Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Forced cooling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Forced cooling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Forced cooling"
M. D. Boyette. „Forced-air Cooling Packaged Blueberries“. Applied Engineering in Agriculture 12, Nr. 2 (1996): 213–17. http://dx.doi.org/10.13031/2013.25641.
Der volle Inhalt der QuelleWang, Li Ping, Dong Rong Liu und Er Jun Guo. „Modeling of Heat Transfer in Spent-Nuclear-Fuel Container during Forced-Chilling Process“. Advanced Materials Research 291-294 (Juli 2011): 2342–51. http://dx.doi.org/10.4028/www.scientific.net/amr.291-294.2342.
Der volle Inhalt der QuelleDavalath, J., und Y. Bayazitoglu. „Forced Convection Cooling Across Rectangular Blocks“. Journal of Heat Transfer 109, Nr. 2 (01.05.1987): 321–28. http://dx.doi.org/10.1115/1.3248083.
Der volle Inhalt der QuelleChang, Baohua, Shuo Yang, Guan Liu, Wangnan Li, Dong Du und Ninshu Ma. „Influences of Cooling Conditions on the Liquation Cracking in Laser Metal Deposition of a Directionally Solidified Superalloy“. Metals 10, Nr. 4 (02.04.2020): 466. http://dx.doi.org/10.3390/met10040466.
Der volle Inhalt der QuelleAghajani Derazkola, Hamed, Eduardo García, Arameh Eyvazian und Mohammad Aberoumand. „Effects of Rapid Cooling on Properties of Aluminum-Steel Friction Stir Welded Joint“. Materials 14, Nr. 4 (14.02.2021): 908. http://dx.doi.org/10.3390/ma14040908.
Der volle Inhalt der QuelleChe Sidik, Nor Azwadi, und Shahin Salimi. „The Use of Compound Cooling Holes for Film Cooling at the End Wall of Combustor Simulator“. Applied Mechanics and Materials 695 (November 2014): 371–75. http://dx.doi.org/10.4028/www.scientific.net/amm.695.371.
Der volle Inhalt der QuelleOH, DEOGHWAN, DOUGLAS L. MARSHALL, MICHAEL W. MOODY und J. DAVID BANKSTON. „Comparison of Forced-air Cooling with Static-air Cooling on the Microbiological Quality of Cooked Blue Crabs1“. Journal of Food Protection 55, Nr. 2 (01.02.1992): 104–7. http://dx.doi.org/10.4315/0362-028x-55.2.104.
Der volle Inhalt der QuelleLv, Nan, Sheng Li Li, Yong Long Jin, Xin Gang Ai und Dong Wei Zhang. „Solidification Simulation of Large Flat Ingot in Different Intensive Cooling Conditions“. Advanced Materials Research 430-432 (Januar 2012): 517–20. http://dx.doi.org/10.4028/www.scientific.net/amr.430-432.517.
Der volle Inhalt der QuelleIncropera, F. P. „Convection Heat Transfer in Electronic Equipment Cooling“. Journal of Heat Transfer 110, Nr. 4b (01.11.1988): 1097–111. http://dx.doi.org/10.1115/1.3250613.
Der volle Inhalt der QuelleWietrzak, A., und D. Poulikakos. „Turbulent forced convective cooling of microelectronic devices“. International Journal of Heat and Fluid Flow 11, Nr. 2 (Juni 1990): 105–13. http://dx.doi.org/10.1016/0142-727x(90)90003-t.
Der volle Inhalt der QuelleDissertationen zum Thema "Forced cooling"
Meana, Melvin Bernabe. „Forced-air cooling of strawberries in reusable plastic containers“. [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0011867.
Der volle Inhalt der QuelleDiette, Christophe. „Measurement and analysis of forced convection phenomena in blade cooling channels“. Valenciennes, 2003. http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/c76547a4-820c-48f8-9717-ced740f0cb38.
Der volle Inhalt der QuelleEn matière de moteurs d'avion à turbine à gaz, une Température d'Entrée de Turbine (TET) aussi élevée que possible est souhaitée. Augmenter sa valeur permet en effet d'obtenir un rendement thermodynamique plus élevé tout en réduisant le rapport poids-poussée et la consommation spécifique (SFC). Parce que la TET maximum permise est liée aux limites de température supportées par les composants de la turbine, le choix des matériaux et la conception des circuits de refroidissement d'aubes sont cruciaux. Cette recherche rend compte d'une étude expérimentale et numérique sur les cavités internes de refroidissement d'aubes. Des sections de passage différentes sont examinées, en fonction de la région de l'aube à refroidir. Plusieurs paramètres en ce qui concerne les promoteurs de turbulence et les conditions de l'écoulement, sont variés pour définir une solution optimale en termes de transfert de chaleur et pertes de charges. Des simulations numériques sont réalisées pour appuyer l'analyse de l'écoulement. La comparaison de ces résultats avec les mesures aérodynamiques se révèle très satisfaisante. Enfin, des diagrammes sont proposés, pour décrire l'écoulement dans chaque cavité étudiée. De cette étude, il ressort une meilleure compréhension des phénomènes mis en jeu dans les cavités de refroidissement, ainsi qu'une base de données détaillée. Cette dernière est utile pour la validation de codes de calcul et l'optimisation des systèmes de refroidissement
Racine, Evan Michael. „Experimental Study - High Altitude Forced Convective Cooling of Electromechanical Actuation Systems“. University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1450286609.
Der volle Inhalt der QuelleFaust, Adriane (Adriane Jean) 1976. „Forced convective heat transfer to supercritical water in micro-rocket cooling passages“. Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/9296.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 101-102).
An investigation of heat transfer to supercritical fluids in micro-channels was completed to assess the cooling characteristics of the MIT micro-rocket engine. Previous results from supercritical ethanol heat transfer tests were compared to water tests to establish a baseline for future fuel testing. Existing literature on supercritical heat transfer was also consulted to corroborate the water test results. It was found that the characteristics of the water tests matched those observed in the literature, as well as those of ethanol tests run at similar conditions.
by Adriane Faust.
S.M.
Arani, Sassan Abedi. „Experimental and computational investigation of forced convection cooling of rectangular blocks in a duct“. Thesis, University of Bath, 1992. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305056.
Der volle Inhalt der QuelleWright, Lesley Mae. „Experimental investigation of turbine blade platform film cooling and rotational effect on trailing edge internal cooling“. [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1826.
Der volle Inhalt der QuelleDietz, Carter Reynolds. „Single-phase forced convection in a microchannel with carbon nanotubes for electronic cooling applications“. Thesis, Available online, Georgia Institute of Technology, 2007, 2007. http://etd.gatech.edu/theses/available/etd-07052007-155623/.
Der volle Inhalt der QuelleDr. David Gerlach, Committee Member ; Dr. Samuel Graham, Committee Member ; Dr. Minami Yoda, Committee Member ; Dr. Yogendra Joshi, Committee Chair.
Jonsson, Hans. „Turbulent forced convection air cooling of electronics with heat sinks under flow bypass conditions /“. Stockholm : Tekn. högsk, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3127.
Der volle Inhalt der QuelleRatts, Eric B. (Eric Bradley) 1963. „Cooling enhancement of forced convection air cooled chip array through active and passive flow modulation“. Thesis, Massachusetts Institute of Technology, 1986. http://hdl.handle.net/1721.1/15072.
Der volle Inhalt der QuelleDehghannya, Jalal. „Mathematical modeling of airflow, heat and mass transfer during forced convection cooling of produce in ventilated packages“. Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=115663.
Der volle Inhalt der QuelleIn this study, mathematical models of simultaneous airflow, heat and mass transfer during forced convection cooling process were developed and validated with experimental data. The study showed that produce cooling is strongly influenced by different ventilated package designs. Generally, cooling uniformity was increased by increasing number of vents from 1 (2.4% vent area) to 5 (12.1% vent area). More uniform produce cooling was obtained at less cooling time when vents were uniformly distributed on package walls with at least 4.8% opening areas. Aerodynamic studies showed that heterogeneity of airflow distribution during the process is strongly influenced by different package vent configurations. The highest cooling heterogeneity index (108%) was recorded at 2.4% vent area whereas lowest heterogeneity index (0%) was detected in a package with 12.1% vent area.
The magnitudes of produce evaporative cooling (EC) and heat generation by respiration (HG) as well as the interactive effects of EC, HG and package vent design on produce cooling time were also investigated. Considerable differences in cooling times were obtained with regard to independent and simultaneous effects of EC and HG in different package vent configurations. Cooling time was increased to about 47% in a package with 1 vent compared to packages with 3 and 5 vents considering simultaneous effects of EC and HG. Therefore, the effects of EC and HG can be influential in designing the forced-air precooling system and consequently, in the accurate determination of cooling time and the corresponding refrigeration load.
Bücher zum Thema "Forced cooling"
Ontario. Ministry of Agriculture and Food. Forced-air rapid cooling of fresh Ontario fruits and vegetables. Toronto, Ont: Ministry of Agriculture and Food, 1991.
Den vollen Inhalt der Quelle findenAmerican Society of Heating, Refrigerating and Air-Conditioning Engineers. Method of testing forced circulation air cooling and air heating coils. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 2000.
Den vollen Inhalt der Quelle findenHaruyama, Tomiyoshi. Pressure drop in forced two phase cooling of the large thin superconducting solenoid. Ibaraki-ken, Japan: National Laboratory for High Energy Physics, 1987.
Den vollen Inhalt der Quelle findenAmerican Society of Mechanical Engineers. Winter Meeting. Symposium on fundamentals of forced convection heat transfer: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Chicago, Illinois, November 27-December 2, 1988. New York, N.Y. (345 E. 47th St., New York 10017): The Society, 1988.
Den vollen Inhalt der Quelle findenAir conditioning the cool and E-Z way: Home owners facts, tips, tests and maintenance for your forced air cooling and heating system. Clearwater, FL: Nova Sun Publishing, 2001.
Den vollen Inhalt der Quelle findenXuereb, André. Optical Cooling Using the Dipole Force. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29715-1.
Der volle Inhalt der Quelleservice), SpringerLink (Online, Hrsg. Optical Cooling Using the Dipole Force. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Den vollen Inhalt der Quelle findenPedersen, Timothy W. Advanced gas cooling technology demonstration program at Air Force installations, fiscal year 1996. [Champaign, IL]: US Army Corps of Engineers, Construction Engineering Research Laboratories, 1997.
Den vollen Inhalt der Quelle findenAdrian, Morgan, Hrsg. Using energy. New York: Facts on File, 1993.
Den vollen Inhalt der Quelle finden1955, Morgan Adrian, Hrsg. Using Energy. London: Evans Bros., 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Forced cooling"
Matisoff, Bernard S. „Forced-Air Cooling Systems“. In Handbook Of Electronics Packaging Design and Engineering, 377–91. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-7047-5_18.
Der volle Inhalt der QuelleLishchenko, N. V., V. P. Larshin und I. V. Marchuk. „Forced Cooling Modeling in Grinding“. In Lecture Notes in Mechanical Engineering, 1140–49. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54817-9_133.
Der volle Inhalt der QuellePoulikakos, D., und A. Wietrzak. „Cooling of a Microelectronic Sensor by Turbulent Forced Convection“. In Cooling of Electronic Systems, 203–24. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1090-7_11.
Der volle Inhalt der QuelleLehmann, Gary L. „Heat Sinks in Forced Convection Cooling“. In Electronics Packaging Forum, 209–28. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-009-0439-2_6.
Der volle Inhalt der QuelleKakaç, S., und R. M. Cotta. „Unsteady Forced Convection in a Duct with and without Arrays of Block-Like Electronic Compoments“. In Cooling of Electronic Systems, 239–75. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1090-7_13.
Der volle Inhalt der QuelleRoy, Krishna, Asis Giri und Maibam Romio Singh. „Experimental Investigation of Forced Convective Cooling of Rectangular Blocks“. In Advances in Mechanical Engineering, 687–97. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0124-1_62.
Der volle Inhalt der QuelleGritsenko, A. V., I. D. Alferova und N. V. Pakhomeev. „The Development of a Liquid Forced Cooling System in a Racecar“. In Lecture Notes in Mechanical Engineering, 362–70. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54814-8_44.
Der volle Inhalt der QuelleKucherera, G., und A. Zingoni. „Free and forced vibration behaviour of cooling towers subjected to wind loading“. In Insights and Innovations in Structural Engineering, Mechanics and Computation, 854–60. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315641645-141.
Der volle Inhalt der QuelleLigrani, Phil. „Full-Coverage Effusion Cooling in External Forced Convection: Sparse and Dense Hole Arrays“. In Handbook of Thermal Science and Engineering, 1–22. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-32003-8_8-1.
Der volle Inhalt der QuelleCai, Meng, Yanfei Bian, Shi Li, Lichao Tong und Shengxuan Wu. „Thermal Design and Optimization for Forced Air Cooling VPX Equipment Based on 6SigmaET“. In Lecture Notes in Electrical Engineering, 445–51. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9441-7_45.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Forced cooling"
Brent A. Anderson, Arnab Sarkar, James F. Thompson und R. Paul Singh. „Forced Air Cooling of Packaged Strawberries“. In 2003, Las Vegas, NV July 27-30, 2003. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2003. http://dx.doi.org/10.13031/2013.14159.
Der volle Inhalt der QuelleMahalingam, Raghav, und Ari Glezer. „Forced Air Cooling With Synthetic Jet Ejectors“. In ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ipack2005-73052.
Der volle Inhalt der QuelleBerthold, Arne, und Frank Haucke. „Experimental Investigation of Dynamically Forced Impingement Cooling“. In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63140.
Der volle Inhalt der QuelleNewell, R., J. Sebby und T. G. Walker. „Forced evaporative cooling in a holographic atom trap“. In Quantum Electronics and Laser Science (QELS). Postconference Digest. IEEE, 2003. http://dx.doi.org/10.1109/qels.2003.238467.
Der volle Inhalt der QuelleBrunschwiler, Thomas, B. Michel, Hugo Rothuizen, U. Kloter, B. Wunderle, H. Oppermann und H. Reichl. „Forced convective interlayer cooling in vertically integrated packages“. In 2008 11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (I-THERM). IEEE, 2008. http://dx.doi.org/10.1109/itherm.2008.4544386.
Der volle Inhalt der QuelleZhou Yang, Zheng Ma, Chune Zhao und Yubai Chen. „Study on Forced-air Pre-cooling of Longan“. In 2007 Minneapolis, Minnesota, June 17-20, 2007. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2007. http://dx.doi.org/10.13031/2013.23011.
Der volle Inhalt der QuelleBAYAZITOGLU, Y., und J. DAVALATH. „Combined forced and free convection cooling of heated blocks“. In 27th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-425.
Der volle Inhalt der QuelleGrochowalska, B., T. Chady und K. Gorący. „Active infrared thermography with forced cooling for composites evaluation“. In 2018 Quantitative InfraRed Thermography. QIRT Council, 2018. http://dx.doi.org/10.21611/qirt.2018.p48.
Der volle Inhalt der QuelleLin, Ruan, Liu Feihui und Dong Haihong. „Instability analysis of forced circulation evaporative cooling ECRIS solenoids“. In 2015 18th International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2015. http://dx.doi.org/10.1109/icems.2015.7385225.
Der volle Inhalt der QuelleZhang, Jian, und Donglai Zhang. „The Calculation of Thermal Resistance for Forced Air Cooling“. In 2015 International Symposium on Material, Energy and Environment Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/ism3e-15.2015.149.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Forced cooling"
Steimke, J. L. Power Limits for Reactor Assemblies in Absence of Forced Cooling. Office of Scientific and Technical Information (OSTI), Oktober 2001. http://dx.doi.org/10.2172/787921.
Der volle Inhalt der QuelleRacine, Evan M. Experimental StudyHigh Altitude Forced Convective Cooling of Electromechanical Actuation Systems. Fort Belvoir, VA: Defense Technical Information Center, Januar 2016. http://dx.doi.org/10.21236/ad1005237.
Der volle Inhalt der QuelleVaishya, Abhishek Lakhanlal, und Sachin Phadnis. Experimental Investigations of Forced Air Cooling for Continuously Variable Transmission (CVT). Warrendale, PA: SAE International, Oktober 2013. http://dx.doi.org/10.4271/2013-32-9073.
Der volle Inhalt der QuelleNanba, Syuichi, Akira Iijima, Hideo Shoji und Koji Yoshida. A Study on Influence of Forced Over Cooling on Diesel Engine Performance. Warrendale, PA: SAE International, November 2011. http://dx.doi.org/10.4271/2011-32-0605.
Der volle Inhalt der QuelleWalker, I. S., G. Degenetais und J. A. Siegel. Simulations of sizing and comfort improvements for residential forced-air heating and cooling systems. Office of Scientific and Technical Information (OSTI), Mai 2002. http://dx.doi.org/10.2172/803755.
Der volle Inhalt der QuelleRudder, F. F. Jr. Thermal expansion of long slender rods with forced convection cooling along the rod length. Gaithersburg, MD: National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.5975.
Der volle Inhalt der QuelleKawaji, Masahiro, Dinesh Kalaga, Sanjoy Banerjee, Richard R. Schultz, Hitesh Bindra und Donals M. McEligot. Experimental Investigation of Forced Convection and Natural Circulation Cooling of a VHTR Core under Normal Operation and Accident Scenarios. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1569844.
Der volle Inhalt der QuelleSiegel, Jeffrey A., Jennifer A. McWilliams und Iain S. Walker. Comparison between predicted duct effectiveness from proposed ASHRAE Standard 152P and measured field data for residential forced air cooling systems. Office of Scientific and Technical Information (OSTI), April 2002. http://dx.doi.org/10.2172/795371.
Der volle Inhalt der QuelleHeller, R., und J. R. Hull. Conceptual design of a 20-kA current lead using forced-flow cooling and Ag-alloy-sheathed Bi-2223 high-temperature superconductors. Office of Scientific and Technical Information (OSTI), November 1994. http://dx.doi.org/10.2172/10194806.
Der volle Inhalt der QuelleBrown, William T., und III. Performance Analysis of Natural Gas, Cooling Technology at Air Force Bases. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1998. http://dx.doi.org/10.21236/ada359312.
Der volle Inhalt der Quelle