Zeitschriftenartikel zum Thema „Fourier Ptychographic Microscopy“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Fourier Ptychographic Microscopy.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Fourier Ptychographic Microscopy" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Jizhou Zhang, Jizhou Zhang, Tingfa Xu Tingfa Xu, Xing Wang Xing Wang, Sining Chen Sining Chen und Guoqiang Ni Guoqiang Ni. „Fast gradational reconstruction for Fourier ptychographic microscopy“. Chinese Optics Letters 15, Nr. 11 (2017): 111702. http://dx.doi.org/10.3788/col201715.111702.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ou, Xiaoze, Jaebum Chung, Roarke Horstmeyer und Changhuei Yang. „Aperture scanning Fourier ptychographic microscopy“. Biomedical Optics Express 7, Nr. 8 (29.07.2016): 3140. http://dx.doi.org/10.1364/boe.7.003140.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wang, Lin, Qihao Song, Hongbo Zhang, Caojin Yuan und Ting-Chung Poon. „Optical scanning Fourier ptychographic microscopy“. Applied Optics 60, Nr. 4 (30.11.2020): A243. http://dx.doi.org/10.1364/ao.402644.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Loetgering, Lars, Tomas Aidukas, Kevin C. Zhou, Felix Wechsler und Roarke Horstmeyer. „Fourier Ptychography Part II: Phase Retrieval and High-Resolution Image Formation“. Microscopy Today 30, Nr. 5 (September 2022): 36–39. http://dx.doi.org/10.1017/s1551929522001055.

Der volle Inhalt der Quelle
Annotation:
Abstract:This article is the second within a three-part series on Fourier ptychography, which is a computational microscopy technique for high-resolution, large field-of-view imaging. While the first article laid out the basics of Fourier ptychography, this second part sheds light on its algorithmic ingredients. We present a non-technical discussion of phase retrieval, which allows for the synthesis of high-resolution images from a sequence of low-resolution raw data. Fourier ptychographic phase retrieval can be carried out on standard, widefield microscopy platforms with the simple addition of a low-cost LED array, thus offering a convenient alternative to other phase-sensitive techniques that require more elaborate hardware such as differential interference contrast and digital holography.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhang, Yongbing, Weixin Jiang, Lei Tian, Laura Waller und Qionghai Dai. „Self-learning based Fourier ptychographic microscopy“. Optics Express 23, Nr. 14 (08.07.2015): 18471. http://dx.doi.org/10.1364/oe.23.018471.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Liu, Qiulan, Yue Fang, Renjie Zhou, Peng Xiu, Cuifang Kuang und Xu Liu. „Surface wave illumination Fourier ptychographic microscopy“. Optics Letters 41, Nr. 22 (15.11.2016): 5373. http://dx.doi.org/10.1364/ol.41.005373.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zhou, You, Jiamin Wu, Zichao Bian, Jinli Suo, Guoan Zheng und Qionghai Dai. „Fourier ptychographic microscopy using wavelength multiplexing“. Journal of Biomedical Optics 22, Nr. 6 (14.06.2017): 066006. http://dx.doi.org/10.1117/1.jbo.22.6.066006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Horstmeyer, Roarke, Guoan Zheng, Xiaoze Ou und Changhuei Yang. „Modeling Extensions of Fourier Ptychographic Microscopy“. Microscopy and Microanalysis 20, S3 (August 2014): 370–71. http://dx.doi.org/10.1017/s1431927614003572.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Xiu, Peng, Youhua Chen, Cuifang Kuang, Yue Fang, Yifan Wang, Jiannan Fan, Yingke Xu und Xu Liu. „Structured illumination fluorescence Fourier ptychographic microscopy“. Optics Communications 381 (Dezember 2016): 100–106. http://dx.doi.org/10.1016/j.optcom.2016.06.075.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Huang, Kaicheng, Wangwei Hui, Qing Ye, Senlin Jin, Hongyang Zhao, Qiushuai Shi, Jianguo Tian und Wenyuan Zhou. „Compressed-sampling-based Fourier ptychographic microscopy“. Optics Communications 452 (Dezember 2019): 18–24. http://dx.doi.org/10.1016/j.optcom.2019.07.