Auswahl der wissenschaftlichen Literatur zum Thema „Fourier Ptychographic Microscopy“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fourier Ptychographic Microscopy" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Fourier Ptychographic Microscopy"

1

Jizhou Zhang, Jizhou Zhang, Tingfa Xu Tingfa Xu, Xing Wang Xing Wang, Sining Chen Sining Chen und Guoqiang Ni Guoqiang Ni. „Fast gradational reconstruction for Fourier ptychographic microscopy“. Chinese Optics Letters 15, Nr. 11 (2017): 111702. http://dx.doi.org/10.3788/col201715.111702.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ou, Xiaoze, Jaebum Chung, Roarke Horstmeyer und Changhuei Yang. „Aperture scanning Fourier ptychographic microscopy“. Biomedical Optics Express 7, Nr. 8 (29.07.2016): 3140. http://dx.doi.org/10.1364/boe.7.003140.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wang, Lin, Qihao Song, Hongbo Zhang, Caojin Yuan und Ting-Chung Poon. „Optical scanning Fourier ptychographic microscopy“. Applied Optics 60, Nr. 4 (30.11.2020): A243. http://dx.doi.org/10.1364/ao.402644.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Loetgering, Lars, Tomas Aidukas, Kevin C. Zhou, Felix Wechsler und Roarke Horstmeyer. „Fourier Ptychography Part II: Phase Retrieval and High-Resolution Image Formation“. Microscopy Today 30, Nr. 5 (September 2022): 36–39. http://dx.doi.org/10.1017/s1551929522001055.

Der volle Inhalt der Quelle
Annotation:
Abstract:This article is the second within a three-part series on Fourier ptychography, which is a computational microscopy technique for high-resolution, large field-of-view imaging. While the first article laid out the basics of Fourier ptychography, this second part sheds light on its algorithmic ingredients. We present a non-technical discussion of phase retrieval, which allows for the synthesis of high-resolution images from a sequence of low-resolution raw data. Fourier ptychographic phase retrieval can be carried out on standard, widefield microscopy platforms with the simple addition of a low-cost LED array, thus offering a convenient alternative to other phase-sensitive techniques that require more elaborate hardware such as differential interference contrast and digital holography.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhang, Yongbing, Weixin Jiang, Lei Tian, Laura Waller und Qionghai Dai. „Self-learning based Fourier ptychographic microscopy“. Optics Express 23, Nr. 14 (08.07.2015): 18471. http://dx.doi.org/10.1364/oe.23.018471.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Liu, Qiulan, Yue Fang, Renjie Zhou, Peng Xiu, Cuifang Kuang und Xu Liu. „Surface wave illumination Fourier ptychographic microscopy“. Optics Letters 41, Nr. 22 (15.11.2016): 5373. http://dx.doi.org/10.1364/ol.41.005373.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zhou, You, Jiamin Wu, Zichao Bian, Jinli Suo, Guoan Zheng und Qionghai Dai. „Fourier ptychographic microscopy using wavelength multiplexing“. Journal of Biomedical Optics 22, Nr. 6 (14.06.2017): 066006. http://dx.doi.org/10.1117/1.jbo.22.6.066006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Horstmeyer, Roarke, Guoan Zheng, Xiaoze Ou und Changhuei Yang. „Modeling Extensions of Fourier Ptychographic Microscopy“. Microscopy and Microanalysis 20, S3 (August 2014): 370–71. http://dx.doi.org/10.1017/s1431927614003572.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Xiu, Peng, Youhua Chen, Cuifang Kuang, Yue Fang, Yifan Wang, Jiannan Fan, Yingke Xu und Xu Liu. „Structured illumination fluorescence Fourier ptychographic microscopy“. Optics Communications 381 (Dezember 2016): 100–106. http://dx.doi.org/10.1016/j.optcom.2016.06.075.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Huang, Kaicheng, Wangwei Hui, Qing Ye, Senlin Jin, Hongyang Zhao, Qiushuai Shi, Jianguo Tian und Wenyuan Zhou. „Compressed-sampling-based Fourier ptychographic microscopy“. Optics Communications 452 (Dezember 2019): 18–24. http://dx.doi.org/10.1016/j.optcom.2019.07.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Fourier Ptychographic Microscopy"

1

Konda, Pavan Chandra. „Multi-Aperture Fourier Ptychographic Microscopy : development of a high-speed gigapixel coherent computational microscope“. Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/9015/.

Der volle Inhalt der Quelle
Annotation:
Medical research and clinical diagnostics require imaging of large sample areas with sub-cellular resolution. Conventional imaging techniques can provide either high-resolution or wide field-of-view (FoV) but not both. This compromise is conventionally defeated by using a high NA objective with a small FoV and then mechanically scan the sample in order to acquire separate images of its different regions. By stitching these images together, a larger effective FoV is then obtained. This procedure, however, requires precise and expensive scanning stages and prolongs the acquisition time, thus rendering the observation of fast processes/phenomena impossible. A novel imaging configuration termed Multi-Aperture Fourier Ptychographic Microscopy (MA-FPM) is proposed here based on Fourier ptychography (FP), a technique to achieve wide-FoV and high-resolution using time-sequential synthesis of a high-NA coherent illumination. MA-FPM configuration utilises an array of objective lenses coupled with detectors to increase the bandwidth of the object spatial-frequencies captured in a single snapshot. This provides high-speed data-acquisition with wide FoV, high-resolution, long working distance and extended depth-of-field. In this work, a new reconstruction method based on Fresnel diffraction forward model was developed to extend FP reconstruction to the proposed MA-FPM technique. MA-FPM was validated experimentally by synthesis of a 3x3 lens array system from a translating objective-detector system. Additionally, a calibration procedure was also developed to register dissimilar images from multiple cameras and successfully implemented on the experimental data. A nine-fold improvement in captured data-bandwidth was demonstrated. Another experimental configuration was proposed using the Scheimpflug condition to correct for the aberrations present in the off-axis imaging systems. An experimental setup was built for this new configuration using 3D printed parts to minimise the cost. The design of this setup is discussed along with robustness analysis of the low-cost detectors used in this setup. A reconstruction model for the Scheimpflug configuration FP was developed and applied to the experimental data. Preliminary experimental results were found to be in agreement with this reconstruction model. Some artefacts were observed in these results due to the calibration errors in the experiment. These can be corrected by using the self-calibration algorithm proposed in the literature, which is left as a future work. Extensions to this work can include implementing multiplexed illumination for further increasing the data acquisition speed and diffraction tomography for imaging thick samples.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hassini, Houda. „Automatic analysis of blood smears images : contribution of phase modality in Fourier Ptychographic Microscopy“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAS014.

Der volle Inhalt der Quelle
Annotation:
La pathologie numérique constitue aujourd'hui un outil fondamental pour le diagnostic médical, exploitant les avancées technologiques en matière de numérisation pour transformer les échantillons biologiques en données numériques, facilitant ainsi leur visualisation et leur analyse. Cependant, ces méthodes, souvent basées sur la microscopie conventionnelle, rencontrent des limitations qui entravent parfois leur efficacité. Dans ce contexte, des méthodes d'imagerie non conventionnelles telles que la microscopie ptychographique de Fourier (FPM) offrent des perspectives prometteuses pour surmonter ces limitations. En effet, la FPM offre un accès à la phase en complément de l'intensité et permet d'examiner un large champ de vision à haute résolution à un coût de conception raisonnable. Cette thèse explore le potentiel de la microscopie ptychographique de Fourier dans l'analyse des frottis sanguins minces. Plusieurs résultats ont été obtenus grâce à une approche multidisciplinaire intégrant l'apprentissage en profondeur et la microscopie. Nous nous concentrons d'abord sur le problème limité de la détection des parasites pour le diagnostic du paludisme. L'exploitation conjointe de l'intensité et de la phase permet d'améliorer les performances d'un détecteur de réseau neuronal profond. À cette fin, un CNN à valeurs complexes a été introduit dans l'architecture Faster-RCNN pour une extraction efficace des caractéristiques. Ensuite, nous examinons une application plus complexe, à savoir la classification des globules blancs, où les avantages de l'exploitation conjointe de l'intensité et de la phase ont également été confirmés. Nous nous intéressons également au problème du déséquilibre des classes rencontré dans cette tâche, nous proposons un nouveau modèle GAN informé par la physique dédié à la génération d'images d'intensité et de phase. Ce modèle évite le problème de mode collapse rencontré avec l'implémentation habituelle des GAN. Enfin, nous considérons l'optimisation de la conception du microscope FPM. À cette fin, nous explorons des stratégies combinant simulations, réseaux neuronaux et modélisation de la formation d'images. Nous démontrons que la FPM peut utiliser des résolutions faibles sans compromettre significativement les performances. Cette thèse souligne l'intérêt d'adapter l'apprentissage automatique en lien avec les principes de la microscopie et met en évidence le potentiel de la microscopie ptychographique de Fourier pour les futurs systèmes de diagnostic automatisés
Digital pathology presents today a fundamental tool for medical diagnosis, exploiting technological advances in digitalization to transform biological samples into digital data, thus facilitating their visualization and analysis. However, these methods, often based on conventional microscopy, encounter limitations that sometimes hinder their effectiveness.From this perspective, unconventional imaging methods such as Fourier ptychographic microscopy offer promising prospects for overcoming these limitations. Indeed, FPM offers access to the phase in complement of the intensity and allows examining a large Field of View at a high resolution at a reasonable design cost.This thesis explores Fourier ptychographic microscopy (FPM) 's potential in thin blood smear analysis. Several results have been obtained thanks to a multidisciplinary approach integrating deep learning and microscopy.We have first focused our attention on the problem of limited complexity of parasite detection for malaria diagnosis. The joint exploitation of intensity and phase is shown to improve the performance of a deep network detector. To this end, a complex-valued CNN has been introduced in Faster-RCNN architecture for efficient feature extraction.Secondly, we have considered a more complex application, namely the classification of white blood cells, where the benefits of joint exploitation of intensity and phase were also confirmed. Furthermore, to reduce the imbalance of classes encountered in this task, we propose a novel physics-informed GAN model dedicated to generating intensity and phase images. This model avoids the mode collapse problem faced with usual GAN implementation.Finally, we have considered optimizing the FPM microscope design. To this end, we explore strategies combining simulations, neural networks, and image formation modeling. We demonstrate that FPM can use low resolutions without significantly compromising performance.This thesis underscores the interest in tailoring machine learning in connection to microscopy principles and highlights the potential of Fourier ptychographic microscopy for future automated diagnosis systems
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Fourier Ptychographic Microscopy"

1

Wang, Shushan, Tingfa Xu, Jizhou Zhang, Xin Wang, Yiwen Chen und Jinhua Zhang. „Automatic Counting System of Red Blood Cells Based on Fourier Ptychographic Microscopy“. In Lecture Notes in Electrical Engineering, 891–98. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8411-4_119.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wang, Xin, Tingfa Xu, Jizhou Zhang, Shushan Wang, Yizhou Zhang, Yiwen Chen und Jinhua Zhang. „Bone Marrow Cell Counting Method Based on Fourier Ptychographic Microscopy and Convolutional Neural Network“. In Lecture Notes in Electrical Engineering, 687–93. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8411-4_92.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Williams, Anthony, Jaebum Chung, Changhuei Yang und Richard J. Cote. „Fourier Ptychographic Microscopy for Rapid, High-Resolution Imaging of Circulating Tumor Cells Enriched by Microfiltration“. In Methods in Molecular Biology, 107–17. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7144-2_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Rothhardt, J., und L. Loetgering. „Ultrafast Nanoscale Imaging with High Harmonic Sources“. In Structural Dynamics with X-ray and Electron Scattering, 233–53. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781837671564-00233.

Der volle Inhalt der Quelle
Annotation:
The principle of high harmonic generation (HHG) is the basis of a new era of compact, high-flux radiation sources, which deliver short wavelengths at ultrafast timescales. Various metrology techniques reported so far, such as pump–probe spectroscopy and microscopy, are either time-, frequency-, or space-resolved, but relatively few combined approaches exist. Recent advances in both source and algorithm development have enabled multimodal acquisition and data analysis schemes that bridge the gap between these separate domains. Here, we describe emerging techniques in ultrafast lensless imaging, which have gained traction in the HHG community. In particular, this chapter includes a discussion on coherent diffraction imaging (CDI), Fourier transform holography (FTH), and ptychography. Emphasis is given to extending the abovementioned diffractive imaging techniques to broadband experimental conditions – a necessary requirement for imaging at attosecond timescales.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Fourier Ptychographic Microscopy"

1

Aidukas, Tomas, Pavan C. Konda, Jonathan M. Taylor und Andrew R. Harvey. „Multi-camera Fourier Ptychographic Microscopy“. In Computational Optical Sensing and Imaging. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/cosi.2019.cw3a.4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wang, Lin, Qihao Song, Hongbo Zhang, Yu Xin und Ting-Chung Poon. „Optical Scanning Fourier Ptychographic Microscopy“. In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/dh.2019.w3a.10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

li, ming, Yicheng Li, Ruixin Wen, Ling Zhong, Cuifang Kuang und Haifeng Li. „Light field Fourier ptychographic microscopy“. In The International Conference on Photonics and Optical Engineering, herausgegeben von Ailing Tian. SPIE, 2019. http://dx.doi.org/10.1117/12.2522600.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Liu, Linmin, Jie Li, Xiaoli Wang, Jizhou Zhang, Jinyang Yu und Lixia Cao. „Momentum Acceleration Fourier Ptychographic Microscopy“. In 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS). IEEE, 2021. http://dx.doi.org/10.1109/eiecs53707.2021.9588134.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chen, Xingye, Jiamin Wu, Chenguang Ma und Qionghai Dai. „Advanced Illumination Pattern in Fourier Ptychographic Microscopy“. In 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/3d.2016.jt3a.41.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tang, Qijian, Wei Huang, Chenggong Zhang, Xiaoli Liu und Xiang Peng. „Global iterative optimization for Fourier ptychographic microscopy“. In Advanced Optical Imaging Technologies III, herausgegeben von P. Scott Carney, Xiao-Cong Yuan und Kebin Shi. SPIE, 2020. http://dx.doi.org/10.1117/12.2583941.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kancharla, Parimala, und Sumohana S. Channappayya. „A weighted optimization for Fourier Ptychographic Microscopy“. In 2019 National Conference on Communications (NCC). IEEE, 2019. http://dx.doi.org/10.1109/ncc.2019.8732227.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kellman, Michael, Emrah Bostan, Michael Chen und Laura Waller. „Data-Driven Design for Fourier Ptychographic Microscopy“. In 2019 IEEE International Conference on Computational Photography (ICCP). IEEE, 2019. http://dx.doi.org/10.1109/iccphot.2019.8747339.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Aidukas, Tomas, Andrew R. Harvey und Pavan Chandra Konda. „Miniature Fourier Ptychographic Microscope Using Mobile Phone Camera Sensors“. In Microscopy Histopathology and Analytics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/microscopy.2018.mtu4a.2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bae, Yoon Sung. „Fourier ptychographic microscopy using DUV source for semiconductor metrology“. In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.101.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie