Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Formation of C-N bonds.

Zeitschriftenartikel zum Thema „Formation of C-N bonds“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Formation of C-N bonds" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Meng, Ge, Pengfei Li, Kai Chen und Linghua Wang. „Recent Advances in Transition-Metal-Free Aryl C–B Bond Formation“. Synthesis 49, Nr. 21 (26.09.2017): 4719–30. http://dx.doi.org/10.1055/s-0036-1590913.

Der volle Inhalt der Quelle
Annotation:
Arylboronic acids and their derivatives are widely used in organic synthesis. Conventional methods for their preparation require either reactive organometallic reagents or transition-metal-mediated processes. In recent years, transition-metal-free reactions for aryl C–B bond formation that obviate preformed organometallic reagents have gained interest and have developed rapidly. These new reactions have shown significant advantages for the preparation of functionalized molecules. In this review, an overview of the recent advances in transition-metal-free aromatic borylation reactions is provided.1 Introduction2 Transition-Metal-Free Transformations of CAr–N Bonds to CAr–B Bonds3 Transition-Metal-Free Transformations of CAr–X Bonds to CAr–B Bonds4 Transition-Metal-Free Transformations of CAr–H Bonds to CAr–B Bonds5 Conclusion
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zeng, Xiaoming, und Xuefeng Cong. „Chromium-Catalyzed Cross-Coupling Reactions by Selective Activation of Chemically Inert Aromatic C–O, C–N, and C–H Bonds“. Synlett 32, Nr. 13 (11.05.2021): 1343–53. http://dx.doi.org/10.1055/a-1507-4153.

Der volle Inhalt der Quelle
Annotation:
AbstractTransition-metal-catalyzed cross-coupling has emerged as one of the most powerful and useful tools for the formation of C–C and C–heteroatom bonds. Given the shortage of resources of precious metals on Earth, the use of Earth-abundant metals as catalysts in developing cost-effective strategies for cross-coupling is a current trend in synthetic chemistry. Compared with the achievements made using first-row nickel, iron, cobalt, and even manganese catalysts, the group 6 metal chromium has rarely been used to promote cross-coupling. This perspective covers recent advances in chromium-catalyzed cross-coupling reactions in transformations of chemically inert C(aryl)–O, C(aryl)–N, and C(aryl)–H bonds, offering selective strategies for molecule construction. The ability of low-valent Cr with a high-spin state to participate in two-electron oxidative addition is highlighted; this is different from the mechanism involving single-electron transfer that is usually assigned to chromium-mediated transformations.1 Introduction2 Chromium-Catalyzed Kumada Coupling of Nonactivated C(aryl)–O and C(aryl)–N Bonds3 Chromium-Catalyzed Reductive Cross-Coupling of Two Nonactivated C(aryl)–Heteroatom Bonds4 Chromium-Catalyzed Functionalization of Nonactivated C(aryl)–H Bonds5 Conclusions and Outlook
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Henry, Martyn, Mohamed Mostafa und Andrew Sutherland. „Recent Advances in Transition-Metal-Catalyzed, Directed Aryl C–H/N–H Cross-Coupling Reactions“. Synthesis 49, Nr. 20 (28.08.2017): 4586–98. http://dx.doi.org/10.1055/s-0036-1588536.

Der volle Inhalt der Quelle
Annotation:
Amination and amidation of aryl compounds using a transition-metal-catalyzed cross-coupling reaction typically involves prefunctionalization or preoxidation of either partner. In recent years, a new class of transition-metal-catalyzed cross-dehydrogenative coupling reaction has been developed for the direct formation of aryl C–N bonds. This short review highlights the substantial progress made for ortho-C–N bond formation via transition-metal-catalyzed chelation-directed aryl C–H activation and gives an overview of the challenges that remain for directed meta- and para-selective reactions.1 Introduction2 Intramolecular C–N Cross-Dehydrogenative Coupling2.1 Nitrogen Functionality as Both Coupling Partner and Directing Group2.2 Chelating-Group-Directed Intramolecular C–N Bond Formation3 Intermolecular C–N Cross-Dehydrogenative Coupling3.1 ortho-C–N Bond Formation3.1.1 Copper-Catalyzed Reactions3.1.2 Other Transition-Metal-Catalyzed Reactions3.2 meta- and para-C–N Bond Formation4 C–N Cross-Dehydrogenative Coupling of Acidic C–H Bonds5 Conclusions
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chang, Denghu, Dan Zhu, Peng Zou und Lei Shi. „Cleavage of C–N bonds in guanidine derivatives and its relevance to efficient C–N bonds formation“. Tetrahedron 71, Nr. 11 (März 2015): 1684–93. http://dx.doi.org/10.1016/j.tet.2015.01.050.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang, Congyang, und Ting Liu. „Manganese-Catalyzed C(sp2)–H Addition to Polar Unsaturated Bonds“. Synlett 32, Nr. 13 (27.03.2021): 1323–29. http://dx.doi.org/10.1055/a-1468-6136.

Der volle Inhalt der Quelle
Annotation:
AbstractTransition-metal-catalyzed nucleophilic C–H addition of hydrocarbons to polar unsaturated bonds could intrinsically avoid prefunctionalization of substrates and formation of waste byproducts, thus featuring high step- and atom-economy. As the third most abundant transition metal, manganese-catalyzed C–H addition to polar unsaturated bonds remains challenging, partially due to the difficulty in building a closed catalytic cycle of manganese. In the past few years, we have developed manganese catalysis to enable the sp2-hydrid C–H addition to polar unsaturated bonds (e.g., imines, aldehydes, nitriles), which will be discussed in this personal account.1 Introduction2 Mn-Catalyzed N-Directed C(sp2)–H Addition to Polar Unsaturated Bonds3 Mn-Catalyzed O-Directed C(sp2)–H Addition to Polar Unsaturated Bonds4 Conclusion
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Rit, Raja K., Majji Shankar und Akhila K. Sahoo. „C–H imidation: a distinct perspective of C–N bond formation“. Organic & Biomolecular Chemistry 15, Nr. 6 (2017): 1282–93. http://dx.doi.org/10.1039/c6ob02162j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zinser, Caroline M., Katie G. Warren, Fady Nahra, Abdullah Al-Majid, Assem Barakat, Mohammad Shahidul Islam, Steven P. Nolan und Catherine S. J. Cazin. „Palladate Precatalysts for the Formation of C–N and C–C Bonds“. Organometallics 38, Nr. 14 (02.07.2019): 2812–17. http://dx.doi.org/10.1021/acs.organomet.9b00326.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wei, Wenting, Wenming Zhu, Yi Wu, Yiling Huang und Hongze Liang. „Progress in C—N Bonds Formation Using t-BuONO“. Chinese Journal of Organic Chemistry 37, Nr. 8 (2017): 1916. http://dx.doi.org/10.6023/cjoc201703039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Zhao, Binlin, Torben Rogge, Lutz Ackermann und Zhuangzhi Shi. „Metal-catalysed C–Het (F, O, S, N) and C–C bond arylation“. Chemical Society Reviews 50, Nr. 16 (2021): 8903–53. http://dx.doi.org/10.1039/c9cs00571d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sun, Qiu, Ling He, Jiaxin Cheng, Ze Yang, Yuansheng Li und Yulan Xi. „Synthesis of Isoxazolines and Isoxazoles via Metal-Free Desulfitative Cyclization“. Synthesis 50, Nr. 12 (14.05.2018): 2385–93. http://dx.doi.org/10.1055/s-0037-1609480.

Der volle Inhalt der Quelle
Annotation:
A novel, one-pot reaction for the synthesis of isoxazolines and isoxazoles is developed via a cascade process under metal-free conditions. The approach involves the formation of intramolecular C–N and C–O bonds and intermolecular C–C bonds from aromatic alkenes or alkynes and N-hydroxysulfonamides using hypervalent iodine(VII) and iodine as the oxidant. Activation of C–H and C–C bonds/construction of C–O bonds/elimination of SO2/C–N bond formation is achieved in sequence­ in the reaction system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Chang, Denghu, Dan Zhu, Peng Zou und Lei Shi. „ChemInform Abstract: Cleavage of C-N Bonds in Guanidine Derivatives and Its Relevance to Efficient C-N Bonds Formation.“ ChemInform 46, Nr. 27 (18.06.2015): no. http://dx.doi.org/10.1002/chin.201527078.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Borpatra, Paran J., Bhaskar Deka, Mohit L. Deb und Pranjal K. Baruah. „Recent advances in intramolecular C–O/C–N/C–S bond formation via C–H functionalization“. Organic Chemistry Frontiers 6, Nr. 20 (2019): 3445–89. http://dx.doi.org/10.1039/c9qo00863b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Li, Ying-Xiu, Ke-Gong Ji, Hai-Xi Wang, Shaukat Ali und Yong-Min Liang. „Iodine-Induced Regioselective C−C and C−N Bonds Formation ofN-Protected Indoles“. Journal of Organic Chemistry 76, Nr. 2 (21.01.2011): 744–47. http://dx.doi.org/10.1021/jo1023014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Sun, Kai, Fengji Ma, Lulu Liu, Jingjing Sun, Xin Liu, Yachao Wang, Zhiguo Zhang und Guisheng Zhang. „Iodine-mediated regioselective C–N and C–I bond formation of alkenes“. RSC Advances 5, Nr. 100 (2015): 82492–95. http://dx.doi.org/10.1039/c5ra14407h.

Der volle Inhalt der Quelle
Annotation:
Iodine mediated intermolecular C–N and C–I bonds formation of alkenes was realized. A series of alkenes could be converted into the aminoiodination products, which are versatile building blocks in organic synthesis and medicinal chemistry.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Li, Ying-Xiu, Ke-Gong Ji, Hai-Xi Wang, Shaukat Ali und Yong-Min Liang. „ChemInform Abstract: Iodine-Induced Regioselective C-C and C-N Bonds Formation of N-Protected Indoles.“ ChemInform 42, Nr. 16 (24.03.2011): no. http://dx.doi.org/10.1002/chin.201116105.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Schranck, Johannes, Anis Tlili und Matthias Beller. „More Sustainable Formation of CN and CC Bonds for the Synthesis of N-Heterocycles“. Angewandte Chemie International Edition 52, Nr. 30 (17.06.2013): 7642–44. http://dx.doi.org/10.1002/anie.201303015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Xu, Da-Zhen, Ren-Ming Hu und Yi-Huan Lai. „Iron-Catalyzed Aerobic Oxidative Cross-Dehydrogenative C(sp3)–H/X–H (X = C, N, S) Coupling Reactions“. Synlett 31, Nr. 18 (21.07.2020): 1753–59. http://dx.doi.org/10.1055/s-0040-1707195.

Der volle Inhalt der Quelle
Annotation:
The direct functionalization of C(sp3)–H bonds is an attractive research topic in organic synthetic chemistry. The cross-dehydrogenative coupling (CDC) reaction provides a simple and powerful tool for the construction of C–C and C–heteroatom bonds. Recently, some progress has been made in the iron-catalyzed aerobic oxidative CDC reactions. Here, we present recent developments in the direct functionalization of C(sp3)–H bonds catalyzed by simple iron salts with molecular oxygen as the terminal oxidant.1 Introduction2 C(sp3)–C Bond Formation3 C(sp3)–N Bond Formation4 C(sp3)–S(Se) Bond Formation5 Conclusion and Outlook
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Fioravanti, Stefania, M. Antonietta Loreto, Lucio Pellacani und Paolo A. Tardella. „Asymmetric formation of CN bonds in chiral enol ethers“. Tetrahedron 47, Nr. 30 (Juli 1991): 5877–82. http://dx.doi.org/10.1016/s0040-4020(01)86538-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Chen, Tieqiao, Li-Biao Han, Qihang Tan, Xue Liu, Long Liu und Tianzeng Huang. „Phosphorylation of Carboxylic Acids and Their Derivatives with P(O)–H Compounds Forming P(O)–C Bonds“. Synthesis 53, Nr. 01 (30.09.2020): 95–106. http://dx.doi.org/10.1055/s-0040-1707286.

Der volle Inhalt der Quelle
Annotation:
AbstractHerein, we highlight advances in the phosphorylation of readily available carboxylic acids and their derivatives forming synthetically important P(O)–sp3C, P(O)–sp2C, and P(O)–spC bonds, with an emphasis on the results demonstrated since 2010. This review examines the challenges associated with the use of this strategy for the synthesis of organophosphorus compounds and details advances in the design of catalytic systems that suppress these problems thus resulting in notable progress. Mechanistic details are discussed where available.1 Introduction2 Formation of P(O)–sp3C Bonds3 Formation of P(O)–sp2C Bonds4 Formation of P(O)–spC Bonds5 Outlook and Conclusion
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Mitrofanov, Alexander Yu, Arina V. Murashkina, Iris Martín-García, Francisco Alonso und Irina P. Beletskaya. „Formation of C–C, C–S and C–N bonds catalysed by supported copper nanoparticles“. Catalysis Science & Technology 7, Nr. 19 (2017): 4401–12. http://dx.doi.org/10.1039/c7cy01343d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Xu, Yulong, Xiaonan Shi und Lipeng Wu. „tBuOK-triggered bond formation reactions“. RSC Advances 9, Nr. 41 (2019): 24025–29. http://dx.doi.org/10.1039/c9ra04242c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Lv, Zongchao, Huamin Wang, Zhicong Quan, Yuan Gao und Aiwen Lei. „Dioxygen-triggered oxidative cleavage of the C–S bond towards C–N bond formation“. Chemical Communications 55, Nr. 82 (2019): 12332–35. http://dx.doi.org/10.1039/c9cc05707b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Yi, Xiangyan, Jiajun Feng, Fei Huang und Jonathan Bayldon Baell. „Metal-free C–C, C–O, C–S and C–N bond formation enabled by SBA-15 supported TFMSA“. Chemical Communications 56, Nr. 8 (2020): 1243–46. http://dx.doi.org/10.1039/c9cc08389h.

Der volle Inhalt der Quelle
Annotation:
The intermolecular C–C, C–O, C–S and C–N bonds construction between diazo compounds and acyclic, cyclic 1,3-dicarbonyl compounds, thiophenol, alkynes were developed by using a TFMSA@SBA-15, providing a metal-free and eco-friendly platform.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Puerto Galvis, Carlos, und Vladimir Kouznetsov. „Recent Advances for the C–C and C–N Bond Formation in the Synthesis­ of 1-Phenethyl-tetrahydroisoquinoline, Aporphine, Homoaporphine­, and β-Carboline Alkaloids“. Synthesis 49, Nr. 20 (21.09.2017): 4535–61. http://dx.doi.org/10.1055/s-0036-1589512.

Der volle Inhalt der Quelle
Annotation:
Among the existing methods for the synthesis of bioactive and/or complex small molecules, organic transformations such as C–C and C–N bond formation have been significantly developed and exploited for the synthesis of diverse synthetic and natural fused aza-polycycles. The abundance and biological and physical activities of 1-phenethyl-tetrahydroisoquinolines, aporphines, homoaporphines, and β-carbolines have inspired many organic chemists to seek sustainable and efficient protocols for their preparation. However, these methodologies involve multiple steps and in most cases the key reaction step is based on the formation of new C–C and/or C–N bonds, and this is usually the critical step that lowers the yields and selectivity. This review is focused on the advances made in recent years regarding the synthesis of these selected natural fused aza-polycycles, overviewing the substrate scope, limitations, regioselectivity, and chemoselectivity, as well as related control strategies of these reactions, concentrating on developments from 2010 to 2016.1 Introduction2 1-Phenethyl-tetrahydroisoquinolines; Dysoxylum Alkaloids3 Aporphines, Homoaporphines, and Semisynthetic Derivatives4 Harmala and Eudistomin Alkaloids and Their Biological Properties5 Metal-Catalyzed C–C Bond Formation6 Pd-Catalyzed C–C and C–N Bond Formation7 Metal-Catalyzed C–N Bond Formation8 [4+2] Cycloaddition in the Synthesis Of Aporphines9 Tandem C–N/C–C Bond Formation: The Pictet–Spengler Reaction10 Miscellaneous Methods11 Conclusions
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Song, Chunlan, Kun Liu, Xin Dong, Chien-Wei Chiang und Aiwen Lei. „Recent Advances in Electrochemical Oxidative Cross-Coupling for the Construction of C–S Bonds“. Synlett 30, Nr. 10 (15.04.2019): 1149–63. http://dx.doi.org/10.1055/s-0037-1611753.

Der volle Inhalt der Quelle
Annotation:
With the importance of sulfur-containing organic molecules, developing methodologies toward C–S bond formation is a long-standing goal, and, to date, considerable progress has been made in this area. Recent electrochemical oxidative cross-coupling reactions for C–S bond formation allow the synthesis of sulfur-containing molecules from more effective synthetic routes with high atom economy under mild conditions. In this review, we highlight the vital progress in this novel research arena with an emphasis on the synthetic and mechanistic aspects of the organic electrochemistry reactions.1 Introduction2 Electrochemical Oxidative Sulfonylation for the Formation of C–S Bonds2.1 Applications of Sulfinic Acid Derivatives for the Formation of C–S Bonds2.2 Applications of Sulfonylhydrazide Derivatives for the Formation of C–S Bonds3 Electrochemical Oxidative Thiolation for the Formation of C–S Bonds3.1 Applications of Disulfide Derivatives for the Formation of C–S Bonds3.2 Applications of Thiophenol Derivatives for the Formation of C–S Bonds4 Electrochemical Oxidative Thiocyanation for the Formation of C–S Bonds5 Electrochemical Oxidative Cyclization for the Formation of C–S Bonds6 Conclusion
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Subaramanian, Murugan, Ganesan Sivakumar und Ekambaram Balaraman. „Recent advances in nickel-catalyzed C–C and C–N bond formation via HA and ADC reactions“. Organic & Biomolecular Chemistry 19, Nr. 19 (2021): 4213–27. http://dx.doi.org/10.1039/d1ob00080b.

Der volle Inhalt der Quelle
Annotation:
In this review article, recent advances in nickel-catalyzed hydrogen auto-transfer (HA) and acceptorless dehydrogenative coupling (ADC) reactions for the construction of C–C and C–N bonds have been discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Schranck, Johannes, Anis Tlili und Matthias Beller. „ChemInform Abstract: More Sustainable Formation of C-N and C-C Bonds for the Synthesis of N-Heterocycles“. ChemInform 44, Nr. 40 (12.09.2013): no. http://dx.doi.org/10.1002/chin.201340248.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Zheng, Hui, Qiaoyue Shi, Kui Du, Xianting Cao und Pengfei Zhang. „Chemoenzymatic selective formation of C–N bonds in a benzimidazole heterocycle“. RSC Advances 3, Nr. 47 (2013): 24959. http://dx.doi.org/10.1039/c3ra43982h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Zhang, Honghua, Huihong Wang, Yi Jiang, Fei Cao, Weiwei Gao, Longqing Zhu, Yuhang Yang et al. „Recent Advances in Iodine‐Promoted C−S/N−S Bonds Formation“. Chemistry – A European Journal 26, Nr. 72 (05.10.2020): 17289–317. http://dx.doi.org/10.1002/chem.202001414.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Ngah, Nurziana, Nor Azanita Mohamed, Bohari M. Yamin und Hamizah Mohd Zaki. „3-[3-(2-Fluorobenzoyl)thioureido]propionic acid“. Acta Crystallographica Section E Structure Reports Online 70, Nr. 6 (24.05.2014): o705. http://dx.doi.org/10.1107/s1600536814011404.

Der volle Inhalt der Quelle
Annotation:
In the title compound, C10H11FN3O3S, the 2-fluorobenzoyl and proponic acid groups maintain atrans–cisconformation with respect to the thiono C=S bond across their C—N bonds. The propionic acid group adopts ananticonformation about the C—C bond, with an N—C—C—C torsion angle of 173.8 (2)°. The amino groups are involved in the formation of intramolecular N—H...O and N—H...F hydrogen bonds. In the crystal, pairs of O—H...O hydrogen bonds link molecules into inversion dimers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Kamer, Paul C. J., Gino P. F. van Strijdonck, Joost N. H. Reek und Piet W. N. M. van Leeuwen. „ChemInform Abstract: Hydroformylation and Hydroxycarbonylation of Alkenes: Formation of C-N and C-C Bonds“. ChemInform 33, Nr. 49 (18.05.2010): no. http://dx.doi.org/10.1002/chin.200249213.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Duan, Jindian, Yuyu Cheng, Rou Li und Pengfei Li. „Synthesis of spiro[indane-1,3-dione-1-pyrrolines] via copper-catalyzed heteroannulation of ketoxime acetates with 2-arylideneindane-1,3-diones“. Organic Chemistry Frontiers 3, Nr. 12 (2016): 1614–18. http://dx.doi.org/10.1039/c6qo00454g.

Der volle Inhalt der Quelle
Annotation:
A cuprous cyanide-catalyzed heteroannulation reaction of 2-arylideneindane-1,3-dione with ketoxime acetates has been developed for the synthesis of novel spiro[indane-1,3-dione-1-pyrrolines] through the cleavage of N–O and C–H bonds and formation of C–C and C–N bonds.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Desnoyer, Addison N., und Jennifer A. Love. „Recent advances in well-defined, late transition metal complexes that make and/or break C–N, C–O and C–S bonds“. Chemical Society Reviews 46, Nr. 1 (2017): 197–238. http://dx.doi.org/10.1039/c6cs00150e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Liu, Yichang, Liwei Xue, Biyin Shi, Faxiang Bu, Dan Wang, Lijun Lu, Renyi Shi und Aiwen Lei. „Catalyst-free electrochemical decarboxylative cross-coupling of N-hydroxyphthalimide esters and N-heteroarenes towards C(sp3)–C(sp2) bond formation“. Chemical Communications 55, Nr. 99 (2019): 14922–25. http://dx.doi.org/10.1039/c9cc08528a.

Der volle Inhalt der Quelle
Annotation:
We formed C(sp3)–C(sp2) bonds under electrochemical conditions by using NHP esters and N-heteroarenes without any catalysts. Our approach could be a complement to the Kolbe reaction and a promising strategy for finding more new reactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Sud, Abhishek, Pramod S. Chaudhari, Ishu Agarwal, Amjad Basha Mohammad, Vilas H. Dahanukar und Rakeshwar Bandichhor. „Discovery of redox system enabling C–N–C bonds formation: Unprecedented Aza-Cannizzaro reaction“. Tetrahedron Letters 58, Nr. 19 (Mai 2017): 1891–94. http://dx.doi.org/10.1016/j.tetlet.2017.04.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Leclerc, Matthew C., Bulat M. Gabidullin, Jason G. Da Gama, Stephanie L. Daifuku, Theresa E. Iannuzzi, Michael L. Neidig und R. Tom Baker. „Transition-Metal-Free Formation of C–E Bonds (E = C, N, O, S) and Formation of C–M Bonds (M = Mn, Mo) from N-Heterocyclic Carbene Mediated Fluoroalkene C–F Bond Activation“. Organometallics 36, Nr. 4 (06.02.2017): 849–57. http://dx.doi.org/10.1021/acs.organomet.6b00908.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Ovchynnikov, Vladimir. „N,N′-Dimethyl-N′′-(trichloroacetyl)phosphoramide“. Acta Crystallographica Section E Structure Reports Online 69, Nr. 12 (09.11.2013): o1759. http://dx.doi.org/10.1107/s1600536813030389.

Der volle Inhalt der Quelle
Annotation:
In the title compound, C4H9Cl3N3O2P or CCl3C(O)NHP(O)(NHCH3)2, the P atom has a strongly distorted tetrahedral geometry due to the formation of intermolecular strong hydrogen bonds involving the N atoms. In the crystal, N—H...O=P and N—H...O=C hydrogen bonds connect the molecules into a two-dimensional array parallel to (100). An intramolecular P...O contact [P...O = 2.975 (3) Å] is observed. The CCl3group is rotationally disordered, with occupancies of 0.60 (3) and 0.40 (3)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Brock, Carolyn Pratt. „Crystal packing in vicinal diols C n H m (OH)2“. Acta Crystallographica Section B Structural Science 58, Nr. 6 (28.11.2002): 1025–31. http://dx.doi.org/10.1107/s010876810201981x.

Der volle Inhalt der Quelle
Annotation:
The O—H...O bonds in vic-diols C n H m (OH)2 have been studied using data retrieved from the Cambridge Structural Database. About half of these diols form complete, or almost complete, sets of intermolecular O—H...O bonds (i.e. two satisfied donors per molecule). For this half of the structures the frequencies of high-symmetry space groups and of structures with Z′ > 1 (more than one molecule in the asymmetric unit) are substantially elevated. The most common motif among fully bonded structures is an R_{\rm{2}}^{\rm{2}} {\rm{(10)}} dimer, which can be linked in a variety of ways to form one-, two- or even three-dimensional patterns. Most of the other half of the vic-diols form simple O—H...O chains in which each OH group participates in only one intermolecular hydrogen bond. The space-group frequencies for this second group of structures are unexceptional. The most important factor determining the extent of O—H...O bond formation is the degree of substitution of the vic-diol. The spatial segregation of OH groups that is necessary for the formation of O—H...O bonds is found to make the dense filling of space more difficult because the intermolecular spacings that are appropriate for the O—H...O bonds may be inappropriate for the rest of the molecule.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Luo, Shuang, Ziwei Hu und Qiang Zhu. „Dearomative C–C and C–N bond cleavage of 2-arylindoles: transition-metal-free access to 2-aminoarylphenones“. Organic Chemistry Frontiers 3, Nr. 3 (2016): 364–67. http://dx.doi.org/10.1039/c5qo00394f.

Der volle Inhalt der Quelle
Annotation:
A transition-metal-free conversion of 2-arylindoles to 2-aminoarylphenones, using environmentally benign O2 as the sole oxidant, has been developed. This novel oxidative dearomatization process involves cleavage of two C–C and one C–N bonds followed by new C–C and C–O bond formation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Kang, Qing-Qing, Wenfeng Wu, Qiang Li und Wen-Ting Wei. „Photochemical strategies for C–N bond formation via metal catalyst-free (hetero) aryl C(sp2)–H functionalization“. Green Chemistry 22, Nr. 10 (2020): 3060–68. http://dx.doi.org/10.1039/d0gc01088j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Jin, Guanghua, C. Gunnar Werncke, Yannick Escudié, Sylviane Sabo-Etienne und Sébastien Bontemps. „Iron-Catalyzed Reduction of CO2 into Methylene: Formation of C–N, C–O, and C–C Bonds“. Journal of the American Chemical Society 137, Nr. 30 (24.07.2015): 9563–66. http://dx.doi.org/10.1021/jacs.5b06077.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Tiritiris, Ioannis, und Willi Kantlehner. „Crystal structure ofN′′-benzyl-N′′-[3-(benzyldimethylazaniumyl)propyl]-N,N,N′,N′-tetramethylguanidinium bis(tetraphenylborate)“. Acta Crystallographica Section E Crystallographic Communications 71, Nr. 12 (01.12.2015): o1086—o1087. http://dx.doi.org/10.1107/s2056989015024639.

Der volle Inhalt der Quelle
Annotation:
In the crystal structure of the title salt, C24H38N42+·2C24H20B−, the C—N bond lengths in the central CN3unit of the guanidinium ion are 1.3364 (13), 1.3407 (13) and 1.3539 (13) Å, indicating partial double-bond character. The central C atom is bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charge is delocalized in the CN3plane. The bonds between the N atoms and the terminal methyl groups of the guanidinium moiety and the four C—N bonds to the central N atom of the (benzyldimethylazaniumyl)propyl group have single-bond character. In the crystal, C—H...π interactions between the guanidinium H atoms and the phenyl C atoms of the tetraphenylborate ions are present, leading to the formation of a two-dimensional supramolecular pattern parallel to theacplane.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Chipanina, N. N., L. P. Oznobikhina und N. F. Lazareva. „<i>n</i>-(chlorodimethylsilyl)methylated derivatives of <i>N</i>,<i>N</i>′-propyleneurea. ir spectra analysis and quantum-chemical calculations“. Журнал общей химии 93, Nr. 5 (15.05.2023): 730–40. http://dx.doi.org/10.31857/s0044460x23050086.

Der volle Inhalt der Quelle
Annotation:
The IR spectra of N -silylmethylated derivatives of N , N ′-propyleneurea in solvents of different polarity were studied in a wide temperature range. The DFT method was used to perform quantum chemical calculations of geometric, energy and spectral characteristics of these compounds in isolated state (gas) and polar medium (DMSO). Analysis and comparison of these results made it possible to evaluate the influence of the environment on the criteria for the formation and strength of intramolecular dative C=O→Si bonds. The dependence of the dative bond О→Si and the order of the bonds C=O and C-N, including of the carbon atom of the C=O group, on the interaction energy of the LEP of the oxygen atom of the carbonyl group with σ*-orbitals of axial Si-Cl ax and C-N bonds, as well as interactions of LEP of nitrogen atoms with σ*-orbitals of the C=O and C-N bonds.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

FIORAVANTI, S., M. A. LORETO, L. PELLACANI und P. A. TARDELLA. „ChemInform Abstract: Asymmetric Formation of C-N Bonds in Chiral Enol Ethers.“ ChemInform 22, Nr. 44 (22.08.2010): no. http://dx.doi.org/10.1002/chin.199144101.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Weret, Misganaw Adigo, Chung-Feng Jeffrey Kuo, Wei-Nien Su und Bing-Joe Hwang. „Revealing the Lithium Storage Mechanism of Sulfurized Polyacrylonitrile Cathode by Ex-Situ NMR and Ex-Situ Raman Spectroscopy“. ECS Meeting Abstracts MA2023-01, Nr. 2 (28.08.2023): 605. http://dx.doi.org/10.1149/ma2023-012605mtgabs.

Der volle Inhalt der Quelle
Annotation:
Sulfurized polyacrylonitrile (SPAN) is a promising cathode material for high-performance lithium-sulfur batteries.1-3 However, fundamental insights into its molecular structure and lithium storage mechanism are yet not clearly understood. Herein, we reveal the formation of N-S and C=N-S bonds in addition to the C-S and S-S bonds using high−resolution cross−polarization/magic angle spinning (CP−MAS) solid states nitrogen-15 and carbon-13 nuclear magnetic resonance spectroscopy (15N NMR and 13C NMR). Ex-situ 13C NMR, ex-situ 15N NMR, ex-situ 7Li NMR, and ex-situ Raman studies indicate the formation of Li-C-N-Li and Li-C-C-Li bonds. Li–C and Li–N bonds increase the electron density of the conjugated heterocyclic structure and benefit lowering the charge/discharge voltage hysteresis after the second cycle. These results confirm conjugated C=N and C=C double-bonds involved in the lithium-ion storage mechanism leading to higher practical discharge capacity than the theoretical capacity of elemental sulfur. References Weret, M. A. et al. Mechanistic understanding of the Sulfurized-Poly(acrylonitrile) cathode for lithium-sulfur batteries. Energy Storage Materials 26, 483-493 (2020). Weret, M. A., Su, W.-N. & Hwang, B. J. Strategies towards High Performance Lithium-Sulfur Batteries. Batteries & Supercaps 5, e202200059 (2022). Weret, M. A. et al. Fibrous organosulfur cathode materials with high bonded sulfur for high-performance lithium-sulfur batteries. Journal of Power Sources 541, 231693 (2022).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Currie, Lucy, Luca Rocchigiani, David L. Hughes und Manfred Bochmann. „Carbon–sulfur bond formation by reductive elimination of gold(iii) thiolates“. Dalton Transactions 47, Nr. 18 (2018): 6333–43. http://dx.doi.org/10.1039/c8dt00906f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Zheng, Yang, Jincheng Mao, Jie Chen, Guangwei Rong, Defu Liu, Hong Yan, Yongjian Chi und Xinfang Xu. „Unexpected CN bond formation via NaI-catalyzed oxidative de-tetra-hydrogenative cross-couplings between N,N-dimethyl aniline and sulfamides“. RSC Advances 5, Nr. 62 (2015): 50113–17. http://dx.doi.org/10.1039/c5ra06773a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Petrova, M., R. Muhamadejev, B. Vigante, G. Duburs und Edvards Liepinsh. „Intramolecular hydrogen bonds in 1,4-dihydropyridine derivatives“. Royal Society Open Science 5, Nr. 6 (Juni 2018): 180088. http://dx.doi.org/10.1098/rsos.180088.

Der volle Inhalt der Quelle
Annotation:
1,4-Dihydropyridine (1,4-DHP) derivatives have been synthesized and characterized by 1 H, 13 C, 15 N nuclear magnetic resonance (NMR) spectroscopy, secondary proton/deuterium 13 C isotope shifts, variable temperature 1 H NMR experiments and quantum-chemical calculation. The intramolecular hydrogen bonds NH⋯O=C and CH⋯O=C in these compounds were established by NMR and quantum-chemical studies The downfield shift of the NH proton , accompanied by the upfield shift of the 15 N nuclear magnetic resonance signals, the shift to the higher wavenumbers of the NH stretching vibration in the infrared spectra and the increase of the 1 J( 15 N, 1 H) values may indicate the shortening of the N–H bond length upon intramolecular NH⋯O=C hydrogen bond formation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Guo, Qihang, und Zhan Lu. „Recent Advances in Nitrogen–Nitrogen Bond Formation“. Synthesis 49, Nr. 17 (07.08.2017): 3835–47. http://dx.doi.org/10.1055/s-0036-1588512.

Der volle Inhalt der Quelle
Annotation:
Over the last decade, N–N bond formation as a synthetic strategy has emerged as a powerful key step in the construction of highly valuable heterocycles from easily obtained materials. This review focuses on recent methods used to build N–N bonds, classified by intra- and intermolecular reactions with various types of N–X (O, C, N, H) bond cleavage.1 I ntroduction2 Intramolecular N–N Bond Formation2.1 Cleavage of N–O Bonds2.2 Cleavage of N–C Bonds2.3 Cleavage of N–N Bonds2.4 Cleavage of N–H Bonds2.4.1 Construction of Pyrazole Derivatives2.4.2 Construction of Triazole Derivatives2.4.3 Construction of Indazole and Pyrazoline Derivatives2.4.4 Construction of Other N–N Bond Derivatives3 Intermolecular N–N Bond Formation4 Conclusion
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Jin, Guanghua, C. Gunnar Werncke, Yannick Escudie, Sylviane Sabo-Etienne und Sebastien Bontemps. „ChemInform Abstract: Iron-Catalyzed Reduction of CO2into Methylene: Formation of C-N, C-O, and C-C Bonds.“ ChemInform 47, Nr. 4 (Januar 2016): no. http://dx.doi.org/10.1002/chin.201604164.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie