Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Forward Backward Stochastic Differential Equations (FBSDE)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Forward Backward Stochastic Differential Equations (FBSDE)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Forward Backward Stochastic Differential Equations (FBSDE)"
Zhang, Kevin, Junhao Zhu, Dehan Kong und Zhaolei Zhang. „Modeling single cell trajectory using forward-backward stochastic differential equations“. PLOS Computational Biology 20, Nr. 4 (15.04.2024): e1012015. http://dx.doi.org/10.1371/journal.pcbi.1012015.
Der volle Inhalt der QuelleTakahashi, Akihiko, und Toshihiro Yamada. „An asymptotic expansion of forward-backward SDEs with a perturbed driver“. International Journal of Financial Engineering 02, Nr. 02 (Juni 2015): 1550020. http://dx.doi.org/10.1142/s2424786315500206.
Der volle Inhalt der QuelleYang, Jie, und Weidong Zhao. „Convergence of Recent Multistep Schemes for a Forward-Backward Stochastic Differential Equation“. East Asian Journal on Applied Mathematics 5, Nr. 4 (November 2015): 387–404. http://dx.doi.org/10.4208/eajam.280515.211015a.
Der volle Inhalt der QuelleGeiss, Christel, Céline Labart und Antti Luoto. „Mean square rate of convergence for random walk approximation of forward-backward SDEs“. Advances in Applied Probability 52, Nr. 3 (September 2020): 735–71. http://dx.doi.org/10.1017/apr.2020.17.
Der volle Inhalt der QuelleJi, Shaolin, Chuanfeng Sun und Qingmeng Wei. „The Dynamic Programming Method of Stochastic Differential Game for Functional Forward-Backward Stochastic System“. Mathematical Problems in Engineering 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/958920.
Der volle Inhalt der QuelleSong, Yunquan. „Terminal-Dependent Statistical Inference for the FBSDEs Models“. Mathematical Problems in Engineering 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/365240.
Der volle Inhalt der QuelleDOS REIS, GONÇALO, und RICARDO J. N. DOS REIS. „A NOTE ON COMONOTONICITY AND POSITIVITY OF THE CONTROL COMPONENTS OF DECOUPLED QUADRATIC FBSDE“. Stochastics and Dynamics 13, Nr. 04 (07.10.2013): 1350005. http://dx.doi.org/10.1142/s0219493713500056.
Der volle Inhalt der QuelleWang, Mingcan, und Xiangjun Wang. „Hybrid Neural Networks for Solving Fully Coupled, High-Dimensional Forward–Backward Stochastic Differential Equations“. Mathematics 12, Nr. 7 (03.04.2024): 1081. http://dx.doi.org/10.3390/math12071081.
Der volle Inhalt der QuelleWu, Zhen. „Fully coupled FBSDE with Brownian motion and Poisson process in stopping time duration“. Journal of the Australian Mathematical Society 74, Nr. 2 (April 2003): 249–66. http://dx.doi.org/10.1017/s1446788700003281.
Der volle Inhalt der QuelleWei, Qingmeng, Jiongmin Yong und Zhiyong Yu. „Linear quadratic stochastic optimal control problems with operator coefficients: open-loop solutions“. ESAIM: Control, Optimisation and Calculus of Variations 25 (2019): 17. http://dx.doi.org/10.1051/cocv/2018013.
Der volle Inhalt der QuelleDissertationen zum Thema "Forward Backward Stochastic Differential Equations (FBSDE)"
Fromm, Alexander. „Theory and applications of decoupling fields for forward-backward stochastic differential equations“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2015. http://dx.doi.org/10.18452/17115.
Der volle Inhalt der QuelleThis thesis deals with the theory of so called forward-backward stochastic differential equations (FBSDE) which can be seen as a stochastic formulation and in some sense generalization of parabolic quasi-linear partial differential equations. The thesis consist of two parts: In the first we develop the theory of so called decoupling fields for general multidimensional fully coupled FBSDE in a Brownian setting. The theory consists of uniqueness and existence results for decoupling fields on the so called the maximal interval. It also provides tools to investigate well-posedness and regularity for particular problems. In total the theory is developed for three different classes of FBSDE: In the first Lipschitz continuity of the parameter functions is required, which at the same time are allowed to be random. The other two classes we investigate are based on the theory developed for the first one. In both of them all parameter functions have to be deterministic. However, two different types of local Lipschitz continuity replace the more restrictive Lipschitz continuity of the first class. In the second part we apply these techniques to three different problems: In the first application we demonstrate how well-posedness of FBSDE in the so called non-degenerate case can be investigated. As a second application we demonstrate the solvability of a system, which provides a solution to the so called Skorokhod embedding problem (SEP) via FBSDE. The solution to the SEP is provided for the case of general non-linear drift. The third application provides solutions to a complex FBSDE from which optimal trading strategies for a problem of utility maximization in incomplete markets are constructed. The FBSDE is solved in a relatively general setting, i.e. for a relatively general class of utility functions on the real line.
Wang, Xince. „Quasilinear PDEs and forward-backward stochastic differential equations“. Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/17383.
Der volle Inhalt der QuelleNie, Tianyang. „Stochastic differential equations with constraints on the state : backward stochastic differential equations, variational inequalities and fractional viability“. Thesis, Brest, 2012. http://www.theses.fr/2012BRES0047.
Der volle Inhalt der QuelleThis PhD thesis is composed of three main topics: The first one studies the existence and the uniqueness for fully coupled forward-backward stochastic differential equations (SDEs) with subdifferential operators in both the forward and the backward equations, and it discusses also a new type of associated parabolic partial variational inequalities with two subdifferential operators, one acting over the state domain and the other over the co-domain. The second topic concerns the investigation of backward SDEs without as well as with subdifferential operator, both driven by a fractional Brownian motion with Hurst parameter H> 1/2. It extends in a rigorous manner the results of Hu and Peng (SICON, 2009) to backward stochastic variational inequalities. Finally, the third topic focuses on a deterministic characterisation of the viability for SDEs driven by a fractional Brownian motion. The three research topics mentioned above have in common to study SDEs with state constraints. The discussion of each of the three topics is based on a publication and on submitted manuscripts, respectively
Manai, Arij. „Some contributions to backward stochastic differential equations and applications“. Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1022.
Der volle Inhalt der QuelleThis thesis is dedicated to the study of backward stochastic differential equations (BSDEs) and their applications. In chapter 1, we study the problem of maximizing the utility from terminal wealth where the stock price may jump and there are investment constraints on the agent 's strategies. We focus on the BSDE whose solution represents the maximal utility, which allows transferring results on quadratic BSDEs, in particular the stability results, to the problem of utility maximisation. In chapter 2, we consider the problem of pricing American options from theoretical and numerical sides based upon an alternative representation of the value of the option in the form of a viscosity solution of a parabolic equation with a nonlinear reaction term. We extend the viscosity solution characterization proved in [Benth, Karlsen and Reikvam 2003] for call/put American option prices to the case of a general payoff function in a multi-dimensional setting. We address two new numerical schemes inspired by the branching processes. Our numerical experiments show that approximating the discontinuous driver of the associated reaction/diffusion PDE by local polynomials is not efficient, while a simple randomization procedure provides very good results. In chapter 3, we prove existence and uniqueness results for a general class of coupled mean-field forward-backward SDEs with jumps under weak monotonicity conditions and without the non-degeneracy assumption on the forward equation and we give an application in the field of storage in smart grids in the case where the production of electricity is unpredictable
Salhi, Rym. „Contributions to quadratic backward stochastic differential equations with jumps and applications“. Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1023.
Der volle Inhalt der QuelleThis thesis focuses on backward stochastic differential equation with jumps and their applications. In the first chapter, we study a backward stochastic differential equation (BSDE for short) driven jointly by a Brownian motion and an integer valued random measure that may have infinite activity with compensator being possibly time inhomogeneous. In particular, we are concerned with the case where the driver has quadratic growth and unbounded terminal condition. The existence and uniqueness of the solution are proven by combining a monotone approximation technics and a forward approach. Chapter 2 is devoted to the well-posedness of generalized doubly reflected BSDEs (GDRBSDE for short) with jumps under weaker assumptions on the data. In particular, we study the existence of a solution for a one-dimensional GDRBSDE with jumps when the terminal condition is only measurable with respect to the related filtration and when the coefficient has general stochastic quadratic growth. We also show, in a suitable framework, the connection between our class of backward stochastic differential equations and risk sensitive zero-sum game. In chapter 3, we investigate a general class of fully coupled mean field forward-backward under weak monotonicity conditions without assuming any non-degeneracy assumption on the forward equation. We derive existence and uniqueness results under two different sets of conditions based on proximation schema weither on the forward or the backward equation. Later, we give an application for storage in smart grids
Fromm, Alexander [Verfasser], Peter [Akademischer Betreuer] Imkeller, Stefan [Akademischer Betreuer] Ankirchner und Anthony [Akademischer Betreuer] Réveillac. „Theory and applications of decoupling fields for forward-backward stochastic differential equations / Alexander Fromm. Gutachter: Peter Imkeller ; Stefan Ankirchner ; Anthony Réveillac“. Berlin : Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2015. http://d-nb.info/1065723083/34.
Der volle Inhalt der QuelleOuknine, Anas. „Μοdèles affines généralisées et symétries d'équatiοns aux dérivés partielles“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR085.
Der volle Inhalt der QuelleThis thesis is dedicated to studying the Lie symmetries of a particular class of partialdifferential equations (PDEs), known as the backward Kolmogorov equation. This equa-tion plays a crucial role in financial modeling, particularly in relation to the Longstaff-Schwartz model, which is widely used for pricing options and derivatives.In a broader context, our study focuses on analyzing the Lie symmetries of thebackward Kolmogorov equation by introducing a nonlinear term. This generalization issignificant, as the modified equation is linked to a forward backward stochastic differ-ential equation (FBSDE) through the generalized (nonlinear) Feynman-Kac formula.We also examine the symmetries of this stochastic equation and how the symmetriesof the PDE are connected to those of the BSDE.Finally, we propose a recalculation of the symmetries of the BSDE and FBSDE,adopting a new approach. This approach is distinguished by the fact that the symme-try group acting on time itself depends also on the process Y , which is the solutionof the BSDE. This dependence opens up new perspectives on the interaction betweentemporal symmetries and the solutions of the equations
Mtiraoui, Ahmed. „I. Etude des EDDSRs surlinéaires II. Contrôle des EDSPRs couplées“. Thesis, Toulon, 2016. http://www.theses.fr/2016TOUL0010/document.
Der volle Inhalt der QuelleIn this Phd thesis, we considers two parts. The first one establish the existence and the uniquness of the solutions of multidimensional backward doubly stochastic differential equations (BDSDEs in short) and the stochastic partial differential equations (SPDEs in short) in the superlinear growth generators. In the second part, we study the stochastic controls problems driven by a coupled Forward-Backward stochastic differentialequations (FBSDEs in short).• BDSDEs and SPDEs with a superlinear growth generators :We deal with multidimensional BDSDE with a superlinear growth generator and a square integrable terminal datum. We introduce new local conditions on the generator then we show that they ensure the existence and uniqueness as well as the stability of solutions. Our work go beyond the previous results on the subject. Although we are focused on multidimensional case, the uniqueness result we establish is new in one dimensional too. As application, we establish the existence and uniqueness of probabilistic solutions tosome semilinear SPDEs with superlinear growth generator. By probabilistic solution, we mean a solution which is representable throughout a BDSDEs.• Controlled coupled FBSDEs :We establish the existence of an optimal control for a system driven by a coupled FBDSE. The cost functional is defined as the initial value of the backward component of the solution. We construct a sequence of approximating controlled systems, for which we show the existence of a sequence of feedback optimal controls. By passing to the limit, we get the existence of a feedback optimal control. The convexity condition is used to ensure that the optimal control is strict. In this part, we study two cases of diffusions : degenerate and non-degenerate
Wu, Yue. „Pathwise anticipating random periodic solutions of SDEs and SPDEs with linear multiplicative noise“. Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/15991.
Der volle Inhalt der QuelleZhang, Liangliang. „Essays on numerical solutions to forward-backward stochastic differential equations and their applications in finance“. Thesis, 2017. https://hdl.handle.net/2144/26430.
Der volle Inhalt der QuelleBücher zum Thema "Forward Backward Stochastic Differential Equations (FBSDE)"
Ma, Jin, und Jiongmin Yong. Forward-Backward Stochastic Differential Equations and their Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-48831-6.
Der volle Inhalt der QuelleMa, Jin. Forward-backward stochastic differential equations and their applications. Berlin: Springer, 1999.
Den vollen Inhalt der Quelle findenForward-Backward Stochastic Differential Equations and Their Applications. Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/bfb0092524.
Der volle Inhalt der QuelleYong, Jiongmin, und Jin Ma. Forward-Backward Stochastic Differential Equations and Their Applications. Springer London, Limited, 2007.
Den vollen Inhalt der Quelle findenChassagneux, Jean-François, Hinesh Chotai und Mirabelle Muûls. A Forward-Backward SDEs Approach to Pricing in Carbon Markets. Springer, 2017.
Den vollen Inhalt der Quelle findenMa, Jin, und Jiongmin Yong. Forward-Backward Stochastic Differential Equations and their Applications (Lecture Notes in Mathematics). Springer, 2007.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Forward Backward Stochastic Differential Equations (FBSDE)"
Zhang, Jianfeng. „Forward-Backward SDEs“. In Backward Stochastic Differential Equations, 177–201. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7256-2_8.
Der volle Inhalt der QuelleDelong, Łukasz. „Forward-Backward Stochastic Differential Equations“. In EAA Series, 79–99. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5331-3_4.
Der volle Inhalt der QuelleChassagneux, Jean-François, Hinesh Chotai und Mirabelle Muûls. „Introduction to Forward-Backward Stochastic Differential Equations“. In A Forward-Backward SDEs Approach to Pricing in Carbon Markets, 11–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63115-8_2.
Der volle Inhalt der QuelleMa, Jin, und Tim Zajic. „Rough Asymptotics of Forward-Backward Stochastic Differential Equations“. In Control of Distributed Parameter and Stochastic Systems, 239–46. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-0-387-35359-3_29.
Der volle Inhalt der QuelleKebiri, Omar, Lara Neureither und Carsten Hartmann. „Adaptive Importance Sampling with Forward-Backward Stochastic Differential Equations“. In Stochastic Dynamics Out of Equilibrium, 265–81. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15096-9_7.
Der volle Inhalt der QuelleKohlmann, Michael. „Reflected Forward Backward Stochastic Differential Equations and Contingent Claims“. In Control of Distributed Parameter and Stochastic Systems, 223–30. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-0-387-35359-3_27.
Der volle Inhalt der QuelleKim, Jin Won, und Sebastian Reich. „On Forward–Backward SDE Approaches to Conditional Estimation“. In Mathematics of Planet Earth, 115–36. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70660-8_6.
Der volle Inhalt der QuelleJiménez-Pastor, A., K. G. Larsen, M. Tribastone und M. Tschaikowski. „Forward and Backward Constrained Bisimulations for Quantum Circuits“. In Tools and Algorithms for the Construction and Analysis of Systems, 343–62. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57249-4_17.
Der volle Inhalt der Quelle„FBSDEs with Reflections“. In Forward-Backward Stochastic Differential Equations and their Applications, 169–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-48831-6_7.
Der volle Inhalt der Quelle„Applications of FBSDEs“. In Forward-Backward Stochastic Differential Equations and their Applications, 193–234. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-48831-6_8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Forward Backward Stochastic Differential Equations (FBSDE)"
Exarchos, Ioannis, und Evangelos A. Theodorou. „Learning optimal control via forward and backward stochastic differential equations“. In 2016 American Control Conference (ACC). IEEE, 2016. http://dx.doi.org/10.1109/acc.2016.7525237.
Der volle Inhalt der QuelleExarchos, Ioannis, Evangelos A. Theodorou und Panagiotis Tsiotras. „Game-theoretic and risk-sensitive stochastic optimal control via forward and backward stochastic differential equations“. In 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016. http://dx.doi.org/10.1109/cdc.2016.7799215.
Der volle Inhalt der QuelleShanshan, Zuo, und Min Hui. „Optimal control problems of mean-field forward-backward stochastic differential equations with partial information“. In 2013 25th Chinese Control and Decision Conference (CCDC). IEEE, 2013. http://dx.doi.org/10.1109/ccdc.2013.6561841.
Der volle Inhalt der QuelleAshok Naarayan, Aadhithya, und Panos Parpas. „Stable Multilevel Deep Neural Networks for Option Pricing and xVAs Using Forward-Backward Stochastic Differential Equations“. In ICAIF '24: 5th ACM International Conference on AI in Finance, 336–43. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3677052.3698598.
Der volle Inhalt der QuelleHawkins, Kelsey P., Ali Pakniyat und Panagiotis Tsiotras. „On the Time Discretization of the Feynman-Kac Forward-Backward Stochastic Differential Equations for Value Function Approximation“. In 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021. http://dx.doi.org/10.1109/cdc45484.2021.9683583.
Der volle Inhalt der Quelle