Auswahl der wissenschaftlichen Literatur zum Thema „Fractional Laser Resurfacing“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fractional Laser Resurfacing" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Fractional Laser Resurfacing"

1

Kauvar, Arielle N. B. „Fractional Nonablative Laser Resurfacing“. Dermatologic Surgery 40 (Dezember 2014): S157—S163. http://dx.doi.org/10.1097/dss.0000000000000200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Narurkar, Vic A. „Nonablative Fractional Laser Resurfacing“. Dermatologic Clinics 27, Nr. 4 (Oktober 2009): 473–78. http://dx.doi.org/10.1016/j.det.2009.08.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Carniol, Paul J., Sanaz Harirchian und Erin Kelly. „Fractional CO2 Laser Resurfacing“. Facial Plastic Surgery Clinics of North America 19, Nr. 2 (Mai 2011): 247–51. http://dx.doi.org/10.1016/j.fsc.2011.05.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ramsdell, William. „Fractional Carbon Dioxide Laser Resurfacing“. Seminars in Plastic Surgery 26, Nr. 03 (01.11.2012): 125–30. http://dx.doi.org/10.1055/s-0032-1329414.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ramsdell, William. „Fractional CO2 Laser Resurfacing Complications“. Seminars in Plastic Surgery 26, Nr. 03 (01.11.2012): 137–40. http://dx.doi.org/10.1055/s-0032-1329415.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Archer, Kaete A., und Paul Carniol. „Diode Laser and Fractional Laser Innovations“. Facial Plastic Surgery 35, Nr. 03 (Juni 2019): 248–55. http://dx.doi.org/10.1055/s-0039-1688846.

Der volle Inhalt der Quelle
Annotation:
AbstractLaser technology continues to increase in popularity and expand treatment options for patients with common but challenging skin conditions including facial telangiectasias, facial aging, striae distensae, and acne scars. Facial telangiectasias have been estimated to occur in tens of millions of people worldwide. The 585-nm laser was the first to follow the principle of selective photothermolysis for the treatment of cutaneous vascular lesions, but it caused significant postoperative purpura. Newer diode lasers target superficial and deep telangiectasias without the side effects of the 585-nm laser. Ablative resurfacing was introduced in the 1990s with the carbon dioxide laser to address facial rhytids and photoaging. While effective, the risks and downtime were significant. The newest fractionated nonablative lasers are demonstrating impressive results, with decreased risks and downtime. This new generation of lasers is being used extensively and in unique combinations for facial aging, striae, and acne scars.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Paasch, Uwe, und Merete Haedersdal. „Laser systems for ablative fractional resurfacing“. Expert Review of Medical Devices 8, Nr. 1 (Januar 2011): 67–83. http://dx.doi.org/10.1586/erd.10.74.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Carniol, Paul J., Mark M. Hamilton und Eric T. Carniol. „Current Status of Fractional Laser Resurfacing“. JAMA Facial Plastic Surgery 17, Nr. 5 (September 2015): 360–66. http://dx.doi.org/10.1001/jamafacial.2015.0693.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Alexiades-Armenakas, Macrene R., Jeffrey S. Dover und Kenneth A. Arndt. „The spectrum of laser skin resurfacing: Nonablative, fractional, and ablative laser resurfacing“. Journal of the American Academy of Dermatology 58, Nr. 5 (Mai 2008): 719–37. http://dx.doi.org/10.1016/j.jaad.2008.01.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tarijian, Ani l., und David J. Goldberg. „Fractional ablative laser skin resurfacing: A review“. Journal of Cosmetic and Laser Therapy 13, Nr. 6 (17.11.2011): 262–64. http://dx.doi.org/10.3109/14764172.2011.630083.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Fractional Laser Resurfacing"

1

Ahmed, Refat Maggi. „Improving the Success of Melanocyte Keratinocyte Transplantation Surgery in Vitiligo; The Role of JAK Inhibitors, and Ablative Laser Resurfacing“. eScholarship@UMMS, 2021. https://escholarship.umassmed.edu/gsbs_diss/1143.

Der volle Inhalt der Quelle
Annotation:
The Melanocyte Keratinocyte Transplantation Procedure (MKTP) is an effective surgical replacement of lost melanocytes in recalcitrant vitiligo and pigmentary skin disorders. However, it is only effective in stable vitiligo lesions because active autoimmunity destroys the newly transplanted melanocytes. Despite careful selection of candidates based on the reported clinical stability, the success of the procedure is still unpredictable. MKTP candidates with non-segmental, segmental, and mixed vitiligo, as well as hypopigmented scars and Piebaldism patients were enrolled to our studies. Our aim was first, to investigate the possible immunological mechanisms responsible for the unpredictable post- transplantation outcomes, including T cell subsets and inflammatory chemokines, by correlating these biomarkers with clinical phenotypes, duration of stability, and surgical outcomes. We used suction blister biopsy, a minimally invasive technique that we developed to sample human skin. Moreover, we quantified transplanted melanocytes in the suspension using flow cytometry. Following MKTP, we corelated these biomarkers to the repigmentation score. We found that CD8+ T cells remain in some clinically stable vitiligo lesions, correlate negatively with the post-surgical score of repigmentation, and inversely impact the durability of the responses. Interestingly, the number of transplanted melanocytes in the suspension and the duration of stability do not have prognostic roles. Based on our findings and in a second group of patients, we suppressed the activity of T cells to enhance the outcomes of MKTP. We used Ruxolitinib, JAK1/2 inhibitor, in a triple blinded randomized controlled within subject study, in comparison with Tacrolimus (a calcineurin inhibitor and the standard of care treatment in vitiligo) as well as placebo control. We found lower T cell infiltrate, lower chemokines, and better skin repigmentation in lesions treated with MKTP plus Ruxolitinib or Tacrolimus than in lesions treated with MKTP plus placebo. Lastly, we compared two different types of laser in preparation of the recipient skin for MKTP - ablative versus fractional Er:YAG laser. We found that the ablative laser is combined with minimal CD8+ T cell epidermal infiltrate and superior repigmentation score in comparison to more infiltrate and lower repigmentation score with the fractional laser. Taken together, these results from our studies provide novel insight to predict the optimal surgical candidates and will improve surgical outcomes. It advances the treatment of vitiligo by uncovering the impact of autoimmunity on the success of repigmentation and discovering new approaches to optimize the surgical treatment options in patients with vitiligo and pigmentary skin disorders.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Fractional Laser Resurfacing"

1

Narurkar, Vic A. „Fractional Laser Resurfacing“. In Aesthetic Medicine, 179–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20113-4_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ciocon, David H., Yoon Soo Bae und Suzanne L. Kilmer. „Ablative and Non-ablative Fractional Resurfacing“. In Laser Dermatology, 89–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32006-4_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sabet-Peyman, E. Jason, und Julie A. Woodward. „Ablative Fractional Laser Skin Resurfacing“. In Pearls and Pitfalls in Cosmetic Oculoplastic Surgery, 563–77. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1544-6_169.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chahine, Fadl, und Salim C. Saba. „Fractional CO2 Laser Skin Resurfacing“. In Operative Dictations in Plastic and Reconstructive Surgery, 59–62. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40631-2_14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lee, Juhee, und Jihee Kim. „Emerging Technologies in Scar Management: Laser-Assisted Delivery of Therapeutic Agents“. In Textbook on Scar Management, 443–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44766-3_50.

Der volle Inhalt der Quelle
Annotation:
AbstractTopical application of medications is difficult through intact skin due to physiological barrier of stratum corneum. Effective transdermal drug delivery system can offer distinct advantages over the topical application and oral administration of drugs. Laser systems have showed clinical benefits for patients in various types of scars for decades. In particular, the advent of fractional resurfacing advanced laser has enhanced the scar treatments dramatically. A fractional laser irradiates cells with high precision by controlling the area and degree of ablation through laser settings. In addition to local thermal destruction and stimulation, fractionated devices may also play an important role in drug delivery through the skin. Preclinical studies substantiate enhanced drug accumulation for a variety of topically applied drugs after ablative fractional laser therapy. Laser-assisted drug delivery is an evolving technology with potentially broad clinical applications. Multiple studies demonstrate that laser pretreatment of the skin can increase the permeability and depth of penetration of topically applied drug molecules. We discuss the mechanisms of laser-assisted drug delivery for scar treatment to enhance our understanding of this evolving technology and suggest optimal protocols of treatment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

MacGregor, Jennifer L., und Tina S. Alster. „Fractional Resurfacing Lasers: Ablative and Non-Ablative“. In Dermatologic Surgery, 349–58. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118412633.ch48.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Buford, Gregory A. „Fractional Laser Skin Resurfacing“. In Pfenninger and Fowler's Procedures for Primary Care, 337–52. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-323-05267-2.00053-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

„Ablative fractional laser resurfacing“. In Cosmetic Bootcamp Primer, 248–50. CRC Press, 2011. http://dx.doi.org/10.3109/9781841847542-31.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Narurkar, Vic A. „Ablative fractional laser resurfacing“. In Series in Cosmetic and Laser Therapy, 238–40. Informa Healthcare, 2011. http://dx.doi.org/10.3109/9781841847542.029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Geddes, Elizabeth, Parisa Ravanfar und Paul Friedman. „Nonablative Fractional Resurfacing“. In Laser and Light Source Treatments for the Skin, 65. Jaypee Brothers Medical Publishers (P) Ltd., 2014. http://dx.doi.org/10.5005/jp/books/12081_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Fractional Laser Resurfacing"

1

Cicchi, Riccardo, Dimitrios Kapsokalyvas, Michela Troiano, Piero Campolmi, Cristiano Morini, Torello Lotti und Francesco S. Pavone. „In vivo TPEF-SHG microscopy for detecting collagen remodeling after laser micro-ablative fractional resurfacing treatment“. In European Conference on Biomedical Optics. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/ecbo.2011.80871b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Cicchi, Riccardo, Dimitrios Kapsokalyvas, Francesco S. Pavone, Michela Troiano, Piero Campolmi, Cristiano Morini und Torello Lotti. „In-vivo non-linear imaging of collagen before and after laser micro-ablative fractional resurfacing treatment“. In 2011 International Workshop on Biophotonics. IEEE, 2011. http://dx.doi.org/10.1109/iwbp.2011.5954830.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Cicchi, Riccardo, Dimitrios Kapsokalyvas, Michela Troiano, Piero Campolmi, Cristiano Morini, Torello Lotti und Francesco S. Pavone. „In vivo TPEF-SHG microscopy for detecting collagen remodeling after laser micro-ablative fractional resurfacing treatment“. In European Conferences on Biomedical Optics, herausgegeben von Nirmala Ramanujam und Jürgen Popp. SPIE, 2011. http://dx.doi.org/10.1117/12.889450.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Eze, Reginald C. „Monte Carlo Simulation of the Laser-Induced Temperature Dynamics in Very Thin Scattering and Absorbing Biological Layer Piles“. In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86545.

Der volle Inhalt der Quelle
Annotation:
Radiative-thermal models of light transport in tissue are presented that stimulates the thermal effects of pulsed laser radiation on very thin scattering and absorbing biological layers. Thermal therapies require a firm understanding of temperature-depth relationship for tissue modification or destruction, especially through very thin layers that are characterized by contrasting opto-thermal properties. Temperature distribution in biological layers of thicknesses in the order of their mean free path or less are evaluated before the onset of thermal diffusion for both the traditional model of Monte Carlo simulation and that with new features tailored for very thin layers. Temperature dynamics in very thin layers such as skin in dermatology is a typical example. For instance, during the heating of small volumes of tissue as in fractional photothermolysis, nonablative dermal remodeling and ablative skin resurfacing, short pulse lasers are used by choosing pulse length sufficiently short that will not damage the surrounding healthy tissue, but sufficiently long enough to allow damage, necrosis or coagulation over the entire target area. This is in contrast to the situation where thermal dissipation due to heat conduction is the principal determinant of tissue damage. Numerical results obtained from both models differ significantly. While the model designed specifically for very thin scattering layers tends to confine temperature rise to specific layers, the traditional model have a tendency to misjudge the layers of interest thereby giving rise to temperature increase in undesired locations. These results will advance our understanding of radiation transport in layers that are extremely very thin, and help develop better treatment modules for laser therapeutic treatment regimes in surgery and dermatology.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Tregde, Vidar. „Compressible Air Effects in CFD Simulations of Free Fall Lifeboat Drop“. In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-41049.

Der volle Inhalt der Quelle
Annotation:
A free fall lifeboat is typically dropped from heights between 30 and 40m, but during full scale testing, drop heights have been exceeding 60 m. During a drop, the free fall lifeboat is going through several phases; sliding on the skid, rotation on skid, free fall, water entry, ventilation, maximum submergence, resurfacing and the sailing phase. During impact and submergence the lifeboat will go through a ventilation phase. In this phase the lifeboat creates an air cavity behind the pilot house and a larger one behind the stern. The air cavity formed on top of canopy, aft of the pilot house is compressed and then starts to oscillate in time giving rise to large oscillating pressures. Computational Fluid Dynamics (CFD) simulations with compressible air flow model are compared with full scale experimental results. The results compare very well, both in oscillating frequency and amplitude. Later in the ventilation phase, an air bubble aft of the vessel will be drawn down several meters below the water surface. This bubble collapses in an imploding manner and slams with large pressures on the aft bulkhead of the lifeboat. This is simulated in CFD with compressible air model and compares very well to the full scale experimental results. Using incompressible air flow will not capture these effects, and the calculated pressures on the aft bulkhead are a fraction of the real pressures. The water surface in the cavity eventually hits the aft bulkhead with a high slamming velocity. The structure of the air pocket does not have any symmetry, and seem to be chaotic in nature. The local pressures can be very high and distributed over a small area. The effects of the air cavity also influence the motion and acceleration of the lifeboat in the ventilation phase; this is shown and compared to full scale experimental results.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie