Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Foldamer-Protein interaction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Foldamer-Protein interaction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Foldamer-Protein interaction"
Vallade, Maëlle, Post Sai Reddy, Lucile Fischer und Ivan Huc. „Enhancing Aromatic Foldamer Helix Dynamics to Probe Interactions with Protein Surfaces“. European Journal of Organic Chemistry 2018, Nr. 40 (23.10.2018): 5489–98. http://dx.doi.org/10.1002/ejoc.201800855.
Der volle Inhalt der QuelleTsuchiya, Keisuke, Takashi Kurohara, Kiyoshi Fukuhara, Takashi Misawa und Yosuke Demizu. „Helical Foldamers and Stapled Peptides as New Modalities in Drug Discovery: Modulators of Protein-Protein Interactions“. Processes 10, Nr. 5 (06.05.2022): 924. http://dx.doi.org/10.3390/pr10050924.
Der volle Inhalt der QuelleSuhonen, Aku, Heikki Laakkonen und Maija Nissinen. „Structural effects of hinge length variation in a versatile foldamer backbone“. Acta Crystallographica Section A Foundations and Advances 70, a1 (05.08.2014): C1719. http://dx.doi.org/10.1107/s2053273314082801.
Der volle Inhalt der QuelleSadowsky, Jack D., W. Douglas Fairlie, Erik B. Hadley, Hee-Seung Lee, Naoki Umezawa, Zaneta Nikolovska-Coleska, Shaomeng Wang, David C. S. Huang, York Tomita und Samuel H. Gellman. „(α/β+α)-Peptide Antagonists of BH3 Domain/Bcl-xLRecognition: Toward General Strategies for Foldamer-Based Inhibition of Protein−Protein Interactions“. Journal of the American Chemical Society 129, Nr. 1 (Januar 2007): 139–54. http://dx.doi.org/10.1021/ja0662523.
Der volle Inhalt der QuelleWéber, Edit, Péter Ábrányi-Balogh, Tamas A. Martinek, Bence Nagymihály, Dóra Karancsiné Menyhárd, Nikolett Péczka, Márton Gadanecz et al. „Target‐templated Construction of Functional Proteomimetics Using Photo‐foldamer Libraries“. Angewandte Chemie International Edition, 27.09.2024. http://dx.doi.org/10.1002/anie.202410435.
Der volle Inhalt der QuelleWéber, Edit, Péter Ábrányi-Balogh, Tamas A. Martinek, Bence Nagymihály, Dóra Karancsiné Menyhárd, Nikolett Péczka, Márton Gadanecz et al. „Target‐templated Construction of Functional Proteomimetics Using Photo‐foldamer Libraries“. Angewandte Chemie, 27.09.2024. http://dx.doi.org/10.1002/ange.202410435.
Der volle Inhalt der QuelleMarković, Violeta, Jeelan Basha Shaik, Katarzyna Ożga, Agnieszka Ciesiołkiewicz, Juan Lizandra Perez, Ewa Rudzińska-Szostak und Łukasz Berlicki. „Peptide foldamer-based inhibitors of the SARS-CoV-2 S protein–human ACE2 interaction“. Journal of Enzyme Inhibition and Medicinal Chemistry 38, Nr. 1 (21.08.2023). http://dx.doi.org/10.1080/14756366.2023.2244693.
Der volle Inhalt der QuelleDengler, Sebastian, Ryan T. Howard, Vasily Morozov, Christos Tsiamantas, Wei-En Huang, Zhiwei Liu, Christopher Dobrzanski et al. „Display Selection of a Hybrid Foldamer‐Peptide Macrocycle“. Angewandte Chemie, 14.09.2023. http://dx.doi.org/10.1002/ange.202308408.
Der volle Inhalt der QuelleDengler, Sebastian, Ryan T. Howard, Vasily Morozov, Christos Tsiamantas, Wei-En Huang, Zhiwei Liu, Christopher Dobrzanski et al. „Display Selection of a Hybrid Foldamer‐Peptide Macrocycle“. Angewandte Chemie International Edition, 14.09.2023. http://dx.doi.org/10.1002/anie.202308408.
Der volle Inhalt der QuellePuneeth Kumar, DRGKoppalu R., Zahid Manzoor Bhat, Sanjit Dey, Souvik Roy, Souvik Panda Mahapatra, Saikat Pahan, Musthafa O. Thotiyl und Hosahudya Gopi. „Foldamer Nanotubes Mediated Label‐Free Detection of Protein‐Small Molecule Interactions“. Chemistry – A European Journal, 17.05.2023. http://dx.doi.org/10.1002/chem.202300479.
Der volle Inhalt der QuelleDissertationen zum Thema "Foldamer-Protein interaction"
Cayrou, Chloé. „Conception, Synthèse et Analyse Structurale de Foldamères Fluorés de Conformation Hélicoïdale Polyproline de type II Ciblant des Membranes ou des Protéines Amyloïdes“. Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1308.
Der volle Inhalt der QuelleThe term foldamer refers to any oligomer with the ability to fold into a conformationally stable structure in solution. Among them, peptide-based foldamers appear to be particularly interesting as a response to several issues raised by peptides in medicinal chemistry, such as their high flexibility and low in vivo stability. The structured nature of foldamers can therefore prove to be an asset in the development of new peptides of biological interest, able to interact with proteins or membranes (Cell Penetrating Peptides, CPPs or AntiMicrobial Peptides, AMPs). In particular, polyproline helix II (PPII) foldamers, although one of the most widespread secondary structures, are still less studied than α-helices and β-sheets, despite examples in the literature already showing their potential in the design of efficient CPPs and AMPs foldamers. In parallel, the integration of fluorine atoms into biologically active molecules has become a common approach in medicinal chemistry. This strategy is motivated by the unique properties of the fluorine atom, which can stabilize certain conformations, modulate hydrophobicity or be used as a 19F NMR probe, for example.The aim of this thesis work is to combine these two promising areas of medicinal chemistry by developing PPII-type fluorinated foldamers, which are still largely under-exploited for biological applications. Several series of fluorinated foldamers have been obtained. A first series of fully hydrophobic compounds demonstrated, through NMR, CD and X-ray diffraction analyses, that the incorporation of trifluoromethylated pseudoprolines, CF3ΨPro, within proline oligomers did not disrupt PPII helix structure. These fluorinated foldamers were found to be more hydrophobic than their non-fluorinated analogues, yet equally stable against enzymatic degradation and non-cytotoxic, enabling them to be considered for biological applications. Cationic charges were then introduced, leading to three new series of amphipathic foldamers. DSC and 19F NMR techniques revealed the ability of one series to interact with membrane mimetics. Finally, the design of ten fluorinated foldamers inhibiting the aggregation of the amyloid protein α-synuclein was carried out. To this end, proline oligomers were functionalized in a rational manner to optimize peptide-protein interactions
Mbianda, Johanne. „Protein Surface Recognition with Urea-based foldamers : application to the design of ligands targeting histone chaperone proteins“. Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0184.
Der volle Inhalt der QuelleIn 2015, 8.8 million of death were due to cancer making it an important cause of death in the world. The necessity to develop new anticancer treatments led to the search and discovery of new biological targets, such as Asf1, a histone chaperone protein of H3-H4 which is overexpressed in cancer cells, in particular in breast cancer. This protein plays a role in different biological processes in cells through protein-protein interactions (PPIs). During this thesis, we developed an original strategy to design inhibitors of PPIs with urea-based peptidomimetics. These foldamers are able to fold into stable 2.5-helix reminiscent to the natural α-helix. Designed urea-based foldamers have been synthesized as hybrid oligomers consisting of α-peptide and oligourea segments. With a combination of the two backbones, these compounds named “chimeras” presents advantages of both species with the natural recognition of α-peptides and the innate helical stability of oligourea. First, a model study was performed to evaluate the impact of the introduction of short urea segments into a long water-soluble peptide. Circular dichroism experiments confirmed that the helical conformation was conserved. New series of compounds that mimic a helical part of H3 were synthesized and their interaction with Asf1 was studied in solution and in solid state using a range of biophysical methods. Several modifications into the sequence were performed (side chain substitution, size of the urea segment or compound) in order to improve the recognition of Asf1 surface as well as their selectivity. We conceived oligourea-peptide chimeras with affinity for Asf1 in the micromolar range. Our best compound linked to a cell penetrating peptide was shown to enter into cells and to induce cell death
Buratto, Jeremie. „Reconnaissance de surfaces protéiques par des foldamères d'oligoamides aromatiques“. Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0003/document.
Der volle Inhalt der QuelleProtein-protein interactions are a central issue in biological processes and represent relevant therapeutic targets for the treatment of diseases. The design of antagonistic molecules directed towards the disruption of these interactions requires the specific recognition of protein surfaces. Quinoline oligoamide foldamers present all the properties to reach that point. They are easily synthesized and fold into helices (similar to α helices) which can be decorated. Thanks to biophysical studies (CD, SPR, RX diffraction), we demonstrate that these molecules are able to recognize protein surfaces. Two proteins have been studied: the human interleukin 4 and the human carbonic anhydrase II.The applied strategy (keeping the foldamer close to the protein surface via a linker) allowed us to gather structural information about foldamer protein interactions before any strong binding is established. The first crystal structure between a protein and an aromatic amide foldamer is reported