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Pan, An, Chao Zuo, Yuege Xie, Ming Lei und Baoli Yao. „Vignetting effect in Fourier ptychographic microscopy“. Optics and Lasers in Engineering 120 (September 2019): 40–48. http://dx.doi.org/10.1016/j.optlaseng.2019.02.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Zhang Jinhua, 张瑾华, 张继洲 Zhang Jizhou, 李佳男 Li Jianan, 李杰 Li Jie, 陈毅文 Chen Yiwen, 汪心 Wang Xin, 王舒珊 Wang Shushan und 许廷发 Xu Tingfa. „基于叠层衍射成像的傅里叶叠层显微像差校正方法“. Acta Optica Sinica 41, Nr. 10 (2021): 1011001. http://dx.doi.org/10.3788/aos202141.1011001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Zhang, Peiwei, Jufeng Zhao, Binbin Lin, Xiaohui Wu und Guangmang Cui. „Hyperspectral microscopy imaging based on Fourier ptychographic microscopy“. Journal of Optics 24, Nr. 5 (29.03.2022): 055301. http://dx.doi.org/10.1088/2040-8986/ac57b3.

Der volle Inhalt der Quelle
Annotation:
Abstract Hyperspectral resolution, high spatial resolution, and a wide field of view (FOV) are the targets of optical spectral microscopy imaging. However, hyperspectral microscopy imaging technology cannot provide a wide FOV and a high spatial resolution at the same time. Fourier ptychographic microscopy (FPM) is a novel microscopy imaging technique that uses LEDs at varying angles to capture a series of low-spatial-resolution images that are used to recover images that have both high spatial resolution and a wide FOV. Since FPM cannot obtain the spectral resolution of the sample, in this paper, an efficient strategy based on the FPM system is proposed for the reconstruction of hyperspectral images. First, the traditional FPM setup is optimized, with a new experimental setup based on halogen lamp illumination and a narrow band-pass filter to capture a series of low-spatial-resolution images at different wavelengths. Second, a new algorithm, combining hyperspectral resolution imaging using interpolation compensation and a phase retrieval algorithm, is proposed to reconstruct high-spatial-resolution, wide FOV, and hyperspectral resolution images. Finally, we verified the feasibility and effectiveness of our experimental setup and algorithm by both simulation and experiment. The results show that our method can not only reconstruct high-spatial-resolution and wide FOV images, but also has a spectral resolution of 5 nm.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Carlsen, Mads, Trygve M. Ræder, Can Yildirim, Raquel Rodriguez-Lamas, Carsten Detlefs und Hugh Simons. „Fourier ptychographic dark field x-ray microscopy“. Optics Express 30, Nr. 2 (13.01.2022): 2949. http://dx.doi.org/10.1364/oe.447657.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Sun Jiasong, 孙佳嵩, 张玉珍 Zhang Yuzhen, 陈钱 Chen Qian und 左超 Zuo Chao. „Fourier Ptychographic Microscopy: Theory, Advances, and Applications“. Acta Optica Sinica 36, Nr. 10 (2016): 1011005. http://dx.doi.org/10.3788/aos201636.1011005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Ou, Xiaoze, Roarke Horstmeyer, Changhuei Yang und Guoan Zheng. „Quantitative phase imaging via Fourier ptychographic microscopy“. Optics Letters 38, Nr. 22 (14.11.2013): 4845. http://dx.doi.org/10.1364/ol.38.004845.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Zhang, Yongbing, Weixin Jiang und Qionghai Dai. „Nonlinear optimization approach for Fourier ptychographic microscopy“. Optics Express 23, Nr. 26 (22.12.2015): 33822. http://dx.doi.org/10.1364/oe.23.033822.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Zhu, Youqiang, Minglu Sun, Xiong Chen, Hao Li, Quanquan Mu, Dayu Li und Li Xuan. „Single full-FOV reconstruction Fourier ptychographic microscopy“. Biomedical Optics Express 11, Nr. 12 (16.11.2020): 7175. http://dx.doi.org/10.1364/boe.409952.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Yang Jiaqi, 杨佳琪, 马. 骁. Ma Xiao, 林锦新 Lin Jinxin und 钟金钢 Zhong Jingang. „Intensity Correction Research for Fourier Ptychographic Microscopy“. Laser & Optoelectronics Progress 54, Nr. 3 (2017): 031101. http://dx.doi.org/10.3788/lop54.031101.