el caso unidimensional. Además, se consideró la existencia y unicidad de soluciones no negativas en el caso multidimensional. En segundo lugar, también en una dimensión, se estudiaron problemas sublineales asociados a operadores que involucran al p-Laplaciano. Finalmente, se estudió la existencia y no existencia de soluciones positivas asociadas al p-Laplaciano cuando el término de reacción es singular. En este último caso se obtuvieron resultados cuantitativos en dimensión uno y cualitativos en dimensiones mayores.
Fil: Medri, Ivan Vladimir. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Exnerová, Vendula. „Bifurkace obyčejných diferenciálních rovnic z bodů Fučíkova spektra“. Master's thesis, 2011. http://www.nusl.cz/ntk/nusl-300427.
Der volle Inhalt der QuelleΔημαρέση, Ελένη. „Συνήθεις διαφορικές εξισώσεις κλασματικής τάξης“. Thesis, 2008. http://nemertes.lis.upatras.gr/jspui/handle/10889/1694.
Der volle Inhalt der QuelleThis dissertation is a review of the fractional analysis theory for linear ordinary differential equations (ODE)of fractional order. The first part of our work is a review of some special functions (Gamma, Beta and Mittag - Leffler) which are used in the fractional analysis as well as their properties. We also define the fractional integral, the Riemann - Liouville and Caputo fractional derivatives, the sequential derivative of fractional order and their properties. In the second part, we introduce the basic theory of fractional order ODE's. We present the theorem of existence and uniqueness of the solution of an initial values problem and we give some algorithms for solving linear fractional order ODE's with constant coefficients. In the last part we present some applications of fractional order ODE's. Some of these are: viscoelasticity, Basset's problem and oscillatory processes of fractional damping.
(9216107), Jordan D. F. Petty. „Modeling a Dynamic System Using Fractional Order Calculus“. Thesis, 2020.
Den vollen Inhalt der Quelle findenFractional calculus is the integration and differentiation to an arbitrary or fractional order. The techniques of fractional calculus are not commonly taught in engineering curricula since physical laws are expressed in integer order notation. Dr. Richard Magin (2006) notes how engineers occasionally encounter dynamic systems in which the integer order methods do not properly model the physical characteristics and lead to numerous mathematical operations. In the following study, the application of fractional order calculus to approximate the angular position of the disk oscillating in a Newtonian fluid was experimentally validated. The proposed experimental study was conducted to model the nonlinear response of an oscillating system using fractional order calculus. The integer and fractional order mathematical models solved the differential equation of motion specific to the experiment. The experimental results were compared to the integer order and the fractional order analytical solutions. The fractional order mathematical model in this study approximated the nonlinear response of the designed system by using the Bagley and Torvik fractional derivative. The analytical results of the experiment indicate that either the integer or fractional order methods can be used to approximate the angular position of the disk oscillating in the homogeneous solution. The following research was in collaboration with Dr. Richard Mark French, Dr. Garcia Bravo, and Rajarshi Choudhuri, and the experimental design was derived from the previous experiments conducted in 2018.
Held, Joachim. „Ein Gebietszerlegungsverfahren für parabolische Probleme im Zusammenhang mit Finite-Volumen-Diskretisierung“. Doctoral thesis, 2006. http://hdl.handle.net/11858/00-1735-0000-0006-B39E-E.
Der volle Inhalt der Quelle