Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Fractional-order ordinary differential equations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fractional-order ordinary differential equations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Fractional-order ordinary differential equations"
Zhao, Ting Gang, Zi Lang Zhan, Jin Xia Huo und Zi Guang Yang. „Legendre Collocation Solution to Fractional Ordinary Differential Equations“. Applied Mechanics and Materials 687-691 (November 2014): 601–5. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.601.
Der volle Inhalt der QuelleCampos, L. M. B. C. „On the solution of some simple fractional differential equations“. International Journal of Mathematics and Mathematical Sciences 13, Nr. 3 (1990): 481–96. http://dx.doi.org/10.1155/s0161171290000709.
Der volle Inhalt der QuelleSingh, Karanveer, und R. N. Prajapati. „Fractional differential equation with uncertainty“. Journal of University of Shanghai for Science and Technology 23, Nr. 08 (07.08.2021): 181–85. http://dx.doi.org/10.51201/jusst/21/08364.
Der volle Inhalt der QuelleVondra, Alexandr. „Geometry of second-order connections and ordinary differential equations“. Mathematica Bohemica 120, Nr. 2 (1995): 145–67. http://dx.doi.org/10.21136/mb.1995.126226.
Der volle Inhalt der QuelleAfuwape, Anthony Uyi, und M. O. Omeike. „Ultimate boundedness of some third order ordinary differential equations“. Mathematica Bohemica 137, Nr. 3 (2012): 355–64. http://dx.doi.org/10.21136/mb.2012.142900.
Der volle Inhalt der QuelleWU, CONG. „A GENERAL COMPARISON PRINCIPLE FOR CAPUTO FRACTIONAL-ORDER ORDINARY DIFFERENTIAL EQUATIONS“. Fractals 28, Nr. 04 (Juni 2020): 2050070. http://dx.doi.org/10.1142/s0218348x2050070x.
Der volle Inhalt der QuelleHuang, X., und X. Lu. „The Use of Fractional B-Splines Wavelets in Multiterms Fractional Ordinary Differential Equations“. International Journal of Differential Equations 2010 (2010): 1–13. http://dx.doi.org/10.1155/2010/968186.
Der volle Inhalt der QuelleGusu, Daba Meshesha, Dechasa Wegi, Girma Gemechu und Diriba Gemechu. „Fractional Order Airy’s Type Differential Equations of Its Models Using RDTM“. Mathematical Problems in Engineering 2021 (10.09.2021): 1–21. http://dx.doi.org/10.1155/2021/3719206.
Der volle Inhalt der QuelleKhan, Hassan, Shoaib Barak, Poom Kumam und Muhammad Arif. „Analytical Solutions of Fractional Klein-Gordon and Gas Dynamics Equations, via the (G′/G)-Expansion Method“. Symmetry 11, Nr. 4 (19.04.2019): 566. http://dx.doi.org/10.3390/sym11040566.
Der volle Inhalt der QuelleCevikel, Adem. „New exact solutions of the space-time fractional KdV-burgers and nonlinear fractional foam drainage equation“. Thermal Science 22, Suppl. 1 (2018): 15–24. http://dx.doi.org/10.2298/tsci170615267c.
Der volle Inhalt der QuelleDissertationen zum Thema "Fractional-order ordinary differential equations"
Woods, Patrick Daniel. „Localisation in reversible fourth-order ordinary differential equations“. Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299269.
Der volle Inhalt der QuelleJenab, Bita. „Asymptotic theory of second-order nonlinear ordinary differential equations“. Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/24690.
Der volle Inhalt der QuelleScience, Faculty of
Mathematics, Department of
Graduate
Sun, Xun. „Twin solutions of even order boundary value problems for ordinary differential equations and finite difference equations“. [Huntington, WV : Marshall University Libraries], 2009. http://www.marshall.edu/etd/descript.asp?ref=1014.
Der volle Inhalt der QuelleBoutayeb, Abdesslam. „Numerical methods for high-order ordinary differential equations with applications to eigenvalue problems“. Thesis, Brunel University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278244.
Der volle Inhalt der QuelleGray, Michael Jeffery Henderson Johnny L. „Uniqueness implies uniqueness and existence for nonlocal boundary value problems for third order ordinary differential equations“. Waco, Tex. : Baylor University, 2006. http://hdl.handle.net/2104/4185.
Der volle Inhalt der QuelleKoike, Tatsuya. „On the exact WKB analysis of second order linear ordinary differential equations with simple poles“. 京都大学 (Kyoto University), 2000. http://hdl.handle.net/2433/181093.
Der volle Inhalt der QuelleGranström, Frida. „Symmetry methods and some nonlinear differential equations : Background and illustrative examples“. Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-48020.
Der volle Inhalt der QuelleDifferentialekvationer, framförallt icke-linjära, används ofta vid formulering av fundamentala naturlagar liksom många tekniska problem. Därmed finns det ett stort behov av metoder där det går att hitta lösningar i sluten form till sådana ekvationer. I det här arbetet studerar vi Lie symmetrimetoder för några icke-linjära ordinära differentialekvationer (ODE). Studien fokuserar på att identifiera och använda de underliggande symmetrierna av den givna första ordningens icke-linjära ordinära differentialekvationen. En utvidgning av metoden till högre ordningens ODE diskuteras också. Ett flertal illustrativa exempel presenteras.
Charoenphon, Sutthirut. „Green's Functions of Discrete Fractional Calculus Boundary Value Problems and an Application of Discrete Fractional Calculus to a Pharmacokinetic Model“. TopSCHOLAR®, 2014. http://digitalcommons.wku.edu/theses/1327.
Der volle Inhalt der QuelleŠustková, Apolena. „Řešení obyčejných diferenciálních rovnic neceločíselného řádu metodou Adomianova rozkladu“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445455.
Der volle Inhalt der QuelleShu, Yupeng. „Numerical Solutions of Generalized Burgers' Equations for Some Incompressible Non-Newtonian Fluids“. ScholarWorks@UNO, 2015. http://scholarworks.uno.edu/td/2051.
Der volle Inhalt der QuelleBücher zum Thema "Fractional-order ordinary differential equations"
Paris, R. B. Asymptotics of high-order ordinary differential equations. Boston, (Mass.): Pitman Advanced, 1985.
Den vollen Inhalt der Quelle findenD, Wood A., Hrsg. Asymptotics of high-order ordinary differential equations. Boston: Pitman Pub., 1986.
Den vollen Inhalt der Quelle findenZhukova, Galina. Differential equations. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1072180.
Der volle Inhalt der QuelleBoutayeb, Abdesslam. Numerical methods for high-order ordinary differential equations with applications to eigenvalue problems. Uxbridge: Brunel University, 1990.
Den vollen Inhalt der Quelle findenHartley, T. T. A solution to the fundamental linear fractional order differential equation. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Den vollen Inhalt der Quelle findenSpectral analysis, differential equations, and mathematical physics: A festschrift in honor of Fritz Gesztesy's 60th birthday. Providence, Rhode Island: American Mathematical Society, 2013.
Den vollen Inhalt der Quelle finden1954-, Sickel Winfried, Hrsg. Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. Berlin: Walter de Gruyter, 1996.
Den vollen Inhalt der Quelle findenHartley, T. T. Fractional system identification: An approach using continuous order-distributions. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Den vollen Inhalt der Quelle findenHartley, T. T. Insights into the fractional order initial value problem via semi-infinite systems. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Den vollen Inhalt der Quelle findenKalinin, Sergey, und Larisa Pankratova. Ordinary differential equations of the first order. Science and Innovation Center Publishing House, 2020. http://dx.doi.org/10.12731/978-5-907208-23-0.
Der volle Inhalt der QuelleBuchteile zum Thema "Fractional-order ordinary differential equations"
Kubica, Adam, Katarzyna Ryszewska und Masahiro Yamamoto. „Fractional Ordinary Differential Equations“. In Time-Fractional Differential Equations, 47–71. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9066-5_3.
Der volle Inhalt der QuelleLuchko, Yuri. „Operational method for fractional ordinary differential equations“. In Fractional Differential Equations, herausgegeben von Anatoly Kochubei und Yuri Luchko, 91–118. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110571660-005.
Der volle Inhalt der QuelleWalter, Wolfgang. „First Order Systems. Equations of Higher Order“. In Ordinary Differential Equations, 105–57. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0601-9_4.
Der volle Inhalt der QuelleAdkins, William A., und Mark G. Davidson. „First Order Differential Equations“. In Ordinary Differential Equations, 1–100. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3618-8_1.
Der volle Inhalt der QuelleGazizov, Rafail K., Alexey A. Kasatkin und Stanislav Yu Lukashchuk. „Symmetries and group invariant solutions of fractional ordinary differential equations“. In Fractional Differential Equations, herausgegeben von Anatoly Kochubei und Yuri Luchko, 65–90. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110571660-004.
Der volle Inhalt der QuelleAdkins, William A., und Mark G. Davidson. „Second Order Linear Differential Equations“. In Ordinary Differential Equations, 331–81. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3618-8_5.
Der volle Inhalt der QuelleWalter, Wolfgang. „First Order Equations: Some Integrable Cases“. In Ordinary Differential Equations, 9–52. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0601-9_2.
Der volle Inhalt der QuelleWalter, Wolfgang. „Theory of First Order Differential Equations“. In Ordinary Differential Equations, 53–104. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0601-9_3.
Der volle Inhalt der QuelleAdkins, William A., und Mark G. Davidson. „Second Order Constant Coefficient Linear Differential Equations“. In Ordinary Differential Equations, 203–73. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3618-8_3.
Der volle Inhalt der QuelleGoodwine, Bill. „First-Order Ordinary Differential Equations“. In Engineering Differential Equations, 57–90. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7919-3_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Fractional-order ordinary differential equations"
Damasceno, Berenice C., und Luciano Barbanti. „Ordinary fractional differential equations are in fact usual entire ordinary differential equations on time scales“. In 10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES: ICNPAA 2014. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4904589.
Der volle Inhalt der QuelleGazizov, Rafail K., Alexey A. Kasatkin und Stanislav Yu Lukashchuk. „Linearly autonomous symmetries of the ordinary fractional differential equations“. In 2014 International Conference on Fractional Differentiation and its Applications (ICFDA). IEEE, 2014. http://dx.doi.org/10.1109/icfda.2014.6967419.
Der volle Inhalt der QuelleBONHEURE, D., J. M. GOMES und L. SANCHEZ. „POSITIVE SOLUTIONS OF A SECOND ORDER SINGULAR ORDINARY DIFFERENTIAL EQUATION“. In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0028.
Der volle Inhalt der QuellePodlubny, Igor, Tomas Skovranek und Blas M. Vinagre Jara. „Matrix Approach to Discretization of Ordinary and Partial Differential Equations of Arbitrary Real Order: The Matlab Toolbox“. In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86944.
Der volle Inhalt der QuelleSchwarz, Fritz. „Janet bases of 2nd order ordinary differential equations“. In the 1996 international symposium. New York, New York, USA: ACM Press, 1996. http://dx.doi.org/10.1145/236869.240354.
Der volle Inhalt der QuelleTakahashi, Masatomo. „On completely integrable first order ordinary differential equations“. In Proceedings of the Australian-Japanese Workshop. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812706898_0018.
Der volle Inhalt der QuelleZainuddin, Nooraini, und Zarina Bibi Ibrahim. „Block method for third order ordinary differential equations“. In PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES: Mathematical Sciences Exploration for the Universal Preservation. Author(s), 2017. http://dx.doi.org/10.1063/1.4995919.
Der volle Inhalt der QuelleKLOKOV, Y. A., und F. SADYRBAEV. „SHARP CONDITIONS FOR THE SUPERLINEARITY OF THE SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS“. In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0030.
Der volle Inhalt der QuelleYarman, Ahmad Fauzan, Armiati und Lufri. „Hypothetical Learning Trajectory for First-Order Ordinary Differential Equations“. In 2nd International Conference Innovation in Education (ICoIE 2020). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/assehr.k.201209.245.
Der volle Inhalt der QuelleYap, Lee Ken, und Fudziah Ismail. „Ninth order block hybrid collocation method for second order ordinary differential equations“. In PROGRESS IN APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING PROCEEDINGS. AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4940254.
Der volle Inhalt der Quelle