Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Fractals“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fractals" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Fractals"
MITINA, OLGA V., und FREDERICK DAVID ABRAHAM. „THE USE OF FRACTALS FOR THE STUDY OF THE PSYCHOLOGY OF PERCEPTION: PSYCHOPHYSICS AND PERSONALITY FACTORS, A BRIEF REPORT“. International Journal of Modern Physics C 14, Nr. 08 (Oktober 2003): 1047–60. http://dx.doi.org/10.1142/s0129183103005182.
Der volle Inhalt der QuelleЖихарев, Л., und L. Zhikharev. „Fractals In Three-Dimensional Space. I-Fractals“. Geometry & Graphics 5, Nr. 3 (28.09.2017): 51–66. http://dx.doi.org/10.12737/article_59bfa55ec01b38.55497926.
Der volle Inhalt der QuelleЖихарев und L. Zhikharev. „Generalization to Three-Dimensional Space Fractals of Pythagoras and Koch. Part I“. Geometry & Graphics 3, Nr. 3 (30.11.2015): 24–37. http://dx.doi.org/10.12737/14417.
Der volle Inhalt der QuelleHusain, Akhlaq, Manikyala Navaneeth Nanda, Movva Sitaram Chowdary und Mohammad Sajid. „Fractals: An Eclectic Survey, Part II“. Fractal and Fractional 6, Nr. 7 (02.07.2022): 379. http://dx.doi.org/10.3390/fractalfract6070379.
Der volle Inhalt der QuelleCherny, A. Yu, E. M. Anitas, V. A. Osipov und A. I. Kuklin. „Scattering from surface fractals in terms of composing mass fractals“. Journal of Applied Crystallography 50, Nr. 3 (01.06.2017): 919–31. http://dx.doi.org/10.1107/s1600576717005696.
Der volle Inhalt der QuelleFraboni, Michael, und Trisha Moller. „Fractals in the Classroom“. Mathematics Teacher 102, Nr. 3 (Oktober 2008): 197–99. http://dx.doi.org/10.5951/mt.102.3.0197.
Der volle Inhalt der QuelleFraboni, Michael, und Trisha Moller. „Fractals in the Classroom“. Mathematics Teacher 102, Nr. 3 (Oktober 2008): 197–99. http://dx.doi.org/10.5951/mt.102.3.0197.
Der volle Inhalt der QuelleJoy, Elizabeth K., und Dr Vikas Garg. „FRACTALS AND THEIR APPLICATIONS: A REVIEW“. Journal of University of Shanghai for Science and Technology 23, Nr. 07 (01.08.2021): 1509–17. http://dx.doi.org/10.51201/jusst/21/07277.
Der volle Inhalt der QuelleChen, Yanguang. „Fractal Modeling and Fractal Dimension Description of Urban Morphology“. Entropy 22, Nr. 9 (30.08.2020): 961. http://dx.doi.org/10.3390/e22090961.
Der volle Inhalt der QuelleBANAKH, T., und N. NOVOSAD. „MICRO AND MACRO FRACTALS GENERATED BY MULTI-VALUED DYNAMICAL SYSTEMS“. Fractals 22, Nr. 04 (12.11.2014): 1450012. http://dx.doi.org/10.1142/s0218348x14500121.
Der volle Inhalt der QuelleDissertationen zum Thema "Fractals"
Moraes, Leonardo Bastos. „Antenas impressas compactas para sistemas WIMAX“. Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/3/3142/tde-26122013-161125/.
