Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Forward/inverse kinematics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Forward/inverse kinematics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Forward/inverse kinematics"
Ge, Dawei. „Kinematics modeling of redundant manipulator based on screw theory and Newton-Raphson method“. Journal of Physics: Conference Series 2246, Nr. 1 (01.04.2022): 012068. http://dx.doi.org/10.1088/1742-6596/2246/1/012068.
Der volle Inhalt der QuelleMeng, Guang Zhu, Guang Ming Yuan, Zhe Liu und Jun Zhang. „Forward and Inverse Kinematic of Continuum Robot for Search and Rescue“. Advanced Materials Research 712-715 (Juni 2013): 2290–95. http://dx.doi.org/10.4028/www.scientific.net/amr.712-715.2290.
Der volle Inhalt der QuelleXin, Shi Zhi, Luo Yu Feng, Hang Lu Bing und Yang Ting Li. „A Simple Method for Inverse Kinematic Analysis of the General 6R Serial Robot“. Journal of Mechanical Design 129, Nr. 8 (18.08.2006): 793–98. http://dx.doi.org/10.1115/1.2735636.
Der volle Inhalt der QuelleZhao, Rui Feng, Zhen Zhang und Jiu Qiang Cui. „The Kinematics Modeling and Simulation of a Mechanical Arm in Nuclear Industry with Postpositional Drive“. Applied Mechanics and Materials 496-500 (Januar 2014): 754–59. http://dx.doi.org/10.4028/www.scientific.net/amm.496-500.754.
Der volle Inhalt der QuelleJatsun, S. F., und Yan Naing Soe. „KINEMATIC AND JACOBIAN ANALYSIS APPROACH FOR THE FOUR-LEGGED ROBOT“. Proceedings of the Southwest State University 22, Nr. 4 (28.08.2018): 32–41. http://dx.doi.org/10.21869/2223-1560-2018-22-4-32-41.
Der volle Inhalt der QuelleIskandar, Fathur Rokhman, Imam Sucahyo und Meta Yantidewi. „Penerapan Metode Invers kinematik Pada Kontrol Gerak Robot Lengan Tiga Derajat Bebas“. Inovasi Fisika Indonesia 9, Nr. 2 (22.06.2020): 64–71. http://dx.doi.org/10.26740/ifi.v9n2.p64-71.
Der volle Inhalt der QuelleZhou, Yi Jun, Xue Ming Li, Hai Yang Xu und Heng Liang Fan. „Method and Simulation for Kinematics of 6-SPS Parallel Mechanism“. Advanced Materials Research 1033-1034 (Oktober 2014): 1334–37. http://dx.doi.org/10.4028/www.scientific.net/amr.1033-1034.1334.
Der volle Inhalt der QuelleKumar K, Pavan, Murali Mohan J und Srikanth D. „Generalized solution for inverse kinematics problem of a robot using hybrid genetic algorithms“. International Journal of Engineering & Technology 7, Nr. 4.6 (25.09.2018): 250. http://dx.doi.org/10.14419/ijet.v7i4.6.20486.
Der volle Inhalt der QuelleVu, Hung Minh, Trung Quang Trinh und Thang Quoc Vo. „Research on kinematic structure of a redundant serial industrial robot arm“. Science and Technology Development Journal 19, Nr. 3 (30.09.2016): 24–33. http://dx.doi.org/10.32508/stdj.v19i3.561.
Der volle Inhalt der QuelleKifayat Mammadova, Aytan Aliyeva, Kifayat Mammadova, Aytan Aliyeva, und Nigar Baghirova Nigar Baghirova. „CONSTRUCTION OF THE KINEMATIC MODEL OF ROBOTIC SYSTEMS IN THE MATLAB ENVIRONMENT“. ETM - Equipment, Technologies, Materials 16, Nr. 04 (06.10.2023): 67–75. http://dx.doi.org/10.36962/etm16042023-67.
Der volle Inhalt der QuelleDissertationen zum Thema "Forward/inverse kinematics"
Doctor, Diana. „Aplikace quaternionů v kinematice robotu“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-401559.
Der volle Inhalt der QuelleVacek, Václav. „Aplikace technologie MOLECUBES v robotice“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-242848.
Der volle Inhalt der QuelleVítek, Filip. „Konfigurace robotické struktury za použití MOLECUBES“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-232194.
Der volle Inhalt der QuellePotvin, Brigitte. „Predicting Muscle Activations in a Forward-Inverse Dynamics Framework Using Stability-Inspired Optimization and an In Vivo-Based 6DoF Knee Joint“. Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34647.
Der volle Inhalt der QuelleRoutson, Rebecca Linn. „The Effects of Varying Speed on the Biomechanics of Stair Ascending and Descending in Healthy Young Adults: Inverse Kinematics, Inverse Dynamics, Electromyography and a Pilot Study for Computational Muscle Control and Forward Dynamics“. The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1281578603.
Der volle Inhalt der QuelleAristidou, Andreas. „Tracking and modelling motion for biomechanical analysis“. Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/237554.
Der volle Inhalt der QuellePivovarník, Marek. „Matematické principy robotiky“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230139.
Der volle Inhalt der QuelleFilho, Sylvio Celso Tartari. „Modelagem e otimização de um robô de arquitetura paralela para aplicações industriais“. Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/3/3152/tde-07122006-151723/.
Der volle Inhalt der QuelleThis work is about the study of parallel architecture robots, focusing in modeling and optimization. No physical prototypes were built, although the virtual models can help those willing to do so. After searching for an application that could benefit from the use of a parallel robot, another search was made, this time for the right architecture type. After selecting the architecture, the next step was the kinematics and dynamics analysis. The dynamics model is developed using the Newton ? Euler method. A virtual simulator was also developed in MATLAB 6.5 environment. The simulator?s main purpose was to demonstrate that the methods applied were correct and efficient, so it has several features such as linear and circular interpolations, capacity to use multiple coordinate systems and others. After finishing the simulator, an algorithm to calculate the machine workspace was added. The algorithm receives as input some desired requirements regarding the manipulator pose and then calculates the workspace, taking into consideration imposed constraints. Lastly, algorithms capable to measure the manipulator?s performance regarding to its actuator and end-effector force relationship were also incorporated into the simulator that calculates the machine?s force ellipsoid during any movement, for each desired workspace point. For the optimization procedures, some previously developed tools were used, so that the resulting model was capable to respect some workspace constraints regarding size and shape, but also maintaining the best performance possible inside this volume.
Dokoupil, Petr. „Animační knihovna se zaměřením na skeletální animace“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2009. http://www.nusl.cz/ntk/nusl-236629.
Der volle Inhalt der QuelleSpacca, Jordy Luiz Cerminaro. „Usando o Sistema de Inferência Neuro Fuzzy - ANFIS para o cálculo da cinemática inversa de um manipulador de 5 DOF /“. Ilha Solteira, 2019. http://hdl.handle.net/11449/183448.
Der volle Inhalt der QuelleResumo: No estudo dos manipuladores são utilizados os conceitos da cinemática direta e a inversa. No cálculo da cinemática direta tem-se a facilidade da notação de Denavit-Hartenberg, mas o desafio maior é a resolução da cinemática inversa, que se torna mais complexa conforme aumentam os graus de liberdade do manipulador, além de apresentar múltiplas soluções. As variáveis angulares obtidas pelas equações da cinemática inversa são utilizadas pelo controlador, para posicionar o órgão terminal do manipulador em um ponto específico de seu volume de trabalho. Na busca de alternativas para contornar estes problemas, neste trabalho utilizam-se os Modelos Adaptativos de Inferência Neuro-Fuzzy - ANFIS para a resolução da cinemática inversa, por meio de simulações, para obter o posicionamento de um manipulador robótico de 5 graus de liberdade, composto por sete servomotores controlados pela plataforma de desenvolvimento Intel® Galileo Gen 2, usado como caso de estudo. Nas simulações usamse ANFIS com uma arquitetura com três e quatro funções de pertinência de entrada, do tipo gaussiana. O desempenho da arquitetura da ANFIS implementada foi comparado com uma Rede Perceptron Multicamadas, demonstrando com os resultados favoráveis a ANFIS, a sua capacidade de aprender e resolver com baixo erro quadrático médio e com precisão, a cinemática inversa para o manipulador em estudo. Verifica-se também, que a performance das ANFIS melhora, quanto à precisão dos resultados, demonstrado pelo desvio médio d... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: In the study of manipulator’s, the concepts of direct and inverse kinematics are used. In the computation of forward kinematics, it has of the ease of Denavit-Hartenberg notation, but the biggest challenge is the resolution of the inverse kinematics, which becomes more complex as the manipulator's degrees of freedom increase, besides presenting multiple solutions. The angular variables obtained by the inverse kinematics equations are used by the controller to position the terminal organ of the manipulator at a specific point in its work volume. In the search for alternatives to overcome these problems, in this work, the Adaptive Neuro-Fuzzy Inference Models (ANFIS) are used to solve the inverse kinematics, by means of simulations, to obtain the positioning of a robot manipulator of 5 degrees of freedom, consisting of seven servomotors controlled by the Intel® Galileo Gen 2 development platform, used as a case's study . In the simulations ANFIS's architecture are used three and four Gaussian membership functions of input. The performance of the implemented ANFIS architecture was compared to a Multi-layered Perceptron Network, demonstrating with the favorable results the ANFIS, its ability to learn and solve with low mean square error and with precision, the inverse kinematics for the manipulator under study. It is also verified that the performance of the ANFIS improves, as regards the accuracy of the results in the training process, , demonstrated by the mean deviation of the... (Complete abstract click electronic access below)
Mestre
Buchteile zum Thema "Forward/inverse kinematics"
Starke, Sebastian, Norman Hendrich und Jianwei Zhang. „A Forward Kinematics Data Structure for Efficient Evolutionary Inverse Kinematics“. In Computational Kinematics, 560–68. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60867-9_64.
Der volle Inhalt der QuelleHadfield, Hugo, Lai Wei und Joan Lasenby. „The Forward and Inverse Kinematics of a Delta Robot“. In Advances in Computer Graphics, 447–58. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61864-3_38.
Der volle Inhalt der QuelleBerceanu, C., D. Tarnita, S. Dumitru und D. Filip. „Forward and Inverse Kinematics Calculation for an Anthropomorphic Robotic Finger“. In New Trends in Mechanism Science, 335–42. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9689-0_39.
Der volle Inhalt der QuelleAltuzarra, Oscar, Diego Caballero, Francisco J. Campa und Charles Pinto. „Forward and Inverse Kinematics in 2-DOF Planar Parallel Continuum Manipulators“. In EuCoMeS 2018, 231–38. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98020-1_27.
Der volle Inhalt der QuelleXiao, Binghang, Jianzhe Huang, Wuji Liu, Yajun Teng, Lingfeng Qiao und Zhongliang Jing. „Forward and Inverse Kinematics Analysis of SMA Spring-Driven Flexible Manipulator“. In Lecture Notes in Electrical Engineering, 788–800. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5912-6_58.
Der volle Inhalt der QuelleSingh, Randheer, Vikas Kukshal und Vinod Singh Yadav. „A Review on Forward and Inverse Kinematics of Classical Serial Manipulators“. In Lecture Notes in Mechanical Engineering, 417–28. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4018-3_39.
Der volle Inhalt der QuelleMy, Chu Anh, Duong Xuan Bien und Le Chi Hieu. „Forward and Inverse Kinematics Analysis of a Spatial Three-Segment Continuum Robot“. In Research in Intelligent and Computing in Engineering, 407–17. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7527-3_40.
Der volle Inhalt der QuelleDeshmukh, Deepak, Dilip Kumar Pratihar, Alok Kanti Deb, Hena Ray und Alokesh Ghosh. „ANFIS-Based Inverse Kinematics and Forward Dynamics of 3 DOF Serial Manipulator“. In Hybrid Intelligent Systems, 144–56. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73050-5_15.
Der volle Inhalt der QuelleBrito, Thadeu, José Lima, João Braun, Luis Piardi und Paulo Costa. „A DOBOT Manipulator Simulation Environment for Teaching Aim with Forward and Inverse Kinematics“. In Lecture Notes in Electrical Engineering, 303–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58653-9_29.
Der volle Inhalt der QuelleLaryushkin, Pavel, Anton Antonov, Alexey Fomin und Victor Glazunov. „Inverse and Forward Kinematics of a Reconfigurable Spherical Parallel Mechanism with a Circular Rail“. In ROMANSY 24 - Robot Design, Dynamics and Control, 246–54. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06409-8_26.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Forward/inverse kinematics"
Bian, Yangxin, Bin Zhu, Jun Wu und Yanling Tian. „Forward, Inverse Kinematics and Optimal Design of a Parallel Solar Tracker“. In 2024 9th International Conference on Automation, Control and Robotics Engineering (CACRE), 382–88. IEEE, 2024. http://dx.doi.org/10.1109/cacre62362.2024.10635026.
Der volle Inhalt der QuelleYoshimitsu, Yuhei, Takayuki Osa, Heni Ben Amor und Shuhei Ikemoto. „Active Learning for Forward/Inverse Kinematics of Redundantly-driven Flexible Tensegrity Manipulator“. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3512–18. IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10802310.
Der volle Inhalt der QuelleM, Navya, Muralidhara, Nirmith Jain, Vaishnavi Pai, Meghana Rao und Aparna Rao. „Estimation of Inverse Kinematics Solutions of a 2D Planar Robotic Manipulator using Feed-Forward Neural Network“. In 2024 International Conference on IoT Based Control Networks and Intelligent Systems (ICICNIS), 1040–44. IEEE, 2024. https://doi.org/10.1109/icicnis64247.2024.10823376.
Der volle Inhalt der QuelleSrisuk, Pannawit, Adna Sento und Yuttana Kitjaidure. „Inverse kinematics solution using neural networks from forward kinematics equations“. In 2017 9th International Conference on Knowledge and Smart Technology (KST). IEEE, 2017. http://dx.doi.org/10.1109/kst.2017.7886084.
Der volle Inhalt der QuelleSchinstock, Dale E., und James F. Cuttino. „Forward and Inverse Kinematic Solutions of a New Three Dimensional Metrology Frame“. In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1182.
Der volle Inhalt der QuelleKubus, Daniel, Rania Rayyes und Jochen J. Steil. „Learning Forward and Inverse Kinematics Maps Efficiently“. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018. http://dx.doi.org/10.1109/iros.2018.8593833.
Der volle Inhalt der QuelleDasari, Anish, und N. S. Reddy. „Forward and inverse kinematics of a robotic frog“. In 2012 4th International Conference on Intelligent Human Computer Interaction (IHCI). IEEE, 2012. http://dx.doi.org/10.1109/ihci.2012.6481850.
Der volle Inhalt der QuelleMitropoulos, Spyridon, Odysseas Tsakiridis und Ioannis Christakis. „Forward and Inverse Robotics Kinematics JavaScript-HTML5 Simulator“. In International Electronic Conference on Processes. Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/proceedings2024105035.
Der volle Inhalt der QuelleSrisuk, Pannawit, Adna Sento und Yuttana Kitjaidure. „Forward kinematic-like neural network for solving the 3D reaching inverse kinematics problems“. In 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). IEEE, 2017. http://dx.doi.org/10.1109/ecticon.2017.8096211.
Der volle Inhalt der QuelleHroncova, Darina, Lubica Mikova, Erik Prada, Robert Rakay, Peter Jan Sincak und Tomas Merva. „Forward and inverse robot model kinematics and trajectory planning“. In 2022 20th International Conference on Mechatronics - Mechatronika (ME). IEEE, 2022. http://dx.doi.org/10.1109/me54704.2022.9983355.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Forward/inverse kinematics"
Stouffer, Keith A. Development of the forward and inverse kinematic models for the Advanced Deburring and Chamfering System (ADACS) industrial robot. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4928.
Der volle Inhalt der Quelle