Zeitschriftenartikel zum Thema „Formation de liaisons C-S“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Formation de liaisons C-S.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Formation de liaisons C-S" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Top, Siden, und Gérard Jaouen. „Formation de liaison CC par couplage réducteur d'ions carbéniums arène chrome tricarbonyle“. Journal of Organometallic Chemistry 336, Nr. 1-2 (Dezember 1987): 143–51. http://dx.doi.org/10.1016/0022-328x(87)87164-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hiemstra, Henk, Floris P. Rutjes, Sape S. Kinderman, Jan H. van Maarseveen und Hans E. Schoemaker. „C-C Bond Formation viaN-Phosphoryliminium Ions“. Synthesis 2004, Nr. 09 (2004): 1413–18. http://dx.doi.org/10.1055/s-2004-822376.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Peng, Kang, Hui Zhu, Xing Liu, Han-Ying Peng, Jin-Quan Chen und Zhi-Bing Dong. „Chemoselective C-S/S-S Formation between Diaryl Disulfides and Tetraalkylthiuram Disulfides“. European Journal of Organic Chemistry 2019, Nr. 47 (27.11.2019): 7629–34. http://dx.doi.org/10.1002/ejoc.201901401.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Markó, István E., J. Mike Southern und M. Lakshmi Kantam. „Stoichiometric C-C Bond Formation Using Triorganothallium Reagents“. Synlett 1991, Nr. 04 (1991): 235–37. http://dx.doi.org/10.1055/s-1991-20690.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang, Haibo, Lu Wang, Jinsai Shang, Xing Li, Haoyuan Wang, Jie Gui und Aiwen Lei. „Fe-catalysed oxidative C–H functionalization/C–S bond formation“. Chem. Commun. 48, Nr. 1 (2012): 76–78. http://dx.doi.org/10.1039/c1cc16184a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sharma, Upendra, Ritika Sharma, Rakesh Kumar, Inder Kumar und Bikram Singh. „Selective C–Si Bond Formation through C–H Functionalization“. Synthesis 47, Nr. 16 (09.07.2015): 2347–66. http://dx.doi.org/10.1055/s-0034-1380435.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zhang, Honghua, Huihong Wang, Yi Jiang, Fei Cao, Weiwei Gao, Longqing Zhu, Yuhang Yang et al. „Recent Advances in Iodine‐Promoted C−S/N−S Bonds Formation“. Chemistry – A European Journal 26, Nr. 72 (05.10.2020): 17289–317. http://dx.doi.org/10.1002/chem.202001414.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sun, Fengli, Xuemin Liu, Xinzhi Chen, Chao Qian und Xin Ge. „Progress in the Formation of C-S Bond“. Chinese Journal of Organic Chemistry 37, Nr. 9 (2017): 2211. http://dx.doi.org/10.6023/cjoc201703038.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Jean, Mickaël, Jacques Renault, Pierre van de Weghe und Naoki Asao. „Gold-catalyzed C–S bond formation from thiols“. Tetrahedron Letters 51, Nr. 2 (Januar 2010): 378–81. http://dx.doi.org/10.1016/j.tetlet.2009.11.025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Choudhuri, Khokan, Milan Pramanik und Prasenjit Mal. „Noncovalent Interactions in C–S Bond Formation Reactions“. Journal of Organic Chemistry 85, Nr. 19 (25.08.2020): 11997–2011. http://dx.doi.org/10.1021/acs.joc.0c01534.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Aitken, R. Alan, Clémence Hauduc, M. Selim Hossain, Emily McHale, Adrian L. Schwan, Alexandra M. Z. Slawin und Colin A. Stewart. „Unexpected Pyrolytic Behaviour of Substituted Benzo[c]thiopyran and Thieno[2,3-c]thiopyran S,S-dioxides“. Australian Journal of Chemistry 67, Nr. 9 (2014): 1288. http://dx.doi.org/10.1071/ch14155.

Der volle Inhalt der Quelle
Annotation:
Flash vacuum pyrolysis (FVP) of benzo[c]thiopyran S,S-dioxide (1) results in formation of indene and 2-vinylbenzaldehyde as previously described. A range of eight analogues with various substitution patterns are found to behave differently. In general, there is no extrusion of SO2 to give products analogous to indene, but unsaturated carbonyl products analogous to 2-vinylbenzaldehyde are formed in most cases by way of ring expansion to a 7-membered ring sultine, extrusion of SO, and intramolecular hydrogen atom transfer. Other processes observed include formation of anthracene via an isomeric 7-membered sultine with loss of SO, CO and methane or butane, and formation of 4-ethylidene-4,5-dihydrocyclobuta[b]thiophenes by way of SO loss, a radical rearrangement, and extrusion of acetone. The analogues with a halogen substituent at position 8 on the benzene ring require a higher temperature to react and give naphthalene resulting from net elimination of HX and SO2. The X-ray crystal structure of 1 is also reported.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Shi, Z., S. Yang, B. Li und X. Wan. „C-H Functionalization via C-H Activation and C-C Bond Formation with Arylsilanes“. Synfacts 2007, Nr. 7 (Juli 2007): 0751. http://dx.doi.org/10.1055/s-2007-968643.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Song, Chunlan, Kun Liu, Xin Dong, Chien-Wei Chiang und Aiwen Lei. „Recent Advances in Electrochemical Oxidative Cross-Coupling for the Construction of C–S Bonds“. Synlett 30, Nr. 10 (15.04.2019): 1149–63. http://dx.doi.org/10.1055/s-0037-1611753.

Der volle Inhalt der Quelle
Annotation:
With the importance of sulfur-containing organic molecules, developing methodologies toward C–S bond formation is a long-standing goal, and, to date, considerable progress has been made in this area. Recent electrochemical oxidative cross-coupling reactions for C–S bond formation allow the synthesis of sulfur-containing molecules from more effective synthetic routes with high atom economy under mild conditions. In this review, we highlight the vital progress in this novel research arena with an emphasis on the synthetic and mechanistic aspects of the organic electrochemistry reactions.1 Introduction2 Electrochemical Oxidative Sulfonylation for the Formation of C–S Bonds2.1 Applications of Sulfinic Acid Derivatives for the Formation of C–S Bonds2.2 Applications of Sulfonylhydrazide Derivatives for the Formation of C–S Bonds3 Electrochemical Oxidative Thiolation for the Formation of C–S Bonds3.1 Applications of Disulfide Derivatives for the Formation of C–S Bonds3.2 Applications of Thiophenol Derivatives for the Formation of C–S Bonds4 Electrochemical Oxidative Thiocyanation for the Formation of C–S Bonds5 Electrochemical Oxidative Cyclization for the Formation of C–S Bonds6 Conclusion
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Kaur, Navjeet. „Cobalt-catalyzed C–N, C–O, C–S bond formation: synthesis of heterocycles“. Journal of the Iranian Chemical Society 16, Nr. 12 (06.07.2019): 2525–53. http://dx.doi.org/10.1007/s13738-019-01731-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Mejía, Esteban, und Ahmad A. Almasalma. „Recent Advances on Copper-Catalyzed C–C Bond Formation via C–H Functionalization“. Synthesis 52, Nr. 18 (19.05.2020): 2613–22. http://dx.doi.org/10.1055/s-0040-1707815.

Der volle Inhalt der Quelle
Annotation:
Reactions that form C–C bonds are at the heart of many important transformations, both in industry and in academia. From the myriad of catalytic approaches to achieve such transformations, those relying on C–H functionalization are gaining increasing interest due to their inherent sustainable nature. In this short review, we showcase the most recent advances in the field of C–C bond formation via C–H functionalization, but focusing only on those methodologies relying on copper catalysts. This coinage metal has gained increased popularity in recent years, not only because it is cheaper and more abundant than precious metals, but also thanks to its rich and versatile chemistry.1 Introduction2 Cross-Dehydrogenative Coupling under Thermal Conditions2.1 C(sp3)–C(sp3) Bond Formation2.2 C(sp3)–C(sp2) Bond Formation2.3 C(sp2)–C(sp2) Bond Formation2.4 C(sp3)–C(sp) Bond Formation3 Cross-Dehydrogenative Coupling under Photochemical Conditions3.1 C(sp3)–C(sp3) Bond Formation3.2 C(sp3)–C(sp2) and C(sp3)–C(sp) Bond Formation4 Conclusion and Perspective
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Bhunia, Subhajit, Govind Goroba Pawar, S. Vijay Kumar, Yongwen Jiang und Dawei Ma. „Selected Copper-Based Reactions for C−N, C−O, C−S, and C−C Bond Formation“. Angewandte Chemie International Edition 56, Nr. 51 (15.11.2017): 16136–79. http://dx.doi.org/10.1002/anie.201701690.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Mitrofanov, Alexander Yu, Arina V. Murashkina, Iris Martín-García, Francisco Alonso und Irina P. Beletskaya. „Formation of C–C, C–S and C–N bonds catalysed by supported copper nanoparticles“. Catalysis Science & Technology 7, Nr. 19 (2017): 4401–12. http://dx.doi.org/10.1039/c7cy01343d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Zhao, Binlin, Torben Rogge, Lutz Ackermann und Zhuangzhi Shi. „Metal-catalysed C–Het (F, O, S, N) and C–C bond arylation“. Chemical Society Reviews 50, Nr. 16 (2021): 8903–53. http://dx.doi.org/10.1039/c9cs00571d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Wang, G. W., T. T. Yuan und D. D. Li. „Palladium-Catalyzed One-Pot C-C and C-N Bond Formation by Dual C-H Activation“. Synfacts 2011, Nr. 07 (17.06.2011): 0808. http://dx.doi.org/10.1055/s-0030-1260671.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Broniowska, Katarzyna A., Agnes Keszler, Swati Basu, Daniel B. Kim-Shapiro und Neil Hogg. „Cytochrome c-mediated formation of S-nitrosothiol in cells“. Biochemical Journal 442, Nr. 1 (27.01.2012): 191–97. http://dx.doi.org/10.1042/bj20111294.

Der volle Inhalt der Quelle
Annotation:
S-nitrosothiols are products of nitric oxide (NO) metabolism that have been implicated in a plethora of signalling processes. However, mechanisms of S-nitrosothiol formation in biological systems are uncertain, and no efficient protein-mediated process has been identified. Recently, we observed that ferric cytochrome c can promote S-nitrosoglutathione formation from NO and glutathione by acting as an electron acceptor under anaerobic conditions. In the present study, we show that this mechanism is also robust under oxygenated conditions, that cytochrome c can promote protein S-nitrosation via a transnitrosation reaction and that cell lysate depleted of cytochrome c exhibits a lower capacity to synthesize S-nitrosothiols. Importantly, we also demonstrate that this mechanism is functional in living cells. Lower S-nitrosothiol synthesis activity, from donor and nitric oxide synthase-generated NO, was found in cytochrome c-deficient mouse embryonic cells as compared with wild-type controls. Taken together, these data point to cytochrome c as a biological mediator of protein S-nitrosation in cells. This is the most efficient and concerted mechanism of S-nitrosothiol formation reported so far.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Jung, K., K. Yoo und C. Yoon. „Highly Efficient Pd-Catalyzed Oxidative sp2-sp2 C-C Bond Formation“. Synfacts 2007, Nr. 3 (März 2007): 0301. http://dx.doi.org/10.1055/s-2007-968179.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Basak, Amit, Sayantan Mondal, Tapobrata Mitra, Raja Mukherjee und Partha Addy. „Garratt–Braverman Cyclization, a Powerful Tool for C–C Bond Formation“. Synlett 23, Nr. 18 (19.10.2012): 2582–602. http://dx.doi.org/10.1055/s-0032-1317321.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Yoshikai, Naohiko. „Recent Advances in Enantioselective C–C Bond Formation via Organocobalt Species“. Synthesis 51, Nr. 01 (03.12.2018): 135–45. http://dx.doi.org/10.1055/s-0037-1610397.

Der volle Inhalt der Quelle
Annotation:
This Short Review describes recent developments in cobalt-catalyzed enantioselective C–C bond-forming reactions. The article focuses on reactions that most likely involve chiral organocobalt species as crucial catalytic intermediates and their mechanistic aspects.1 Introduction2 Hydrovinylation3 C–H Functionalization4 Cycloaddition and Cyclization5 Addition of Carbon Nucleophiles6 Cross-Coupling7 Conclusion
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Wang, Congyang. „Manganese-Mediated C-C Bond Formation via C-H Activation: From Stoichiometry to Catalysis“. Synlett 24, Nr. 13 (11.07.2013): 1606–13. http://dx.doi.org/10.1055/s-0033-1339299.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Modha, Sachin G., Vaibhav P. Mehta und Erik V. Van der Eycken. „Transition metal-catalyzed C–C bond formation via C–S bond cleavage: an overview“. Chemical Society Reviews 42, Nr. 12 (2013): 5042. http://dx.doi.org/10.1039/c3cs60041f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Wang, Haibo, Lu Wang, Jinsai Shang, Xing Li, Haoyuan Wang, Jie Gui und Aiwen Lei. „ChemInform Abstract: Fe-Catalyzed Oxidative C-H Functionalization/C-S Bond Formation.“ ChemInform 43, Nr. 16 (22.03.2012): no. http://dx.doi.org/10.1002/chin.201216130.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Ngo, Thi-Thuy-Duong, Thi-Huong Nguyen, Chloée Bournaud, Régis Guillot, Martial Toffano und Giang Vo-Thanh. „Phosphine-Thiourea-Organocatalyzed Asymmetric C−N and C−S Bond Formation Reactions“. Asian Journal of Organic Chemistry 5, Nr. 7 (30.05.2016): 895–99. http://dx.doi.org/10.1002/ajoc.201600212.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Borpatra, Paran J., Bhaskar Deka, Mohit L. Deb und Pranjal K. Baruah. „Recent advances in intramolecular C–O/C–N/C–S bond formation via C–H functionalization“. Organic Chemistry Frontiers 6, Nr. 20 (2019): 3445–89. http://dx.doi.org/10.1039/c9qo00863b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Yeung, Ying-Yeung, und Jonathan Wong. „Recent Advances in C–Br Bond Formation“. Synlett 32, Nr. 13 (16.04.2021): 1354–64. http://dx.doi.org/10.1055/s-0037-1610772.

Der volle Inhalt der Quelle
Annotation:
AbstractOrganobromine compounds are extremely useful in organic synthesis. In this perspective, a focused discussion on some recent advancements in C–Br bond-forming reactions is presented.1 Introduction2 Selected Recent Advances2.1 Catalytic Asymmetric Bromopolycyclization of Olefinic Substrates2.2 Catalytic Asymmetric Intermolecular Bromination2.3 Some New Catalysts and Reagents for Bromination2.4 Catalytic Site-Selective Bromination of Aromatic Compounds2.5 sp3 C–H Bromination via Atom Transfer/Cross-Coupling3 Outlook
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Sundaravelu, Nallappan, Subramani Sangeetha und Govindasamy Sekar. „Metal-catalyzed C–S bond formation using sulfur surrogates“. Organic & Biomolecular Chemistry 19, Nr. 7 (2021): 1459–82. http://dx.doi.org/10.1039/d0ob02320e.

Der volle Inhalt der Quelle
Annotation:
This review presents the metal-catalyzed C–S bond-formation reaction to access organosulfur compounds using various sulfur surrogates with an extended discussion on the reaction mechanism, regioselectivity of product and pharmaceutical application.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Prabhu, Achutha, Jorge S. Dolado, Eddie A. B. Koenders, Rafael Zarzuela, María J. Mosquera, Ines Garcia-Lodeiro und María Teresa Blanco-Varela. „A patchy particle model for C-S-H formation“. Cement and Concrete Research 152 (Februar 2022): 106658. http://dx.doi.org/10.1016/j.cemconres.2021.106658.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Huang, Zhiliang, Dongchao Zhang, Xiaotian Qi, Zhiyuan Yan, Mengfan Wang, Haiming Yan und Aiwen Lei. „Radical–Radical Cross-Coupling for C–S Bond Formation“. Organic Letters 18, Nr. 10 (06.05.2016): 2351–54. http://dx.doi.org/10.1021/acs.orglett.6b00764.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Suzuki, Kazutaka, Tadahiro Nishikawa und Suketoshi Ito. „Formation and carbonation of C-S-H in water“. Cement and Concrete Research 15, Nr. 2 (März 1985): 213–24. http://dx.doi.org/10.1016/0008-8846(85)90032-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Broniowska, Katarzyna A., Agnes Keszler, Swati Basu, Daniel B. Kim-Shapiro und Neil Hogg. „Cytochrome C-Mediated Formation of S-Nitrosothiol in Cells“. Free Radical Biology and Medicine 51 (November 2011): S156. http://dx.doi.org/10.1016/j.freeradbiomed.2011.10.208.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Li, Jianxiao, Shaorong Yang, Wanqing Wu und Huanfeng Jiang. „Recent developments in palladium-catalyzed C–S bond formation“. Organic Chemistry Frontiers 7, Nr. 11 (2020): 1395–417. http://dx.doi.org/10.1039/d0qo00377h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Bahekar, Sushilkumar S., Aniket P. Sarkate, Vijay M. Wadhai, Pravin S. Wakte und Devanand B. Shinde. „CuI catalyzed C S bond formation by using nitroarenes“. Catalysis Communications 41 (November 2013): 123–25. http://dx.doi.org/10.1016/j.catcom.2013.07.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Manzano, H., A. Ayuela und J. S. Dolado. „On the formation of cementitious C–S–H nanoparticles“. Journal of Computer-Aided Materials Design 14, Nr. 1 (23.01.2007): 45–51. http://dx.doi.org/10.1007/s10820-006-9030-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Xu, Yulong, Xiaonan Shi und Lipeng Wu. „tBuOK-triggered bond formation reactions“. RSC Advances 9, Nr. 41 (2019): 24025–29. http://dx.doi.org/10.1039/c9ra04242c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Peng, Kang, Ming-Yuan Gao, Yu-Yan Yi, Jia Guo und Zhi-Bing Dong. „Copper/Nickel-Catalyzed Selective C-S/S-S Bond Formation Starting from O -Alkyl Phenylcarbamothioates“. European Journal of Organic Chemistry 2020, Nr. 11 (11.03.2020): 1665–72. http://dx.doi.org/10.1002/ejoc.201901884.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Xu, Jian, Fan Zhang, Shifan Zhang, Li Zhang, Xiaoxia Yu, Jianxiang Yan und Qiuling Song. „Radical Promoted C(sp2)–S Formation and C(sp3)–S Bond Cleavage: Access to 2-Substituted Thiochromones“. Organic Letters 21, Nr. 4 (28.01.2019): 1112–15. http://dx.doi.org/10.1021/acs.orglett.9b00023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Zhang, Ning, Lingling Miao, Yu Yang, Guohang Duan, Linlin Shi, Xin‐Qi Hao, Mao‐Ping Song, Yan Xu und Xinju Zhu. „Assembly of Highly Functionalized Allylic Sulfones via a Stereoselective Pd‐Catalyzed Sequential C−C/C−S Cleavage and C−S Formation Process“. ChemistrySelect 6, Nr. 19 (17.05.2021): 4736–40. http://dx.doi.org/10.1002/slct.202101190.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Gao, Jian, Jie Feng und Ding Du. „Shining Light on C−S Bonds: Recent Advances in C−C Bond Formation Reactions via C−S Bond Cleavage under Photoredox Catalysis“. Chemistry – An Asian Journal 15, Nr. 22 (14.10.2020): 3637–59. http://dx.doi.org/10.1002/asia.202000905.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Núñez, Oswaldo, José Rodríguez und Larry Angulo. „Kinetic study of the formation and rupture of stable tetrahedral intermediates. CO, CN and CS bond formation“. Journal of Physical Organic Chemistry 7, Nr. 2 (Februar 1994): 80–89. http://dx.doi.org/10.1002/poc.610070205.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Amekura, H., K. Narumi, A. Chiba, Y. Hirano, K. Yamada, S. Yamamoto, N. Ishikawa, N. Okubo, M. Toulemonde und Y. Saitoh. „Mechanism of ion track formation in silicon by much lower energy deposition than the formation threshold“. Physica Scripta 98, Nr. 4 (06.03.2023): 045701. http://dx.doi.org/10.1088/1402-4896/acbbf5.

Der volle Inhalt der Quelle
Annotation:
Abstract Mechanism of the ion track formation in crystalline silicon (c-Si) is discussed, particularly under 1–9 MeV C60 ion irradiation. In this energy region, the track formation was not expected because the energy E was much lower than the threshold of E th = 17 MeV determined by extrapolation from higher energy data in the past literature. The track formation is different between irradiations of C60 ions and of monoatomic ions: The tracks were observed under 3 MeV C60 ion irradiation but not under 200 MeV Xe ions, while both the irradiations have the same electronic stopping (S e) of 14 keV nm−1 but much higher nuclear stopping (S n) for the former ions. The involvement of S n is suggested for the C60 ions. While the inelastic thermal spike (i-TS) calculations predict that the high energy monoatomic ion irradiation forms the tracks, the tracks have never been experimentally detected, suggesting quick annihilation of the tracks by highly enhanced recrystallization in c-Si. Exceptions are C60 ions of 1–9 MeV, where the track radii are well reproduced by the i-TS theory with assuming the melting transition. Collisional damage induced by the high S n from C60 ions obstructs the recrystallization in c-Si. Then the tracks formed by the melting transition survive against the recrystallization. This is a new type of the synergy effect between S e and S n, different from the already-known mechanisms, i.e., the pre-damage effect and the unified thermal spike. While c-Si was believed as a radiation-hard material in the S e regime with high S e threshold, this study suggests that c-Si has a low S e threshold but with efficient recrystallization.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Hesse, Stéphanie, und Gilbert Kirsch. „Palladium-Catalyzed C-C Bond Formation from β-Chloroacroleins in Aqueous Media“. Synthesis 2001, Nr. 05 (2001): 0755–58. http://dx.doi.org/10.1055/s-2001-12775.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Macabeo, Allan. „Synthetic Uses of Chlorotitanium(IV) Triisopropoxide in C-C(N) Bond Formation“. Synlett 2008, Nr. 20 (24.11.2008): 3247–48. http://dx.doi.org/10.1055/s-0028-1083139.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Sieber, Joshua D., und Toolika Agrawal. „Recent Developments in C–C Bond Formation Using Catalytic Reductive Coupling Strategies“. Synthesis 52, Nr. 18 (25.05.2020): 2623–38. http://dx.doi.org/10.1055/s-0040-1707128.

Der volle Inhalt der Quelle
Annotation:
Metal-catalyzed reductive coupling processes have emerged as a powerful methodology for the introduction of molecular complexity from simple starting materials. These methods allow for an orthogonal approach to that of redox-neutral strategies for the formation of C–C bonds by enabling cross-coupling of starting materials not applicable to redox-neutral chemistry. This short review summarizes the most recent developments in the area of metal-catalyzed reductive coupling utilizing catalyst turnover by a stoichiometric reductant that becomes incorporated in the final product.1 Introduction2 Ni Catalysis3 Cu Catalysis4 Ru, Rh, and Ir Catalysis4.1 Alkenes4.2 1,3-Dienes4.3 Allenes4.4 Alkynes4.5 Enynes5 Fe, Co, and Mn Catalysis6 Conclusion and Outlook
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Haag, Rainer, Dietmar Kuck, Xiao-Yong Fu, James M. Cook und Armin de Meijere. „Facile Formation of Dihydroacepentalenediide fromcentro-Substituted Tribenzotriquinacenes with C-C Bond Cleavage“. Synlett 1994, Nr. 05 (1994): 340–42. http://dx.doi.org/10.1055/s-1994-22846.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Kobayashi, S., U. Schneider und H. Dao. „Indium(I)-Catalyzed C-C Bond Formation between Allyl Boronates and Acetals“. Synfacts 2010, Nr. 09 (23.08.2010): 1055. http://dx.doi.org/10.1055/s-0030-1257900.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Flood, Dillon T., Xuejing Zhang, Xiang Fu, Zhenxiang Zhao, Shota Asai, Brittany B. Sanchez, Emily J. Sturgell et al. „RASS‐Enabled S/P−C and S−N Bond Formation for DEL Synthesis“. Angewandte Chemie 132, Nr. 19 (11.03.2020): 7447–53. http://dx.doi.org/10.1002/ange.201915493.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie