Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Forensic genetics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Forensic genetics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Forensic genetics"
Smith, Lindsay A., und Vivette García-Deister. „Genetic syncretism: Latin American forensics and global indigenous organizing“. BioSocieties 16, Nr. 4 (05.11.2021): 447–69. http://dx.doi.org/10.1057/s41292-021-00263-3.
Der volle Inhalt der QuelleMorling, Niels. „Forensic genetics“. Lancet 364 (Dezember 2004): 10–11. http://dx.doi.org/10.1016/s0140-6736(04)17621-6.
Der volle Inhalt der QuelleLi, Chengtao. „Forensic genetics“. Forensic Sciences Research 3, Nr. 2 (03.04.2018): 103–4. http://dx.doi.org/10.1080/20961790.2018.1489445.
Der volle Inhalt der QuelleVitoševic, Katarina, Danijela Todorovic, Zivana Slovic, Radica Zivkovic-Zaric und Milos Todorovic. „Forensic Genetics and Genotyping“. Serbian Journal of Experimental and Clinical Research 20, Nr. 2 (01.06.2019): 75–86. http://dx.doi.org/10.1515/sjecr-2016-0074.
Der volle Inhalt der QuelleKowalczyk, Marek, Ewelina Zawadzka, Dariusz Szewczuk, Magdalena Gryzińska und Andrzej Jakubczak. „Molecular markers used in forensic genetics“. Medicine, Science and the Law 58, Nr. 4 (30.09.2018): 201–9. http://dx.doi.org/10.1177/0025802418803852.
Der volle Inhalt der QuelleJorge, Rodríguez. „Forensic Genetics as a Tool for Forensic Investigation at the Crime Scene“. International Journal of Forensic Sciences 8, Nr. 2 (2023): 1–5. http://dx.doi.org/10.23880/ijfsc-16000303.
Der volle Inhalt der QuelleLinacre, Adrian. „Animal Forensic Genetics“. Genes 12, Nr. 4 (01.04.2021): 515. http://dx.doi.org/10.3390/genes12040515.
Der volle Inhalt der QuelleAmorim, Antonio. „Nonhuman forensic genetics“. Forensic Science International: Genetics Supplement Series 7, Nr. 1 (Dezember 2019): 44–46. http://dx.doi.org/10.1016/j.fsigss.2019.09.019.
Der volle Inhalt der QuelleCrysup, Benjamin, August E. Woerner, Jonathan L. King und Bruce Budowle. „Graph Algorithms for Mixture Interpretation“. Genes 12, Nr. 2 (27.01.2021): 185. http://dx.doi.org/10.3390/genes12020185.
Der volle Inhalt der QuelleKayser, Manfred, und Walther Parson. „Transitioning from Forensic Genetics to Forensic Genomics“. Genes 9, Nr. 1 (22.12.2017): 3. http://dx.doi.org/10.3390/genes9010003.
Der volle Inhalt der QuelleDissertationen zum Thema "Forensic genetics"
Tillmar, Andreas. „Populations and Statistics in Forensic Genetics“. Doctoral thesis, Linköpings universitet, Institutionen för klinisk och experimentell medicin, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-54742.
Der volle Inhalt der QuelleSantos, Leonardo Soriano de Mello 1976. „Viabilidade da utilização de amostras biologicas obtidas de dentes humanos para obtenção de perfis geneticos de DNA“. [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/290762.
Der volle Inhalt der QuelleDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba
Made available in DSpace on 2018-08-12T19:58:07Z (GMT). No. of bitstreams: 1 Santos_LeonardoSorianodeMello_M.pdf: 882529 bytes, checksum: a98503a69a38c35d2491b2e9cd210308 (MD5) Previous issue date: 2009
Resumo: Alguns fatores relacionados ao estado e lugares que dentes humanos se encontram, nos que diz respeito a estes enquanto amostras com finalidade forense, ainda constituem desafio ao que tange o uso dos mesmos como material para obtenção de perfis genéticos de DNA. Este estudo visou comparar a extração de DNA feita a partir de dentes humanos com a extração por meios de amostras de sangue fixadas em papel FTA® utilizadas como grupo controle, de maneira a comparar os alelos mapeados e definir se os dentes constituem nestas circunstâncias, fonte viável de amostras para obtenção de perfis genéticos, comparando os protocolos. Dezoito participantes foram abordados e, aceitaram participar da pesquisa por meio de TCLE's, doaram voluntariamente amostras de sangue e os elementos dentários terceiros molares superiores direitos, estes indicados para exodontia por outros profissionais. Verificou-se que os dentes humanos constituíram fontes viáveis de acordo com a análise estatística realizada (Teste de Poisson), onde p<0,0001, entretanto quando comparado com o protocolo de extração de material genético através do sangue, deixa de ser viável devido ao número de passos necessários para a obtenção dos resultados. Ainda, 78,125% dos alelos possíveis de serem mapeados, o foram com sucesso
Abstract: Several factors related to how and where human teeth are found in forensic cases still a challenge to obtain genetic DNA profiles, as using theses elements as source for genetic material. This study aimed to compare the DNA extraction done through blood stains in FTA® paper cards, used as control group, and compare the mapped alleles from these to ones extracted from human teeth samples, as the simplicity of theses protocols when in comparison. Eighteen participants were convinced to join this study. Blood samples and superior right third molars (element 18) were donated. As result, teeth provided good sources of biologic sampling to obtain genetic profiles when analyzed by Poisson statistic analysis (p<0,0001), however, when compared to genetic material extraction protocol by blood, teeth analysis is no longer viable due to extensive laboratorial steps in order to gain the same results. Also 78,125% of the possible locci to be mapped and amplified were indeed
Mestrado
Odontologia Legal e Deontologia
Mestre em Biologia Buco-Dental
Gettings, Katherine Butler. „Forensic Ancestry and Phenotype SNP Analysis and Integration with Established Forensic Markers“. Thesis, The George Washington University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3590467.
Der volle Inhalt der QuelleWhen an evidential DNA profile does not match identified suspects or profiles from available databases, further DNA analyses targeted at inferring the possible ancestral origin and phenotypic characteristics of the perpetrator could yield valuable information. Single Nucleotide Polymorphisms (SNPs), the most common form of genetic polymorphisms, have alleles associated with specific populations and/or correlated to physical characteristics. With this research, single base primer extension (SBE) technology was used to develop a 50 SNP assay designed to predict ancestry among the primary U.S. populations (African American, East Asian, European, and Hispanic/Native American), as well as pigmentation phenotype. The assay has been optimized to a sensitivity level comparable to current forensic DNA analyses, and has shown robust performance on forensic-type samples. In addition, three prediction models were developed and evaluated for ancestry in the U.S. population, and two models were compared for eye color prediction, with the best models and interpretation guidelines yielding correct information for 98% and 100% of samples, respectively. Also, because data from additional DNA markers (STR, mitochondrial and/or Y chromosome DNA) may be available for a forensic evidence sample, the possibility of including this data in the ancestry prediction was evaluated, resulting in an improved prediction with the inclusion of STR data and decreased performance when including mitochondrial or Y chromosome data. Lastly, the possibility of using next-generation sequencing (NGS) to genotype forensic STRs (and thus, the possibility of a multimarker multiplex incorporating all forensic markers) was evaluated on a new platform, with results showing the technology incapable of meeting the needs of the forensic community at this time.
Nilsson, Martina. „Mitochondrial DNA in Sensitive Forensic Analysis“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7458.
Der volle Inhalt der QuelleAndréasson, Hanna. „Sensitive Forensic DNA Analysis : Application of Pyrosequencing and Real-time PCR Quantification“. Doctoral thesis, Uppsala University, Department of Genetics and Pathology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5775.
Der volle Inhalt der QuelleThe field of forensic genetics is growing fast and the development and optimisation of more sensitive, faster and more discriminating forensic DNA analysis methods is highly important. In this thesis, an evaluation of the use of novel DNA technologies and the development of specific applications for use in forensic casework investigations are presented.
In order to maximise the use of valuable limited DNA samples, a fast and user-friendly Real-time PCR quantification assay, of nuclear and mitochondrial DNA copies, was developed. The system is based on the 5’ exonuclease detection assay and was evaluated and successfully used for quantification of a number of different evidence material types commonly found on crime scenes. Furthermore, a system is described that allows both nuclear DNA quantification and sex determination in limited samples, based on intercalation of the SYBR Green dye to double stranded DNA.
To enable highly sensitive DNA analysis, Pyrosequencing of short stretches of mitochondrial DNA was developed. The system covers both control region and coding region variation, thus providing increased discrimination power for mitochondrial DNA analysis. Finally, due to the lack of optimal assays for quantification of mitochondrial DNA mixture, an alternative use of the Pyrosequencing system was developed. This assay allows precise ratio quantification of mitochondrial DNA in samples showing contribution from more than one individual.
In conclusion, the development of optimised forensic DNA analysis methods in this thesis provides several novel quantification assays and increased knowledge of typical DNA amounts in various forensic samples. The new, fast and sensitive mitochondrial DNA Pyrosequencing assay was developed and has the potential for increased discrimination power.
Divne, Anna-Maria. „Evaluation of New Technologies for Forensic DNA Analysis“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5744.
Der volle Inhalt der QuelleReid, Kate Megan. „Forensic human identification: Generating Y-STR data for the South African population“. Master's thesis, Faculty of Health Sciences, 2018. http://hdl.handle.net/11427/30060.
Der volle Inhalt der QuelleTully, Gillian. „DNA profiling for forensic identification : evaluation of polymerase chain reaction methods“. Thesis, Cardiff University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264882.
Der volle Inhalt der QuelleBashir, Majid. „Application of autosomal INDELs as a forensic tool in Qatar“. Thesis, University of Central Lancashire, 2016. http://clok.uclan.ac.uk/15480/.
Der volle Inhalt der QuelleTau, Tiroyamodimo. „A forensic analysis of genetic variation in the Botswana population“. University of the Western cape, 2016. http://hdl.handle.net/11394/5657.
Der volle Inhalt der QuelleThis thesis has been placed under a long term embargo. Forensic and population genetic parameters were investigated in the Botswana population using autosomal and Y-chromosome short tandem repeat markers. AmpFlSTR Profiler plus markers were used to investigate the genetic diversity and forensic parameters in 773 individuals from Botswana from the reference database of the Botswana Police. The levels of polymorphism found using the AmpFlSTR Profiler Plus markers showed that the nine loci that make up the AmpFlSTR Profiler Plus can differentiate individuals for forensic casework in the Botswana population. AmpFlSTR Identifiler autosomal STR markers were used to investigate the population structure according to ethno-linguistics and geography 990 individuals from Botswana that serve as a reference database for the Botswana Police. Using pairwise genetic distances (Fst), analysis of molecular variance (AMOVA), factorial correspondence analysis (FCA), and the unsupervised Bayesian clustering method found in STRUCTURE and the landscape genetics software TESS, ethno-linguistics were found to have a greater influence on population structure than geography. The patterns of population structure found using these markers highlight the need for regional reference databases that include both ethnolinguistic and geographic location information. These markers have important potential for bio-anthropological studies as well as for forensic applications. The 17 Y-chromosomal short tandem repeats found in AmpFlSTR Y-filer and a highly discriminatory Y-STR genotyping system (the Y-STR 10-plex developed in the Forensics DNA Laboratory at the University of the Western Cape) were analysed in 249 unrelated male individuals from Botswana. Rst, multi-dimensional scaling (MDS) and AMOVA were used to investigate population differentiation in Botswana. The discrimination capacity (DC) was found to be higher using the Y-STR 10-plex as compared to the 17 markers in the Y-filer genotyping system. No geographic regional or ethnic differentiation was observed between the Northern and Southern regions of Botswana using both marker systems. Regional and ethnic variation can be useful in forensic working hypotheses. Cluster analysis using the highly discriminatory Y-STR 10-plex haplotypes may provide information about ancestry and haplogroup information.
National Research Foundation (NRF)
Bücher zum Thema "Forensic genetics"
Fabricio, González Andrade, Hrsg. Forensic genetics research progress. Hauppauge, N.Y: Nova Science, 2009.
Den vollen Inhalt der Quelle findenGoodwin, William. An Introduction To Forensic Genetics. S.l: Wiley & Sons, 2007.
Den vollen Inhalt der Quelle findenWilliam, Goodwin. An introduction to forensic genetics. Chichester, West Sussex, England: John Wiley and Sons, 2007.
Den vollen Inhalt der Quelle findenAdrian, Linacre, und Hadi Sibte, Hrsg. An introduction to forensic genetics. 2. Aufl. Chichester, West Sussex, UK: Wiley-Blackwell, 2011.
Den vollen Inhalt der Quelle findenAlonso, Antonio, Hrsg. DNA Electrophoresis Protocols for Forensic Genetics. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-461-2.
Der volle Inhalt der QuelleCongress, International Society for Forensic Genetics. Progress in forensic genetics 11: Proceedings of the 21st International ISFG Congress held in Ponta Delgada, the Azores, Portugal between 13 and 16 September 2005. Amsterdam: Elsevier, 2006.
Den vollen Inhalt der Quelle findenBoem, Federico, und Luca Marelli. Elementi per una genetica forense. Milano: Bruno Mondadori, 2012.
Den vollen Inhalt der Quelle findenMachado, Helena, und Rafaela Granja. Forensic Genetics in the Governance of Crime. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2429-5.
Der volle Inhalt der QuelleRandi, Ettore. Forensic genetics and the Washington Convention CITES. Ozzano dell'Emilia (Bologna)]: Ministero dell'ambiente e della tutela del territorio, Direzione conservazione della natura natura, 2002.
Den vollen Inhalt der Quelle findenMachado, Helena. Forensic Genetics in the Governance of Crime. Singapore: Springer Nature, 2020.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Forensic genetics"
Schanfield, Moses S., Dragan Primorac und Damir Marjanović. „Basic Genetics and Human Genetic Variation“. In Forensic DNA Applications, 3–44. 2. Aufl. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.4324/9780429019944-2.
Der volle Inhalt der QuelleSessa, Francesco, Francesca Maglietta, Alessio Asmundo und Cristoforo Pomara. „Forensic Genetics and Genomic“. In Forensic and Clinical Forensic Autopsy, 177–92. Second edition. | Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.4324/9781003048114-5.
Der volle Inhalt der QuelleMatsusue, Aya, und Shin-ichi Kubo. „Genetics in Forensic Science“. In Forensic Medicine and Human Cell Research, 105–21. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2297-6_7.
Der volle Inhalt der QuelleWilson-Kovacs, Dana. „Deliberating forensic genetics innovations“. In Law, Practice and Politics of Forensic DNA Profiling, 111–26. London: Routledge, 2022. http://dx.doi.org/10.4324/9780429322358-10.
Der volle Inhalt der QuelleMachado, Helena, und Rafaela Granja. „Forensic Genetics and Genetic Surveillance in Europe“. In Genetic Surveillance and Crime Control, 22–48. London: Routledge, 2021. http://dx.doi.org/10.4324/9780429261435-2.
Der volle Inhalt der QuelleBaur, Max P. „Population Genetics: Mathematical Problems“. In Advances in Forensic Haemogenetics, 534. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73330-7_109.
Der volle Inhalt der QuelleCambon-Thomsen, A., und E. Ohayon. „Practical Application of Population Genetics: The Genetic Survey “Provinces Françaises”“. In Advances in Forensic Haemogenetics, 535–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73330-7_110.
Der volle Inhalt der QuelleZaya, David N., und Mary V. Ashley. „Plant Genetics for Forensic Applications“. In Methods in Molecular Biology, 35–52. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-609-8_4.
Der volle Inhalt der QuelleWilliams, Erin D. „Some Ethical Issues in Forensic Genetics“. In Forensic DNA Applications, 449–58. 2. Aufl. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.4324/9780429019944-25.
Der volle Inhalt der QuelleMayr, W. R. „Population genetics, a short introduction“. In Advances in Forensic Haemogenetics, 531–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73330-7_108.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Forensic genetics"
Chauhan, Namrata, und Ranjit Kumar. „Forensic Genetics Genealogy -The Genetic Blueprint: Dissecting the Interplay of Relationship Inference, Database Accessibility, and Ethical Concerns in Forensic Genealogy“. In 2024 MIT Art, Design and Technology School of Computing International Conference (MITADTSoCiCon). IEEE, 2024. http://dx.doi.org/10.1109/mitadtsocicon60330.2024.10575817.
Der volle Inhalt der QuelleUdina, I. G., A. S. Gacheva, Yu А. Vasiliev, O. V. Gulenko und O. L. Kurbatova. „GENETIC DEMOGRAPHIC APPROACH FOR CREATING FORENSIC DATA BASES FOR POPULATION OF MEGALOPOLIS“. In NOVEL TECHNOLOGIES IN MEDICINE, BIOLOGY, PHARMACOLOGY AND ECOLOGY. LLC Institute Information Technologies, 2023. http://dx.doi.org/10.47501/978-5-6044060-3-8.195-201.
Der volle Inhalt der QuelleRafael, Amanda Sousa Torres. „A IMPORTÂNCIA DA GENÉTICA NA PERÍCIA FORENSE“. In I Congresso Nacional de Pesquisas e Estudos Genéticos On-line. Revista Multidisciplinar em Saúde, 2022. http://dx.doi.org/10.51161/geneticon/9113.
Der volle Inhalt der QuelleBallerini, Lucia, Oscar Cordon, Sergio Damas, Jose Santamaria, Inmaculada Aleman und Miguel Botella. „Craniofacial Superimposition in Forensic Identification using Genetic Algorithms“. In Third International Symposium on Information Assurance and Security. IEEE, 2007. http://dx.doi.org/10.1109/isias.2007.4299811.
Der volle Inhalt der QuelleBallerini, Lucia, Oscar Cordon, Sergio Damas, Jose Santamaría, Inmaculada Aleman und Miguel Botella. „Craniofacial Superimposition in Forensic Identification using Genetic Algorithms“. In Third International Symposium on Information Assurance and Security. IEEE, 2007. http://dx.doi.org/10.1109/ias.2007.80.
Der volle Inhalt der QuelleOreski, Dijana, und Darko Androcec. „Genetic algorithm and artificial neural network for network forensic analytics“. In 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). IEEE, 2020. http://dx.doi.org/10.23919/mipro48935.2020.9245140.
Der volle Inhalt der QuelleTamjidyamcholo, Alireza. „Information security risk reduction based on genetic algorithm“. In 2012 International Conference on Cyber Security, Cyber Warfare and Digital Forensic (CyberSec). IEEE, 2012. http://dx.doi.org/10.1109/cybersec.2012.6246088.
Der volle Inhalt der QuelleAltay, Osman, Mustafa Ulas, Mahmut OZER und Ece GENC. „An Expert System to Predict Warfarin Dosage in Turkish Patients Depending on Genetic and Non-Genetic Factors“. In 2019 7th International Symposium on Digital Forensics and Security (ISDFS). IEEE, 2019. http://dx.doi.org/10.1109/isdfs.2019.8757526.
Der volle Inhalt der QuelleZhiming, Liu, Wang Cheng und Li Jiang. „Solving Constrained Optimization via a Modified Genetic Particle Swarm Optimization“. In 1st International ICST Conference on Forensic Applications and Techniques in Telecommunications, Information and Multimedia. ACM, 2008. http://dx.doi.org/10.4108/wkdd.2008.2663.
Der volle Inhalt der QuelleKronick, Mel N. „The Use of Air-Cooled Argon Ion Lasers in Automated Genetic Analysis“. In Compact Blue-Green Lasers. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/cbgl.1993.ctub.1.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Forensic genetics"
Velsko, S. Bacterial Population Genetics in a Forensic Context. Office of Scientific and Technical Information (OSTI), November 2009. http://dx.doi.org/10.2172/972405.
Der volle Inhalt der QuelleJackson, Paul J., und Karen K. Hill. Forensic assays of ricin: development of snp assays to generate precise genetic signatures for mixed genotypes found in ricin preparations. Office of Scientific and Technical Information (OSTI), November 2009. http://dx.doi.org/10.2172/1127183.
Der volle Inhalt der Quelle