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Pan, An, Yan Zhang, Tianyu Zhao, Zhaojun Wang, Dan Dan, Ming Lei und Baoli Yao. „System calibration method for Fourier ptychographic microscopy“. Journal of Biomedical Optics 22, Nr. 09 (12.09.2017): 1. http://dx.doi.org/10.1117/1.jbo.22.9.096005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Fan, Yao, Jiasong Sun, Qian Chen, Mingqun Wang und Chao Zuo. „Adaptive denoising method for Fourier ptychographic microscopy“. Optics Communications 404 (Dezember 2017): 23–31. http://dx.doi.org/10.1016/j.optcom.2017.05.026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Zheng, Guoan, Roarke Horstmeyer und Changhuei Yang. „Wide-field, high-resolution Fourier ptychographic microscopy“. Nature Photonics 7, Nr. 9 (28.07.2013): 739–45. http://dx.doi.org/10.1038/nphoton.2013.187.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Wang, Xiaoli, Yan Piao, Yuanshang Jin, Jie Li, Zechuan Lin, Jie Cui und Tingfa Xu. „Fourier Ptychographic Reconstruction Method of Self-Training Physical Model“. Applied Sciences 13, Nr. 6 (11.03.2023): 3590. http://dx.doi.org/10.3390/app13063590.

Der volle Inhalt der Quelle
Annotation:
Fourier ptychographic microscopy is a new microscopic computational imaging technology. A series of low-resolution intensity images are collected by a Fourier ptychographic microscopy system, and high-resolution intensity and phase images are reconstructed from the collected low-resolution images by a reconstruction algorithm. It is a kind of microscopy that can achieve both a large field of view and high resolution. Here in this article, a Fourier ptychographic reconstruction method applied to a self-training physical model is proposed. The SwinIR network in the field of super-resolution is introduced into the reconstruction method for the first time. The input of the SwinIR physical model is modified to a two-channel input, and a data set is established to train the network. Finally, the results of high-quality Fourier stack microscopic reconstruction are realized. The SwinIR network is used as the physical model, and the network hyperparameters and processes such as the loss function and optimizer of the custom network are reconstructed. The experimental results show that by using multiple different types of data sets, the two evaluation index values of the proposed method perform best, and the image reconstruction quality is the best after model training. Two different evaluation indexes are used to quantitatively analyze the reconstruction results through numerical results. The reconstruction results of the fine-tuning data set with some real captured images are qualitatively analyzed from the visual effect. The results show that the proposed method is effective, the network model is stable and feasible, the image reconstruction is realized in a short time, and the reconstruction effect is good.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Chen Yican, 陈奕灿, 吴霞 Wu Xia, 罗志 Luo Zhi, 杨恢东 Yang Huidong und 黄波 Huang Bo. „Fourier Ptychographic Microscopy Reconstruction Based on Deep Learning“. Laser & Optoelectronics Progress 57, Nr. 22 (2020): 221106. http://dx.doi.org/10.3788/lop57.221106.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Zheng, Guoan, Xiaoze Ou, Roarke Horstmeyer, Jaebum Chung und Changhuei Yang. „Fourier Ptychographic Microscopy: A Gigapixel Superscope for Biomedicine“. Optics and Photonics News 25, Nr. 4 (01.04.2014): 26. http://dx.doi.org/10.1364/opn.25.4.000026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Zhang, Yan, An Pan und Ming Lei. „Data preprocessing methods for robust Fourier ptychographic microscopy“. Optical Engineering 56, Nr. 12 (15.12.2017): 1. http://dx.doi.org/10.1117/1.oe.56.12.123107.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Lee, Hwihyeong, Byong Hyuk Chon und Hee Kyung Ahn. „Reflective Fourier ptychographic microscopy using a parabolic mirror“. Optics Express 27, Nr. 23 (07.11.2019): 34382. http://dx.doi.org/10.1364/oe.27.034382.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Ou, Xiaoze, Guoan Zheng und Changhuei Yang. „Embedded pupil function recovery for Fourier ptychographic microscopy“. Optics Express 22, Nr. 5 (24.02.2014): 4960. http://dx.doi.org/10.1364/oe.22.004960.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Hou, Lexin, Hexin Wang, Markus Sticker, Lars Stoppe, Junhua Wang und Min Xu. „Adaptive background interference removal for Fourier ptychographic microscopy“. Applied Optics 57, Nr. 7 (26.02.2018): 1575. http://dx.doi.org/10.1364/ao.57.001575.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Horstmeyer, Roarke, und Changhuei Yang. „A phase space model of Fourier ptychographic microscopy“. Optics Express 22, Nr. 1 (02.01.2014): 338. http://dx.doi.org/10.1364/oe.22.000338.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Konda, Pavan Chandra, Jonathan M. Taylor und Andrew R. Harvey. „Multi-aperture Fourier ptychographic microscopy, theory and validation“. Optics and Lasers in Engineering 138 (März 2021): 106410. http://dx.doi.org/10.1016/j.optlaseng.2020.106410.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Lee, Byounghyo, Jong-young Hong, Dongheon Yoo, Jaebum Cho, Youngmo Jeong, Seokil Moon und Byoungho Lee. „Single-shot phase retrieval via Fourier ptychographic microscopy“. Optica 5, Nr. 8 (08.08.2018): 976. http://dx.doi.org/10.1364/optica.5.000976.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Zhang, Jizhou, Tingfa Xu, Jingdan Liu, Sining Chen und Xing Wang. „Precise Brightfield Localization Alignment for Fourier Ptychographic Microscopy“. IEEE Photonics Journal 10, Nr. 1 (Februar 2018): 1–13. http://dx.doi.org/10.1109/jphot.2017.2780189.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Ni, Ying-Hui, Si-Yuan Fan, Shu-Yuan Zhang und Ming-Jie Sun. „Hyperuniform illumination subsampling method for Fourier ptychographic microscopy“. Optics and Lasers in Engineering 176 (Mai 2024): 108106. http://dx.doi.org/10.1016/j.optlaseng.2024.108106.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Xu, Fannuo, Zipei Wu, Chao Tan, Yizheng Liao, Zhiping Wang, Keru Chen und An Pan. „Fourier Ptychographic Microscopy 10 Years on: A Review“. Cells 13, Nr. 4 (10.02.2024): 324. http://dx.doi.org/10.3390/cells13040324.

Der volle Inhalt der Quelle
Annotation:
Fourier ptychographic microscopy (FPM) emerged as a prominent imaging technique in 2013, attracting significant interest due to its remarkable features such as precise phase retrieval, expansive field of view (FOV), and superior resolution. Over the past decade, FPM has become an essential tool in microscopy, with applications in metrology, scientific research, biomedicine, and inspection. This achievement arises from its ability to effectively address the persistent challenge of achieving a trade-off between FOV and resolution in imaging systems. It has a wide range of applications, including label-free imaging, drug screening, and digital pathology. In this comprehensive review, we present a concise overview of the fundamental principles of FPM and compare it with similar imaging techniques. In addition, we present a study on achieving colorization of restored photographs and enhancing the speed of FPM. Subsequently, we showcase several FPM applications utilizing the previously described technologies, with a specific focus on digital pathology, drug screening, and three-dimensional imaging. We thoroughly examine the benefits and challenges associated with integrating deep learning and FPM. To summarize, we express our own viewpoints on the technological progress of FPM and explore prospective avenues for its future developments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Wang, Xiaoli, Yan Piao, Jie Li und Jinyang Yu. „Fourier Ptychographic Microscopy Reconstruction Method Based on Residual Transfer Networks“. Journal of Physics: Conference Series 2400, Nr. 1 (01.12.2022): 012015. http://dx.doi.org/10.1088/1742-6596/2400/1/012015.

Der volle Inhalt der Quelle
Annotation:
Abstract Fourier ptychographic microscopy reconstruction mostly adopts the traditional alternating iterative phase recovery method and optimization method, which has high computational complexity, high redundancy of image acquisition data, low reconstruction quality and high time consumption. In this paper, the model of residual transfer networks based on Resnet152 is proposed for Fourier ptychographic microscopy reconstruction, the learning process of deep convolution neural network is introduced, and the image reconstruction method based on deep learning realizes the end-to-end reconstruction of low-resolution images to high-resolution images. Through comparative experiments and analysis, the residual network can overcome the gradient explosion, make the feature information more complete and efficient, and the incremental up-sampling reconstruction network has higher image quality, lower computational complexity and shorter running time.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Alotaibi, Maged F. „Reconstruction of Talbot self-image using Fourier ptychographic microscopy“. Alexandria Engineering Journal 61, Nr. 12 (Dezember 2022): 12151–57. http://dx.doi.org/10.1016/j.aej.2022.06.016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Wang, Aiye, Zhuoqun Zhang, Siqi Wang, An Pan, Caiwen Ma und Baoli Yao. „Fourier Ptychographic Microscopy via Alternating Direction Method of Multipliers“. Cells 11, Nr. 9 (30.04.2022): 1512. http://dx.doi.org/10.3390/cells11091512.

Der volle Inhalt der Quelle
Annotation:
Fourier ptychographic microscopy (FPM) has risen as a promising computational imaging technique that breaks the trade-off between high resolution and large field of view (FOV). Its reconstruction is normally formulated as a blind phase retrieval problem, where both the object and probe have to be recovered from phaseless measured data. However, the stability and reconstruction quality may dramatically deteriorate in the presence of noise interference. Herein, we utilized the concept of alternating direction method of multipliers (ADMM) to solve this problem (termed ADMM-FPM) by breaking it into multiple subproblems, each of which may be easier to deal with. We compared its performance against existing algorithms in both simulated and practical FPM platform. It is found that ADMM-FPM method belongs to a global optimization algorithm with a high degree of parallelism and thus results in a more stable and robust phase recovery under noisy conditions. We anticipate that ADMM will rekindle interest in FPM as more modifications and innovations are implemented in the future.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Tao, Xiao, Jinlei Zhang, Peng Sun, Chang Wang, Chenning Tao, Rengmao Wu und Zhenrong Zheng. „Phase-coded speckle illumination for laser Fourier ptychographic microscopy“. Optics Communications 498 (November 2021): 127199. http://dx.doi.org/10.1016/j.optcom.2021.127199.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Kuang, Cuifang, Ye Ma, Renjie Zhou, Justin Lee, George Barbastathis, Ramachandra R. Dasari, Zahid Yaqoob und Peter T. C. So. „Digital micromirror device-based laser-illumination Fourier ptychographic microscopy“. Optics Express 23, Nr. 21 (05.10.2015): 26999. http://dx.doi.org/10.1364/oe.23.026999.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Ou, Xiaoze, Guoan Zheng und Changhuei Yang. „Embedded pupil function recovery for Fourier ptychographic microscopy: erratum“. Optics Express 23, Nr. 26 (14.12.2015): 33027. http://dx.doi.org/10.1364/oe.23.033027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Zheng, Guoan, Roarke Horstmeyer und Changhuei Yang. „Erratum: Corrigendum: Wide-field, high-resolution Fourier ptychographic microscopy“. Nature Photonics 9, Nr. 9 (27.08.2015): 621. http://dx.doi.org/10.1038/nphoton.2015.148.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Sun, Jiasong, Qian Chen, Yuzhen Zhang und Chao Zuo. „Efficient positional misalignment correction method for Fourier ptychographic microscopy“. Biomedical Optics Express 7, Nr. 4 (17.03.2016): 1336. http://dx.doi.org/10.1364/boe.7.001336.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Chung, Jaebum, Hangwen Lu, Xiaoze Ou, Haojiang Zhou und Changhuei Yang. „Wide-field Fourier ptychographic microscopy using laser illumination source“. Biomedical Optics Express 7, Nr. 11 (31.10.2016): 4787. http://dx.doi.org/10.1364/boe.7.004787.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Zhang, Jizhou, Tingfa Xu, Ziyi Shen, Yifan Qiao und Yizhou Zhang. „Fourier ptychographic microscopy reconstruction with multiscale deep residual network“. Optics Express 27, Nr. 6 (11.03.2019): 8612. http://dx.doi.org/10.1364/oe.27.008612.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Zhang, Jizhou, Tingfa Xu, Sining Chen und Xing Wang. „Efficient Colorful Fourier Ptychographic Microscopy Reconstruction With Wavelet Fusion“. IEEE Access 6 (2018): 31729–39. http://dx.doi.org/10.1109/access.2018.2841854.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Wang, Xing, Tingfa Xu, Jizhou Zhang, Sining Chen und Yizhou Zhang. „SO-YOLO Based WBC Detection With Fourier Ptychographic Microscopy“. IEEE Access 6 (2018): 51566–76. http://dx.doi.org/10.1109/access.2018.2865541.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Liu, Qiulan, Cuifang Kuang, Yue Fang, Peng Xiu, Yicheng Li, Ruixin Wen und Xu Liu. „Effect of spatial spectrum overlap on Fourier ptychographic microscopy“. Journal of Innovative Optical Health Sciences 10, Nr. 02 (März 2017): 1641004. http://dx.doi.org/10.1142/s1793545816410042.

Der volle Inhalt der Quelle
Annotation:
Fourier ptychographic microscopy (FPM) is a newly developed imaging technique which stands out by virtue of its high-resolution and wide FOV. It improves a microscope’s imaging performance beyond the diffraction limit of the employed optical components by illuminating the sample with oblique waves of different incident angles, similar to the concept of synthetic aperture. We propose to use an objective lens with high-NA to generate oblique illuminating waves in FPM. We demonstrate utilizing an objective lens with higher NA to illuminate the sample leads to better resolution by simulations, in which a resolution of 0.28[Formula: see text][Formula: see text]m is achieved by using a high-NA illuminating objective lens (NA[Formula: see text][Formula: see text]) and a low-NA collecting objective lens (NA[Formula: see text][Formula: see text]) in coherent imaging ([Formula: see text][Formula: see text]nm). We then deeply study FPM’s exact relevance of convergence speed to spatial spectrum overlap in frequency domain. The simulation results show that an overlap of about 60% is the optimal choice to acquire a high-quality recovery (520*520 pixels) with about 2 min’s computing time. In addition, we testify the robustness of the algorithm of FPM to additive noises and its suitability for phase objects, which further proves FPM’s potential application in biomedical imaging.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

ZHENG, Chuan-jian, De-long YANG, Shao-hui ZHANG, Yao HU und Qun HAO. „Pose calibration of light source in Fourier ptychographic microscopy“. Chinese Journal of Liquid Crystals and Displays 38, Nr. 6 (2023): 712–29. http://dx.doi.org/10.37188/cjlcd.2023-0016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Liu, Qiulan, Youhua Chen, Wenjie Liu, Yubing Han, Ruizhi Cao, Zhimin Zhang, Cuifang Kuang und Xu Liu. „Total internal reflection fluorescence pattern-illuminated Fourier ptychographic microscopy“. Optics and Lasers in Engineering 123 (Dezember 2019): 45–52. http://dx.doi.org/10.1016/j.optlaseng.2019.06.023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie