Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Formation of photochemical smog“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Formation of photochemical smog" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Formation of photochemical smog"
HEICKLEN, JULIAN. „The Formation and Inhibition of Photochemical Smog“. Annals of the New York Academy of Sciences 502, Nr. 1 Environmental (Juli 1987): 145–59. http://dx.doi.org/10.1111/j.1749-6632.1987.tb37649.x.
Der volle Inhalt der QuelleLu, Haoxian, Xiaopu Lyu, Hairong Cheng, Zhenhao Ling und Hai Guo. „Overview on the spatial–temporal characteristics of the ozone formation regime in China“. Environmental Science: Processes & Impacts 21, Nr. 6 (2019): 916–29. http://dx.doi.org/10.1039/c9em00098d.
Der volle Inhalt der QuelleMuilwijk, C., P. J. C. Schrijvers, S. Wuerz und S. Kenjereš. „Simulations of photochemical smog formation in complex urban areas“. Atmospheric Environment 147 (Dezember 2016): 470–84. http://dx.doi.org/10.1016/j.atmosenv.2016.10.022.
Der volle Inhalt der QuelleMadronich, S., M. Shao, S. R. Wilson, K. R. Solomon, J. D. Longstreth und X. Y. Tang. „Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with changing climate: implications for human and environmental health“. Photochemical & Photobiological Sciences 14, Nr. 1 (2015): 149–69. http://dx.doi.org/10.1039/c4pp90037e.
Der volle Inhalt der QuelleSakamaki, Fumio, und Hajime Akimoto. „HONO formation as unknown radical source in photochemical smog chamber“. International Journal of Chemical Kinetics 20, Nr. 2 (Februar 1988): 111–16. http://dx.doi.org/10.1002/kin.550200204.
Der volle Inhalt der QuelleGrenfell, John Lee, Barbara Stracke, Beate Patzer, Ruth Titz und Heike Rauer. „Potential of ozone formation by the smog mechanism to shield the surface of the early Earth from UV radiation“. International Journal of Astrobiology 5, Nr. 4 (Oktober 2006): 295–306. http://dx.doi.org/10.1017/s1473550406003478.
Der volle Inhalt der QuelleWakamatsu, Shinji, Itsushi Uno und Makoto Suzuki. „A field study of photochemical smog formation under stagnant meteorological conditions“. Atmospheric Environment. Part A. General Topics 24, Nr. 5 (Januar 1990): 1037–50. http://dx.doi.org/10.1016/0960-1686(90)90072-u.
Der volle Inhalt der QuelleSipakov, Rostyslav, Olena Voloshkina, Julia Bereznitska und Volodimir Trofimovich. „Assessment and forecast for the creation of photochemical smog over transport overpasses in Kyiv.“ DSpace at USEFUL.academy, Nr. 2018 (23.02.2018): 44–51. http://dx.doi.org/10.32557/dsua/20.500.12334/24.
Der volle Inhalt der QuelleLim, Yong Bin, Hwajin Kim, Jin Young Kim und Barbara J. Turpin. „Photochemical organonitrate formation in wet aerosols“. Atmospheric Chemistry and Physics 16, Nr. 19 (11.10.2016): 12631–47. http://dx.doi.org/10.5194/acp-16-12631-2016.
Der volle Inhalt der QuelleWei, Xiaolin, Ka-se Lam, Chunyan Cao, Hui Li und Jiajia He. „Dynamics of the Typhoon Haitang Related High Ozone Episode over Hong Kong“. Advances in Meteorology 2016 (2016): 1–12. http://dx.doi.org/10.1155/2016/6089154.
Der volle Inhalt der QuelleDissertationen zum Thema "Formation of photochemical smog"
Paulson, Suzanne Elizabeth Seinfeld John H. Seinfeld John H. „Contributions of biogenic and anthropogenic hydrocarbons to photochemical smog formation /“. Diss., Pasadena, Calif. : California Institute of Technology, 1991. http://resolver.caltech.edu/CaltechETD:etd-07172007-150535.
Der volle Inhalt der QuelleCohan, Daniel Shepherd. „Photochemical Formation and Cost-Efficient Abatement of Ozone: High-Order Sensitivity Analysis“. Diss., Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-09152004-150617/unrestricted/cohan%5Fdaniel%5Fs%5F200412%5Fphd.pdf.
Der volle Inhalt der QuelleRussell, Armistead G., Committee Chair ; Chameides, William L., Committee Member ; Wang, Yuhang, Committee Member ; Noonan, Douglas, Committee Member ; Chang, Michael E., Committee Member. Vita. Includes bibliographical references.
Loewenheim, L. „Photochemical smog in greater Cape Town“. Master's thesis, University of Cape Town, 1988. http://hdl.handle.net/11427/15446.
Der volle Inhalt der QuellePhotochemical smog is the name given to a complex sequence of chemical reactions that occurs in the presence of sunlight. These reactions comprise a mix of organic and inorganic compounds, including a number of toxic secondary pollutants such as ozone (O3) and peroxyacetyl nitrate. These substances are commonly referred to as oxidants and are the result of numerous reactions of primary pollutants or precursors (including nitrogen oxides (NOx) and non- methane hydrocarbons (NHHC)) emitted from vehicle exhausts and to some extent industry, O3 is the major constituent of the photochemical oxidants, and its concentration is often used to determine the severity of photochemical smog. Limited research on photochemical smog in Cape Town has been undertaken, and this study has concentrated on providing a more detailed understanding of photochemical precursor and oxidant levels in the urban atmosphere of Greater Cape Town. This was approached by the investigation and assessment of the spatial and temporal behaviour of photochemical pollutants, making use of automatic monitor data collected from 1984 to 1986, and supplemented by data collected during a spatial survey in April and Hay of 1987. Precursor levels were found to be strongly influenced by the seasonal cycle of the weather and were highest in winter when stable atmospheric conditions prevailed, particularly during morning rush hours, O3 behaviour was complex and lacked any definite relationship to season or to selected meteorological variables, although the limited data indicated high levels during the early spring months. Peak levels were generally experienced on fair weather days during the early afternoon hours at the time of maximum ultraviolet radiation, O3 levels did not exceed the USEPA 1-hour standard of 0.12ppm during 1985 and 1986. The spatial distribution of precursor and oxidant concentrations showed the NOx levels to be spatially dependent, following the major arterial roads. NHHC levels were spatially less well defined than NOx, and O3 levels were spatially relatively uniform, exhibiting depletion due to scavenging by nitric oxide (NO) in areas close to main traffic routes. High NOx levels were experienced predominantly in the city centre, while the suburbs tended to experience the higher O3 levels. Cape Town was not considered to have a photochemical smog problem of the same magnitude as Los Angeles or Sydney, ( due to a number of factors which contributed to the complex situation (such as high NO levels, relatively low NMHC levels and strong winds in summer). However in the Northern Suburbs, the absence of high NO levels together with additional NMHC emissions from nearby industry led to the recognition of this area as one of potential photochemical smog formation.
Plummer, David A. „On-line chemistry in a mesoscale model assessment of the Toronto emission inventory and lake-breeze effects on air quality /“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0028/NQ39304.pdf.
Der volle Inhalt der QuelleLeone, Joseph A. Flagan Richard C. „Studies in photochemical smog chemistry : I. Atmospheric chemistry of toluene. II. Analysis of chemical reaction mechanisms for photochemical smog /“. Diss., Pasadena, Calif. : California Institute of Technology, 1985. http://resolver.caltech.edu/CaltechETD:etd-12042006-093443.
Der volle Inhalt der QuelleAndino, Jean Marie Seinfeld John H. „Experimental and theoretical studies of reactions important in photochemical smog : aromatics and alkanes /“. Diss., Pasadena, Calif. : California Institute of Technology, 1996. http://resolver.caltech.edu/CaltechETD:etd-01032007-154253.
Der volle Inhalt der QuelleLiu, Zhen. „Characterizing the photochemical environment over China“. Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43668.
Der volle Inhalt der QuelleKatkova, Olga. „Photochemical isomerization and stereoselective thermal cycloaddition reactions of conjugated nitrones“. Connect to this title online, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=bgsu1123003688.
Der volle Inhalt der QuelleBrousmiche, Darryl Wayne. „Mechanistic studies of photochemical quinone methide formation via ESPT and formal long-range ESIPT“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ58560.pdf.
Der volle Inhalt der QuelleBlasco, Brusola Alejandro. „Mechanistic Studies on the Photochemical Formation and Cleavage of Oxetanes Derived from Pyrimidine Bases“. Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/165256.
Der volle Inhalt der Quelle[CA] La llum solar pot produir danys a l'ADN per absorció directa de llum UVB, o per fotosensibilització després de l'absorció de llum UVA per part de fàrmacs, que poden actuar com fotosensibilitzadors (PS). La benzofenona (BP), present en l'estructura química d'una àmplia varietat de fàrmacs, té el potencial de fotosensibilitzar dany a l'ADN, especialment a la base de timina (Thy). Aquest dany pot donar lloc a dímers de pirimidina de tipus ciclobutà (CPD) i a fotoproductes (6-4) pirimidina-pirimidona ((6-4)PPs), els quals poden causar mutacions greus, melanomes o fins i tot la mort cel·lular. En alguns organismes, els (6-4)PPs poden reparar-se de manera eficient per les fotoliases, en el que es podria entendre com una reacció Paternò-Büchi (PB) inversa a través d'un intermedi d'oxetà altament inestable. Amb la finalitat d'aprofundir en la fotoreactivitat dels derivats BP-Thy i en la ruptura fotoinduïda d'oxetans, es van sintetitzar per primera vegada una varietat de diades en les quals Thy i BP estan covalentment unides per un espaiador lineal de diferent longitud i naturalesa. La fotoreactivitat dels diferents derivats es va investigar per fotòlisi de centelleig làser (LFP) i espectroscopía d'absorció transitòria a escala de femtosegons; a més, es van aïllar i caracteritzar els principals fotoproductes (PPs) derivats de la irradiació en estat estacionari. Els resultats van mostrar un alt grau de quimioselectivitat en la longitud i conformació de l'espaiador. Quant a la reactivitat fotoquímica, es van formar PPs derivats de la PB i de l'abstracció formal d'hidrogen; així, les diades amb l'espaiador més llarg van donar lloc a la formació d'oxetans i de PPs d'abstracció d'hidrogen. Per contra, les diades amb espaiadors més curts van formar un fotoproducte d'abstracció formal d'hidrogen i/o polimerització. Per tant, la fotoreactivitat es va veure influïda per la longitud de l'espaiador, correlacionant-se bé amb els temps de 3BP*, observant-se els temps més curts per a les diades amb espaiadors llargs. En relació amb la fotoapertura d'oxetans, la irradiació dels diferents regi- i estereoisòmers va conduir a la formació de la típica banda d'absorció triplet-triplet de BP; per tant, aquest procés opera de manera adiabàtica. La fotòlisi de l'oxetà que resulta de la irradiació de la diada amb l'espaiador més llarg va mostrar una banda d'absorció transitòria sobre 400 nm, atribuïda a la formació de l'exciplex triplet entre BP i Thy covalentment units. D'altra banda, es va investigar la reacció PB i la cicloreversió d'oxetans que sorgeixen de la interacció entre Thy o derivats d'uracil (Ura) i BP. Així, es va sintetitzar una àmplia gamma d'oxetans Thy-BP i Ura-BP amb diferents substituents en les posicions 1 i 5 de la nucleobase, incloent-se els regioisòmers cap-cap (HH) i cap-cua (HT). Els estudis espectroscòpics (absorció transitòria ultraràpida i LFP), juntament amb l'anàlisi teòric, coincideixen en que la cicloreversió fotoinduïda per als isòmers HH i HT implica la formació d'un exciplex en l'estat excitat triplet abans de la ruptura. Generalment, es va observar que la reacció va ser completament adiabàtica per als regioisòmers HH. En el cas de l'oxetà HH que sorgeix de la interacció entre 1,3-dimetiltimina (DMT) i BP, es va observar la formació d'una banda ~400 nm, que es va atribuir a l'exciplex triplet 3[DMT···BP]*. La seua formació va ser altament regioselectiva, sent més ràpida i eficient per a l'isòmer HH que per a HT. Aquests resultats van ser confirmats per anàlisi computacional. En general, es va observar adiabaticitat en el procés de fotoreversió per a tots els oxetans investigats, amb un alt grau de regioselectivitat i amb la participació d'exciplexes triplet.
[EN] Sunlight light can produce damage to DNA through direct absorption of UVB or, more commonly, by photosensitization upon absorption of UVA light by drugs, that act as a photosensitizer (PS). Benzophenone (BP) as a building-block is present in a wide variety of drugs, and have the potential to photosensitize damage to DNA, specially towards the thymine (Thy) nucleobase. The resulting DNA damage can give rise to bulky dimers, i.e. cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts ((6-4)PPs), which can cause severe mutations, melanomas, or even be fatal for the cell. In some organisms, (6-4)PP can be efficiently repaired by photolyase enzymes, in what could be a reverse Paternò-Büchi (PB) reaction through an unstable oxetane intermediate. With the aim of getting deeper insight into the photoreactivity of BP-Thy derivatives and in the photoinduced cleavage of oxetanes, a variety of dyads where Thy and BP are covalently linked by a linear spacer of different lengths and nature were first synthesized. The photochemical reactivity and the photophysical properties of the different derivatives were investigated by means of laser flash photolysis (LFP) and femtosecond transient absorption spectroscopy; besides, the main photoproducts (PPs) arising from steady-state irradiation were also isolated and characterized. The results showed a high degree of chemoselectivity on the linking bridge length and conformation. Concerning the photochemical reactivity, PPs arising from the PB and from formal hydrogen abstraction were formed. In this context, the PB reaction took place for the dyads with the longest spacer with complete regio- and stereoselectivity, along with a hydrogen abstraction process. Finally, the dyads with shorter spacers gave rise to a formal hydrogen abstraction photoproduct and/or polymerization. Accordingly, the overall photoreactivity was proportional to the spacer length and was well correlated with the 3BP* lifetimes, the longer spacers giving rise to shorter lifetimes. In connection to the oxetane photocleavage, irradiation of the different regio- and stereoisomeric oxetanes led to the formation of the typical triplet-triplet absorption band of BP. Accordingly, the photoinduced cycloreversion also operates as an adiabatic process. Photolysis of the oxetane that results from irradiation of the dyad with the longest spacer showed a transient absorption at ~400 nm, which is ascribed to formation of the purported triplet exciplex between BP and Thy covalently linked. Additionally, the PB reaction and the cycloreversion of oxetanes arising from the interaction between Thy or uracil (Ura) derivatives and BP were also investigated. Thus, a wide range of Thy-BP and Ura-BP oxetanes with varying substituents at positions 1 and 5 of the nucleobase were synthesized, including both the head-to-head (HH) and head-to-tail (HT) regioisomers. Spectroscopic studies, including femtosecond transient absorption and LFP results, as well as theoretical multiconfigurational quantum chemistry analysis, agree that the photoinduced cycloreversion for the HH and HT isomers involved the formation of a triplet excited exciplex before the cleavage takes place. Generally, the photochemical reaction was fully adiabatic for the HH regioisomers. In the case of the HH-oxetane arising from the interaction between 1,3-dimethylthymine (DMT) and BP, an absorption band at ca. 400 nm was formed, and was attributed to the triplet exciplex 3[DMT···BP]*. Its formation was highly regioselective towards the HH regioisomer, being faster and more efficient than for the HT isomer. These results were confirmed by computational analysis. In general, adiabaticity was observed in the photoreversion process for all oxetanes, with a high degree of regioselectivity, which falls in line with the theory of the involvement of a triplet exciplex in the process.
Thanks to the Generalitat Valenciana for the finantial support through the Santiago Grisolía grant.
Blasco Brusola, A. (2021). Mechanistic Studies on the Photochemical Formation and Cleavage of Oxetanes Derived from Pyrimidine Bases [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/165256
TESIS
Bücher zum Thema "Formation of photochemical smog"
R, MacKenzie A., Hrsg. Air pollution by photochemical oxidants. Amsterdam [The Netherlands]: Elsevier, 1994.
Den vollen Inhalt der Quelle findenHozenka, Kanagawa-ken (Japan) Taiki. Kanagawa-ken ni okeru kōkagaku taiki osen no genjō to taisaku. [Yokohama-shi]: Kanagawa-ken Kankyōbu, 1986.
Den vollen Inhalt der Quelle findenHozenka, Kanagawa-ken (Japan) Taiki. Kanagawa-ken ni okeru kōkagaku taiki osen no genjō to taisaku. Yokohama-shi: Kanagawa-ken, 1996.
Den vollen Inhalt der Quelle findenHozenka, Kanagawa-ken (Japan) Taiki. Kanagawa-ken ni okeru kōkagaku taiki osen no genjō to taisaku. Yokohama-shi: Kanagawa-ken, 1988.
Den vollen Inhalt der Quelle findenHozenkyoku, Tokyo (Japan) Kankyō. Konka ni okeru kōkagaku sumoggu ni tsuite. Tōkyō: Tōkyō-to Kankyō Hozenkyoku, 1986.
Den vollen Inhalt der Quelle findenShafer, Toby B. Evaluation of chemical reaction mechanisms for photochemical smog. Research Triangle Park, NC: U.S. Environmental Protection Agency, Atmospheric Sciences Research Laboratory, 1985.
Den vollen Inhalt der Quelle findenControl, US/FRG/EC Workshop on Photochemical Ozone Problem and Its. Fourth US/FRG/EC Workshop on Photochemical Ozone Problem and Its Control: Proceedings : urban, regional, and global scale : issues and studies in the 1990s, Marriott Hotel, Charleston, SC, USA, Jine 13-17, 1994. Research Triangle Park, NC: Atmospheric Research and Exposure Assessment Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1995.
Den vollen Inhalt der Quelle findenKankyōbu, Chiba-ken (Japan). Kōkagaku sumoggu no hassei jōkyō: Shōwa 63-nendo. Chiba-shi: Chiba-ken Kankyōbu, 1988.
Den vollen Inhalt der Quelle findenGardner, Edward P. The primary photochemical processes of acrolein. Research Triangle Park, NC: U.S. Environmental Protection Agency, Atmospheric Sciences Research Laboratory, 1986.
Den vollen Inhalt der Quelle findenHull, L. A. Analysis of aldehydes and ketones in the gas phase. Research Triangle Park, NC: U.S. Environmental Protection Agency, Atmospheric Sciences Research Laboratory, 1985.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Formation of photochemical smog"
Güsten, Hans. „Formation, Transport and Control of Photochemical Smog“. In Air Pollution, 53–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-540-39222-4_3.
Der volle Inhalt der QuelleDuc, Hiep, Vo Anh und Merched Azzi. „Modelling of Photochemical Smog“. In Environmental Modelling and Prediction, 361–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04868-9_10.
Der volle Inhalt der QuelleCecinato, A., E. Brancaleoni, C. Di Palo, R. Draisci und P. Ciccioli. „Detection of Nitrated and Oxygenated Polyaromatic Hydrocarbons (PAH) in Suspended Particulate Matter Sampled in Urban Areas and their Relation with Anthropogenic Emission and Photochemical Smog Formation“. In Physico-Chemical Behaviour of Atmospheric Pollutants, 58–68. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3841-0_7.
Der volle Inhalt der QuelleCiccioli, P., E. Brancaleoni, C. Di Palo, A. Brachetti und A. Cecinato. „Daily Trends of Photochemical Oxidants and Their Precursors in a Suburban Forested Area. A Useful Approach for Evaluating the Relative Contributions of Natural and Anthropogenic Hydrocarbons to the Photochemical Smog Formation in Rural Areas in Italy“. In Physico-Chemical Behaviour of Atmospheric Pollutants, 551–59. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3841-0_61.
Der volle Inhalt der QuelleLouka, P., G. Finzi, M. Volta und I. Colbeck. „Photochemical smog in South European cities“. In Air Quality in Cities, 185–222. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05217-4_9.
Der volle Inhalt der QuelleDe Martini, A., G. Maffeis, M. G. Longoni, F. Pasi, G. Graziani, M. Tamponi und G. Lanzani. „Modelling Photochemical Smog Episodes in Lombardy Region“. In Air Pollution Modeling and Its Application XIII, 47–55. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4153-0_5.
Der volle Inhalt der QuellePreiss, Philipp. „Photochemical Ozone Formation“. In Life Cycle Impact Assessment, 115–38. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9744-3_7.
Der volle Inhalt der Quellevan Rheineck Leyssius, H. Jetske, und F. A. A. M. De Leeuw. „An Air Quality Forecast System for Photochemical Smog Episodes“. In Air Pollution Modeling and Its Application VIII, 103–10. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3720-5_7.
Der volle Inhalt der QuelleTayanç, Mete, und Gürkan Göçmen. „Measurement and Analysis of Photochemical Smog over İstanbul, Turkey“. In Air Pollution Modeling and Its Application XIII, 737–38. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4153-0_83.
Der volle Inhalt der QuelleMoussiopoulos, Nicolas, Athena Proyou und Peter Sahm. „Wind Flow and Photochemical Smog in Thessaloniki: Model Results Compared with Observations“. In Air Pollution Modeling and Its Application X, 109–16. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-1817-4_13.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Formation of photochemical smog"
Muilwijk, C., P. J. C. Schrijvers und Sasa Kenjeres. „On modeling and simulations of photochemical smog formation in simplif ed and complex urban areas“. In THMT-15. Proceedings of the Eighth International Symposium On Turbulence Heat and Mass Transfer. Connecticut: Begellhouse, 2015. http://dx.doi.org/10.1615/ichmt.2015.thmt-15.1510.
Der volle Inhalt der QuelleTeixeira, José, Luis S. B. Martins, Manuel Lopes, Senhorinha F. Teixeira und Manuel E. Ferreira. „Two Stage Atmospheric Burners: Development and Verification of a New Mass-Energy Balance Model“. In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38820.
Der volle Inhalt der QuelleEbert, Haseloff und Hartel. „Photochemical formation of free radicals“. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.589510.
Der volle Inhalt der QuelleEbert, Bernd G., Reiner F. Haseloff und Heiko Hartel. „Photochemical formation of free radicals“. In 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.5760868.
Der volle Inhalt der QuelleKroll, Jay, und Veronica Vaida. „PHOTOCHEMICAL FORMATION OF SULFUR-CONTAINING AEROSOLS“. In 72nd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2017. http://dx.doi.org/10.15278/isms.2017.fa11.
Der volle Inhalt der QuelleXia, Lihua, und Dehui Wang. „Analysis on establishing the framework of advanced warning mechanism system of urban photochemical smog pollution based on MODIS data“. In Remote Sensing of the Environment: 15th National Symposium on Remote Sensing of China, herausgegeben von Qingxi Tong, Wei Gao und Huadong Guo. SPIE, 2006. http://dx.doi.org/10.1117/12.682187.
Der volle Inhalt der QuelleTorres-Alacan, J., D. Czurlok, J. Lindner und Peter Vöhringer. „Ultrafast Vibrational Spectroscopy of Photochemical High-Valent Iron Formation“. In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/up.2016.um2a.7.
Der volle Inhalt der QuelleSviridenkov, Mikhail A., Alexander S. Emilenko und Wang Genchen. „Transformation of the optical properties and microstructure of aerosol during smog formation in Beijing“. In SPIE Proceedings, herausgegeben von Gelii A. Zherebtsov und Gennadii G. Matvienko. SPIE, 2006. http://dx.doi.org/10.1117/12.675359.
Der volle Inhalt der QuelleBeeson, Karl W., Keith A. Horn, Michael J. McFarland, Chengjiu Wu und James T. Yardley. „Photochemical formation of polymeric optical waveguides and devices for optical interconnection applications“. In San Jose - DL tentative, herausgegeben von Ka K. Wong. SPIE, 1991. http://dx.doi.org/10.1117/12.24969.
Der volle Inhalt der QuelleBolte, Michel, Christine Pizzocaro und Christophe Lafond. „Photochemical formation of chromium (V) in dichromated materials: a quantitative and comparative approach“. In Lasers and Materials in Industry and Opto-Contact Workshop, herausgegeben von Roger A. Lessard. SPIE, 1998. http://dx.doi.org/10.1117/12.323477.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Formation of photochemical smog"
Elliott, S., M. L. Prueitt, J. E. Bossert, E. J. Mroz, R. A. Krakowski, R. L. Miller, M. Z. Jacobson und R. P. Turco. Engineering photochemical smog through convection towers. Office of Scientific and Technical Information (OSTI), Februar 1995. http://dx.doi.org/10.2172/10123074.
Der volle Inhalt der QuelleMoshiri, Ebrahim. Computer modeling of photochemical ozone formation: a simplified approach. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.817.
Der volle Inhalt der QuelleWurl, Oliver. Biofilm-like habitat at the sea-surface: A mesocosm study, Cruise No. POS537, 14.09.2019 – 04.10.2019, Malaga (Spain) – Cartagena (Spain) - BIOFILM. University of Oldenburg, November 2020. http://dx.doi.org/10.3289/cr_pos537.
Der volle Inhalt der Quelle