Der volle Inhalt der QuelleAchieving high data rates in wireless communication is difficult. High data rates for wireless local area networks became commercially successful only around 2000. Wide area wireless networks are still designed and used primarily for low rate voice services. Despite many promising technologies, the reality of a wide area network that services many users at high data rates with reasonable bandwidth and power consumption, while maintaining high coverage and quality of service has not been achieved. The goal of the IEEE 802.16 was to design a wireless communication system processing to achieve a broadband internet for mobile users over a wide or metropolitan area. It is important to realize that WIMAX system have to confront similar challenges as existing cellular systems and their eventual performance will be bounded by the same laws of physics and information theory. In many areas of electrical engineering, miniaturization has been an important issue. Antennas are not an exception. After Wheeler initiated studies on the fundamental limits for miniaturization of antennas, this subject has been extensively discussed by several scholars and many contributions have been made. The advances of recent decades in the field of microelectronics enabled the miniaturization of components and provided the use of compact, lightweight, equipments with many features in commercial applications. Although circuit integration is a reality, the integration of a complete system, including its antenna, is still one of the major technological challenges. In the case of patch antennas, the search is for compact structures with increased bandwidth, due to the inherent narrowband characteristic of this type of antenna. In this work the focus is on a comparison between the Minkowski and the Koch Fractal Patch Antennas. Initially, patch antennas with conventional square and triangular geometries were simulated to present the same resonance frequency. After that, fractal Minkowski and Koch Island Loop antennas were implemented in the square and triangular geometries, respectively, to the third iteration. A comparison was made for two substrates of different permittivities FR-4 and DUROID 5870 at the frequencies of 2,4 GHz; 3,5 GHz; 5,0 GHz and 5,8 GHz. 8 Prototype antennas were built using FR-4 and DUROID 5870 to resonate at a frequency of 3,5 GHz to validate simulation results. The contribution of this work is the analysis of the advantages and disadvantages of each proposed fractal structure. According to the project requirements, the best option can be use a miniaturized antenna with a wider band, as in commercial projects. Particularly in military applications, a narrow band antenna can be a requirement, as sometimes maximum discretion in transmission is a paramount. An additional analysis was performed to verify which of the geometries fulfilled the miniaturization criteria of Hansen.
Дядечко, Алла Миколаївна, Алла Николаевна Дядечко, Alla Mykolaivna Diadechko, D. Tokar und V. R. Tarasenko. „Fractals“. Thesis, Видавництво СумДУ, 2011. http://essuir.sumdu.edu.ua/handle/123456789/13436.
Der volle Inhalt der QuelleZanotto, Ricardo Anselmo. „Estudo da geometria fractal clássica“. Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/6058.
Der volle Inhalt der QuelleApproved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-08-31T19:47:01Z (GMT) No. of bitstreams: 2 Dissertação - Ricardo Anselmo Zanotto - 2015.pdf: 7706833 bytes, checksum: 26c6e884d0e3a03a3daebaa4ab5764a4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2016-08-31T19:47:01Z (GMT). No. of bitstreams: 2 Dissertação - Ricardo Anselmo Zanotto - 2015.pdf: 7706833 bytes, checksum: 26c6e884d0e3a03a3daebaa4ab5764a4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2015-12-12
Outro
This is a research about a part of the non-Euclidean geometry that has recently been very studied. It was addressed initial themes of the non-Euclidean geometry and it was exposed the studies abut fractals, its history, buildings and main fractals (known as classic fractals). It was also addressed the relation among the school years contents and how to use fractals; as well as some of its applications that have helped a lot of researches to spread and show better results.
Este trabalho é uma pesquisa sobre parte da geometria não euclidiana que há pouco vem sendo muito estudada, os fractais. Abordamos temas iniciais da geometria nãoeuclidiana e no decorrer do trabalho expomos nosso estudo sobre fractais, seu histórico, construções, principais fractais (conhecidos como fractais clássicos). Também abordamos relações entre conteúdos dos anos escolares e como usar fractais nos mesmos; como também algumas de suas aplicações que vem ajudando muitas pesquisas a se difundirem e apresentarem melhores resultados.
LONG, LUN-HAI. „Fractals arithmetiques“. Université Louis Pasteur (Strasbourg) (1971-2008), 1993. http://www.theses.fr/1993STR13249.
Der volle Inhalt der QuelleJoanpere, Salvadó Meritxell. „Fractals and Computer Graphics“. Thesis, Linköpings universitet, Matematiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68876.
Der volle Inhalt der QuelleMucheroni, Laís Fernandes [UNESP]. „Dimensão de Hausdorff e algumas aplicações“. Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/151653.
Der volle Inhalt der QuelleApproved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-19T20:08:28Z (GMT) No. of bitstreams: 1 mucheroni_lf_me_rcla.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5)
Made available in DSpace on 2017-09-19T20:08:28Z (GMT). No. of bitstreams: 1 mucheroni_lf_me_rcla.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5) Previous issue date: 2017-08-18
Intuitivamente, um ponto tem dimensão 0, uma reta tem dimensão 1, um plano tem dimensão 2 e um cubo tem dimensão 3. Porém, na geometria fractal encontramos objetos matemáticos que possuem dimensão fracionária. Esses objetos são denominados fractais cujo nome vem do verbo "frangere", em latim, que significa quebrar, fragmentar. Neste trabalho faremos um estudo sobre o conceito de dimensão, definindo dimensão topológica e dimensão de Hausdorff. O objetivo deste trabalho é, além de apresentar as definições de dimensão, também apresentar algumas aplicações da dimensão de Hausdorff na geometria fractal.
We know, intuitively, that the dimension of a dot is 0, the dimension of a line is 1, the dimension of a square is 2 and the dimension of a cube is 3. However, in the fractal geometry we have objects with a fractional dimension. This objects are called fractals whose name comes from the verb frangere, in Latin, that means breaking, fragmenting. In this work we will study about the concept of dimension, defining topological dimension and Hausdorff dimension. The purpose of this work, besides presenting the definitions of dimension, is to show an application of the Hausdorff dimension on the fractal geometry.
Berbiche, Amine. „Propagation d'ondes acoustiques dans les milieux poreux fractals“. Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4758.
Der volle Inhalt der QuelleThe action integral minimization method (variational principle) provides the wave propagation equations. This method has been generalized to fractal dimensional porous media to study the acoustic propagation in the time domain, based on the equivalent fluid model. The resulting equation rewritten in the frequency domain represents a generalization for the Helmholtz equation. As part of the Allard-Johnson model, the propagation equation was solved analytically in the time domain, for both high and low frequencies fields. The resolution was made by the method of the Laplace transform, and focused on a semi-infinite porous medium. It was found that the wave velocity depends on the fractal dimension.For a fractal porous material of finite thickness which receives an acoustic wave at normal incidence, the Euler conditions were used to determine the reflected and transmitted fields. The resolution of the direct problem was made in the time domain by the method of the Laplace transform, and through the use of the Mittag-Leffler functions. The inverse problem was solved by the method of minimizing the least squares sense. Tests have been performed successfully on experimental data; programs written from the formalism developed in this work have allowed finding the acoustic parameters of porous foams, in the fields of high and low frequencies
Prehl, geb Balg Janett. „Diffusion on Fractals“. Master's thesis, Universitätsbibliothek Chemnitz, 2007. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200701033.
Der volle Inhalt der QuelleIn dieser Arbeit untersuchen wir anomale Diffusion auf Fraktalen unter Einwirkung eines statisches äußeres Feldes. Wir benutzen die Mastergleichung, um die Wahrscheinlichkeitsverteilung der Teilchen zu berechnen, um daraus wichtige Größen wie das mittlere Abstandsquadrat zu bestimmen. Wir wenden unterschiedliche Feldstärken bei verschiedenen regelmäßigen Sierpinski-Teppichen an und erhalten maximale Driftgeschwindigkeiten für schwache Feldstärken. Über ~t^{2/d_w} bestimmen wir die Random-Walk-Dimension d_w als d_w<2. Dieser Wert für d_w entspricht der Superdiffusion, obwohl der Diffusionsprozess durch Strukturen des Teppichs, wie Sackgassen, behindert wird. Es schient, dass dies das Ergebnis zweier konkurrierender Effekte ist, die durch das Anlegen eines äußeren Feldes entstehen. Einerseits bewegen sich die Teilchen bevorzugt entlang der Feldrichtung. Andererseits gelangen einige Teilchen in Sackgassen. Um die Sackgassen, die in Feldrichtung liegen, zu verlassen, müssen sich die Teilchen entgegen der Feldrichtung bewegen. Somit sind die Teilchen eine gewisse Zeit in der Sackgasse gefangen. Infolge der durch das äußere Feld beschleunigten und der gefangenen Teilchen, verbreitert sich die Wahrscheinlichkeitsverteilung der Teilchen und somit ist d_w<2
Yin, Qinghe. „Fractals and sumsets“. Title page, contents and abstract only, 1993. http://web4.library.adelaide.edu.au/theses/09PH/09phy51.pdf.
Der volle Inhalt der QuelleBeaver, Philip Frederick. „Fractals and chaos“. Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/28232.
Der volle Inhalt der QuelleBücher zum Thema "Fractals"
A, Pickover Clifford, Hrsg. Fractal horizons: The future use of fractals. New York: St. Martin's Press, 1996.
Den vollen Inhalt der Quelle findenFeder, Jens. Fractals. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6.
Der volle Inhalt der QuelleDekking, Michel, Jacques Lévy Véhel, Evelyne Lutton und Claude Tricot, Hrsg. Fractals. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0873-3.
Der volle Inhalt der QuelleO'Connell, Richard. Fractals. Newport: Atlantis Editions, 2002.
Den vollen Inhalt der Quelle findenStephen, Pollock, und British Broadcasting Corporation, Hrsg. Fractals. [London]: [British Broadcasting Corporation, 1990.
Den vollen Inhalt der Quelle findenFeder, Jens. Fractals. New York: Plenum Press, 1988.
Den vollen Inhalt der Quelle findenFeder, Jens. Fractals. New York, NY: Plenum Press, 1988.
Den vollen Inhalt der Quelle findenMac Cormac, Earl, und Maxim I. Stamenov, Hrsg. Fractals of Brain, Fractals of Mind. Amsterdam: John Benjamins Publishing Company, 1996. http://dx.doi.org/10.1075/aicr.7.
Der volle Inhalt der QuelleBarnsley, Michael. Fractals everywhere. 2. Aufl. Boston: Academic Press, 1993.
Den vollen Inhalt der Quelle findenBarnsley, Michael. Fractals everywhere. Mineola, N.Y: Dover Publications, 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Fractals"
Hergarten, Stefan. „Fractals and Fractal Distributions“. In Self-Organized Criticality in Earth Systems, 1–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04390-5_1.
Der volle Inhalt der QuelleCourtens, Eric, und René Vacher. „Fractons in Real Fractals“. In Random Fluctuations and Pattern Growth: Experiments and Models, 20–26. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2653-0_4.
Der volle Inhalt der QuelleFeder, Jens. „Introduction“. In Fractals, 1–5. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_1.
Der volle Inhalt der QuelleFeder, Jens. „Self-Similarity and Self-Affinity“. In Fractals, 184–92. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_10.
Der volle Inhalt der QuelleFeder, Jens. „Wave-Height Statistics“. In Fractals, 193–99. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_11.
Der volle Inhalt der QuelleFeder, Jens. „The Perimeter-Area Relation“. In Fractals, 200–211. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_12.
Der volle Inhalt der QuelleFeder, Jens. „Fractal Surfaces“. In Fractals, 212–28. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_13.
Der volle Inhalt der QuelleFeder, Jens. „Observations of Fractal Surfaces“. In Fractals, 229–43. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_14.
Der volle Inhalt der QuelleFeder, Jens. „The Fractal Dimension“. In Fractals, 6–30. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_2.
Der volle Inhalt der QuelleFeder, Jens. „The Cluster Fractal Dimension“. In Fractals, 31–40. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Fractals"
Wang, Yan. „3D Fractals From Periodic Surfaces“. In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-29081.
Der volle Inhalt der Quelle„BACK MATTER“. In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_bmatter.
Der volle Inhalt der QuelleWEST, BRUCE J. „MODELING FRACTAL DYNAMICS“. In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0002.
Der volle Inhalt der QuelleMAINZER, KLAUS. „COMPLEXITY IN NATURE AND SOCIETY: Complexity Management in the Age of Globalization“. In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0010.
Der volle Inhalt der QuellePEARSON, MICHAEL. „FRACTALS, COMPLEXITY AND CHAOS IN SUPPLY CHAIN NETWORKS“. In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0011.
Der volle Inhalt der QuelleSING, BERND. „ITERATED FUNCTION SYSTEMS IN MIXED EUCLIDEAN AND 𝔭-ADIC SPACES“. In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0024.
Der volle Inhalt der QuelleLIEBOVITCH, L. S., V. K. JIRSA und L. A. SHEHADEH. „STRUCTURE OF GENETIC REGULATORY NETWORKS: EVIDENCE FOR SCALE FREE NETWORKS“. In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0001.
Der volle Inhalt der QuelleGORENFLO, RUDOLF, und FRANCESCO MAINARDI. „FRACTIONAL RELAXATION OF DISTRIBUTED ORDER“. In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0003.
Der volle Inhalt der QuelleALLEGRINI, P., F. BARBI, P. GRIGOLINI und P. PARADISI. „FRACTIONAL TIME: DISHOMOGENOUS POISSON PROCESSES VS. HOMOGENEOUS NON-POISSON PROCESSES“. In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0004.
Der volle Inhalt der QuellePAPASIMAKIS, NIKITAS, und FOTINI PALLIKARI. „MARKOV MEMORY IN MULTIFRACTAL NATURAL PROCESSES“. In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0005.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Fractals"
Haussermann, John W. An Introduction to Fractals and Chaos. Fort Belvoir, VA: Defense Technical Information Center, Juni 1989. http://dx.doi.org/10.21236/ada210257.
Der volle Inhalt der QuelleDriscoll, John. Fractals as Basis for Design and Critique. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.7059.
Der volle Inhalt der QuelleMoore, Charles. A Quantitative Description of Soil Microstructure Using Fractals. Fort Belvoir, VA: Defense Technical Information Center, Juli 1992. http://dx.doi.org/10.21236/ada337825.
Der volle Inhalt der QuelleKostoff, Ronald N., Dustin Johnson, J. A. Del Rio, Louis A. Bloomfield, Michael F. Shlesinger und Guido Malpohl. Duplicate Publication and 'Paper Inflation' in the Fractals Literature. Fort Belvoir, VA: Defense Technical Information Center, Januar 2005. http://dx.doi.org/10.21236/ada440622.
Der volle Inhalt der QuelleOppenheim, Alan V., und Gregory W. Wornell. Signal Analysis, Synthesis and Processing Using Fractals and Wavelets. Fort Belvoir, VA: Defense Technical Information Center, November 1995. http://dx.doi.org/10.21236/ada305490.
Der volle Inhalt der QuelleRao, C. R., und S. R. Kumara. Shape and Image Analysis using Neural Networks Fractals and Wavelets. Fort Belvoir, VA: Defense Technical Information Center, Mai 2000. http://dx.doi.org/10.21236/ada392772.
Der volle Inhalt der QuelleYortsos, Y. C., und J. A. Acuna. Numerical construction and flow simulation in networks of fractures using fractals. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/6283188.
Der volle Inhalt der QuellePardo Igúzquiza, Eulogio. Karst y fractales. Ilustre Colegio Oficial de Geólogos, Dezember 2022. http://dx.doi.org/10.21028/eog.2022.12.05.
Der volle Inhalt der QuelleAminzadeh, Fred, Charles Sammis, Mohammad Sahimi und David Okaya. Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1185274.
Der volle Inhalt der QuelleFisher, Yuval, und Albert Lawrence. Fractal Image Encoding. Fort Belvoir, VA: Defense Technical Information Center, März 1992. http://dx.doi.org/10.21236/ada248003.
Der volle Inhalt der Quelle