Zeitschriftenartikel zum Thema „Fluorinated graphite“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Fluorinated graphite.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Fluorinated graphite" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Herraiz, Michael, Marc Dubois, Nicolas Batisse, Samar Hajjar-Garreau und Laurent Simon. „Large-scale synthesis of fluorinated graphene by rapid thermal exfoliation of highly fluorinated graphite“. Dalton Transactions 47, Nr. 13 (2018): 4596–606. http://dx.doi.org/10.1039/c7dt04565d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kang, Wenze, und Shangyi Li. „Preparation of fluorinated graphene to study its gas sensitivity“. RSC Advances 8, Nr. 41 (2018): 23459–67. http://dx.doi.org/10.1039/c8ra03451f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sysoev, Vitalii I., Mikhail O. Bulavskiy, Dmitry V. Pinakov, Galina N. Chekhova, Igor P. Asanov, Pavel N. Gevko, Lyubov G. Bulusheva und Alexander V. Okotrub. „Chemiresistive Properties of Imprinted Fluorinated Graphene Films“. Materials 13, Nr. 16 (11.08.2020): 3538. http://dx.doi.org/10.3390/ma13163538.

Der volle Inhalt der Quelle
Annotation:
The electrical conductivity of graphene materials is strongly sensitive to the surface adsorbates, which makes them an excellent platform for the development of gas sensor devices. Functionalization of the surface of graphene opens up the possibility of adjusting the sensor to a target molecule. Here, we investigated the sensor properties of fluorinated graphene films towards exposure to low concentrations of nitrogen dioxide NO2. The films were produced by liquid-phase exfoliation of fluorinated graphite samples with a composition of CF0.08, CF0.23, and CF0.33. Fluorination of graphite using a BrF3/Br2 mixture at room temperature resulted in the covalent attachment of fluorine to basal carbon atoms, which was confirmed by X-ray photoelectron and Raman spectroscopies. Depending on the fluorination degree, the graphite powders had a different dispersion ability in toluene, which affected an average lateral size and thickness of the flakes. The films obtained from fluorinated graphite CF0.33 showed the highest relative response ca. 43% towards 100 ppm NO2 and the best recovery ca. 37% at room temperature.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ahmad, Yasser, Nicolas Batisse, Xianjue Chen und Marc Dubois. „Preparation and Applications of Fluorinated Graphenes“. C 7, Nr. 1 (07.02.2021): 20. http://dx.doi.org/10.3390/c7010020.

Der volle Inhalt der Quelle
Annotation:
The present review focuses on the numerous routes for the preparation of fluorinated graphene (FG) according to the starting materials. Two strategies are considered: (i) addition of fluorine atoms on graphenes of various nature and quality and (ii) exfoliation of graphite fluoride. Chemical bonding in fluorinated graphene, related properties and a selection of applications for lubrication, energy storage, and gas sensing will then be discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Vul'f, V. A., Natal'ya Vladimirovna Polyakova und Sergei Anatol'evich Fateev. „Effect of feedstock on the characteristics of cathodes fluorinated carbon“. Electrochemical Energetics 11, Nr. 4 (2011): 193–99. http://dx.doi.org/10.18500/1608-4039-2011-11-4-193-199.

Der volle Inhalt der Quelle
Annotation:
The electrode behavior of various fluorinated graphite materials and different conductive additives in various electrolytes are studied. Fluorocarbon materials based on graphite fibers are shown to have the best discharge characteristics. The advantage of thin cathodes based on fluorinated nanomaterials with a solid polymer electrolyte in comparison with the similar electrodes with traditional fluorocarbon active material is demonstrated. The use of fluorinated nanomaterials results in increased discharge characteristics of the cells.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gupta, Vinay, Tsuyoshi Nakajima und Yoshimi Ohzawa. „Fluorination of Graphite at High Temperatures“. Collection of Czechoslovak Chemical Communications 67, Nr. 9 (2002): 1366–72. http://dx.doi.org/10.1135/cccc20021366.

Der volle Inhalt der Quelle
Annotation:
Graphite powder (57-74 μm) was fluorinated at 380 °C for 1 h-2 weeks. The composition of the products ranged from CF0.055 to CF0.659. X-Ray diffractometry showed the formation of graphite fluoride, (C2F)n with a trace of CxF phase with planar layers in addition to unreacted graphite which finally disappeared. Raman spectroscopy clearly revealed the existence of a fluorinated phase with planar layers with sp2 structure.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Chen, Li, Jiaojiao Lei, Fuhui Wang, Guochao Wang und Huixia Feng. „Facile synthesis of graphene sheets from fluorinated graphite“. RSC Advances 5, Nr. 50 (2015): 40148–53. http://dx.doi.org/10.1039/c5ra00910c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Chakraborty, Soma, Wenhua Guo, Robert H. Hauge und W. E. Billups. „Reductive Alkylation of Fluorinated Graphite“. Chemistry of Materials 20, Nr. 9 (Mai 2008): 3134–36. http://dx.doi.org/10.1021/cm800060q.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dubois, Marc, Katia Guérin, Yasser Ahmad, Nicolas Batisse, Maimonatou Mar, Lawrence Frezet, Wael Hourani et al. „Thermal exfoliation of fluorinated graphite“. Carbon 77 (Oktober 2014): 688–704. http://dx.doi.org/10.1016/j.carbon.2014.05.074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hagaman, E. W. „The characterization of fluorinated graphite“. Fuel and Energy Abstracts 37, Nr. 3 (Mai 1996): 184. http://dx.doi.org/10.1016/0140-6701(96)88553-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Yamamoto, Hiroki, Kazuhiko Matsumoto, Yoshiaki Matsuo, Yuta Sato und Rika Hagiwara. „Deoxofluorination of graphite oxide with sulfur tetrafluoride“. Dalton Transactions 49, Nr. 1 (2020): 47–56. http://dx.doi.org/10.1039/c9dt03782a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Lu, Jia Chun, Zhi Chao Liu, Ping Huang, Quan Fang und Min Hua Zhu. „Fluorinated MWCNT Used for Cathode of Primary Lithium Battery“. Advanced Materials Research 744 (August 2013): 403–6. http://dx.doi.org/10.4028/www.scientific.net/amr.744.403.

Der volle Inhalt der Quelle
Annotation:
Li/graphite fluoride (GF) cells are well known to have high energy density, good reliability, long shelf life, safety and wide operating temperature. However, the low electronic conductivity and discharge potential of Li/GF cells obviously limited its applications. In order to improve the energy performance of Li/GF cells, an efficient method is to increase the transportation ability of Li+in cathode. The decreasing layers of graphite could increase the fluorinated surface between carbon and fluorinating agent, resulting in the emerge of the C-F bands of fluoride. Multi-walled carbon nanotube (MWCNT) can be considered as a curly materials of nature graphite sheets. This barrel structure shows much more C-F bands when they were fluorinated and turned into fluorinated MWCNT. And these emerged C-F bands are advantageous when they react with lithium ion during discharge. The results show that Li/FMWCNT cells possess higher discharge potential than Li/GF cells.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Olifirov, Leonid K., Andrey A. Stepashkin, Galal Sherif und Victor V. Tcherdyntsev. „Tribological, Mechanical and Thermal Properties of Fluorinated Ethylene Propylene Filled with Al-Cu-Cr Quasicrystals, Polytetrafluoroethylene, Synthetic Graphite and Carbon Black“. Polymers 13, Nr. 5 (04.03.2021): 781. http://dx.doi.org/10.3390/polym13050781.

Der volle Inhalt der Quelle
Annotation:
Antifriction hybrid fluorinated ethylene propylene-based composites filled with quasicrystalline Al73Cu11Cr16 powder, polytetrafluoroethylene, synthetic graphite and carbon black were elaborated and investigated. Composite samples were formed by high-energy ball milling of initial powders mixture with subsequent consolidation by injection molding. Thermal, mechanical, and tribological properties of the obtained composites were studied. It was found that composite containing 5 wt.% of Al73Cu11Cr16 quasicrystals and 2 wt.% of nanosized polytetrafluoroethylene has 50 times better wear resistance and a 1.5 times lower coefficient of dry friction comparing with unfilled fluorinated ethylene propylene. Addition of 15 wt.% of synthetic graphite to the above mentioned composition allows to achieve an increase in thermal conductivity in 2.5 times comparing with unfilled fluorinated ethylene propylene, at that this composite kept excellent tribological properties.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Ma, Peiyuan, Priyadarshini Mirmira und Chibueze Amanchukwu. „Co-Intercalation-Free Fluorinated Ether Electrolytes for Lithium-Ion Batteries“. ECS Meeting Abstracts MA2023-01, Nr. 2 (28.08.2023): 550. http://dx.doi.org/10.1149/ma2023-012550mtgabs.

Der volle Inhalt der Quelle
Annotation:
Lithium-ion batteries are widely used to power portable electronics because of their high energy densities and have shown great promise in enabling the electrification of transport. However, the commercially used carbonate-based electrolytes are limited by a narrow operating temperature window and suffer against next generation lithium-ion battery chemistries such as silicon-containing anodes. The lack of non-carbonate electrolyte alternatives such as ether-based electrolytes is due to undesired solvent co-intercalation that occurs with graphitic anodes. Recently, fluorinated ether solvents have become promising electrolyte solvent candidates for lithium metal batteries but their applications in other battery chemistries have not been studied. In this work, we synthesize a group of novel fluorinated ether solvents and study them as electrolyte solvents for lithium-ion batteries. Using X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (ssNMR), we show that fluorinated ether electrolytes support reversible lithium-ion intercalation into graphite without solvent co-intercalation at conventional salt concentrations. To the best of our knowledge, they are the first class of ether solvents that intrinsically suppress solvent co-intercalation without the need for high or locally high salt concentration. In full cells using graphite anode, fluorinated ether electrolytes enable much higher energy densities compared to conventional glyme ethers, and better thermal stability over carbonate electrolytes (operation up to 60°C). As single-solvent-single-salt electrolytes, they remarkably outperform carbonate electrolytes with fluoroethylene carbonate (FEC) and vinylene carbonate (VC) additives when cycled with graphite-silicon composite anodes. Using X-ray photoelectron spectroscopy (XPS), NMR and density functional theory (DFT) calculations, we show that fluorinated ethers produce a solvent-derived solid electrolyte interphase, which is likely the key to suppressing solvent co-intercalation. Rational molecular design of fluorinated ether solvents will produce novel electrolytes that enable next generation lithium-ion batteries with higher energy density and wider working temperature window.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Nakajima, Tsuyoshi, Meiten Koh, Ram Niwas Singh und Munenori Shimada. „Electrochemical behavior of surface-fluorinated graphite“. Electrochimica Acta 44, Nr. 17 (April 1999): 2879–88. http://dx.doi.org/10.1016/s0013-4686(99)00048-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Jankovský, Ondřej, Petr Šimek, David Sedmidubský, Stanislava Matějková, Zbyněk Janoušek, Filip Šembera, Martin Pumera und Zdeněk Sofer. „Water-soluble highly fluorinated graphite oxide“. RSC Adv. 4, Nr. 3 (2014): 1378–87. http://dx.doi.org/10.1039/c3ra45183f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Pinakov, D. V., V. G. Makotchenko, G. I. Semushkina, G. N. Chekhova, I. P. Prosvirin, I. P. Asanov, Yu V. Fedoseeva et al. „Redox reactions between acetonitrile and nitrogen dioxide in the interlayer space of fluorinated graphite matrices“. Physical Chemistry Chemical Physics 23, Nr. 17 (2021): 10580–90. http://dx.doi.org/10.1039/d0cp06412b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Makotchenko, Viktor G., Ekaterina D. Grayfer, Alexander N. Mikheev, Andrey V. Arzhannikov und Anatoly I. Saprykin. „Microwave exfoliation of organic-intercalated fluorographites“. Chemical Communications 56, Nr. 12 (2020): 1895–98. http://dx.doi.org/10.1039/c9cc09574h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Roshchina, T. M., S. V. Glazkova, N. A. Zubareva, E. A. Tveritinova und A. D. Khrycheva. „Adsorption of oxygen-containing compounds at fluorinated graphite and fluorinated carbon fiber“. Protection of Metals 44, Nr. 2 (März 2008): 174–79. http://dx.doi.org/10.1134/s0033173208020112.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Paasonen, Vera M., und Albert S. Nazarov. „Intercalation compounds of fluorinated graphite with camphor“. Mendeleev Communications 9, Nr. 4 (Januar 1999): 139–40. http://dx.doi.org/10.1070/mc1999v009n04abeh000958.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Gupta, Vinay, Tsuyoshi Nakajima und Boris Z̆emva. „Raman scattering study of highly fluorinated graphite“. Journal of Fluorine Chemistry 110, Nr. 2 (August 2001): 145–51. http://dx.doi.org/10.1016/s0022-1139(01)00422-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Nakajima, Tsuyoshi. „Synthesis, structure and properties of fluorinated graphite“. Macromolecular Symposia 82, Nr. 1 (Mai 1994): 19–32. http://dx.doi.org/10.1002/masy.19940820104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Sysoev, V. I., L. G. Bulusheva, I. P. Asanov, Yu V. Shubin und A. V. Okotrub. „Thermally exfoliated fluorinated graphite for NO2gas sensing“. physica status solidi (b) 253, Nr. 12 (22.09.2016): 2492–98. http://dx.doi.org/10.1002/pssb.201600270.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Delabarre, Céline, Katia Guérin, Marc Dubois, Jérôme Giraudet, Ziad Fawal und André Hamwi. „Highly fluorinated graphite prepared from graphite fluoride formed using BF3 catalyst“. Journal of Fluorine Chemistry 126, Nr. 7 (Juli 2005): 1078–87. http://dx.doi.org/10.1016/j.jfluchem.2005.03.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Jiang, Shengbo, Ping Huang, Jiachun Lu und Zhichao Liu. „Fluorinated Ketjen-black as Cathode Material for Lithium Primary Batteries“. E3S Web of Conferences 218 (2020): 02021. http://dx.doi.org/10.1051/e3sconf/202021802021.

Der volle Inhalt der Quelle
Annotation:
Lithium/fluorinated carbon (Li/CFx) batteries are the highest-energy-density primary batteries which are widely used in various field. Herein, the novel fluorinated carbon (CFx) with superior performance are made of fluorination of ketjen-black. The fluorinated ketjen-black (F-KB) as the cathode material of Li/CFx delivered a high specific capacity over 880 mAh g-1 with a discharge plateau ~3.1 V (vs. Li+/Li). The energy density over 2400 Wh kg-1 for F-KB is higher than the theoretical energy density (2180 Wh kg-1) of fluorinated graphite. F-KB can be discharged at high rate of 5C delivering a high-power density of 9710 W kg-1 with the energy density of 1610 Wh kg-1, showing good performance of rate capability.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Jiang, Shengbo, Ping Huang, Jiachun Lu und Zhichao Liu. „Fluorination of Carbon Molecular Sieve as Cathode Material for Lithium Primary Batteries and its Characteristics“. E3S Web of Conferences 245 (2021): 01009. http://dx.doi.org/10.1051/e3sconf/202124501009.

Der volle Inhalt der Quelle
Annotation:
Fluorinated carbon (CFx) is a new material with good lubricity and resistance to high temperature and corrosion. Meanwhile, CFx has excellent electrochemical properties when used as the cathode of the lithium primary batteries. Here, a series of carbon molecular sieve (CMS) is fluorinated via gas-phase fluorination. The CMS treated at 1550 °C has better electrochemical properties after fluorination. The fluorinated products named CMSF deliver specific capacity reaching 796 mAh g-1, associated with discharge potentials exceeding 3.1 V (vs. Li/Li+). The discharge voltage of CMSF is about 0.4 V ~ 0.6 V higher than that of fluorinated graphite (GF), and its energy density is about 8% ~ 13% higher than that of GF. The CMSF with the better electrochemical performances than GF as well as its low cost and scalable product demonstrated its great potential practicability in the field of lithium primary batteries.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Nakajima, Tsuyoshi, Ken-ichi Hashimoto, Takashi Achiha, Yoshimi Ohzawa, Akira Yoshida, Zoran Mazej, Boris Žemva, Young-Seak Lee und Morinobu Endo. „Electrochemical Properties of Surface-Fluorinated Vapor Grown Carbon Fiber for Lithium Ion Battery“. Collection of Czechoslovak Chemical Communications 73, Nr. 12 (2008): 1693–704. http://dx.doi.org/10.1135/cccc20081693.

Der volle Inhalt der Quelle
Annotation:
Surface fluorination of graphitized vapor grown carbon fiber (VGCF) has been performed with F2, F2-O2, NF3 or ClF3 under mild conditions. Charge/discharge characteristics were investigated in 1 mol/l LiClO4-ethylene carbonate (EC)/diethyl carbonate (DEC) and EC/DEC/ propylene carbonate (PC) solutions. The main effect of surface fluorination was increase in charge capacities. The increase in charge capacities was larger for VGCF fluorinated with ClF3 or NF3 than F2 or F2-O2. The reason is that the fluorination reactions of graphite with ClF3 and NF3 are radical reactions having surface etching effect, effectively breaking cylindrically rolled graphene layers of VGCF.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Colin, Marie, Xianjue Chen, Marc Dubois, Aditya Rawal und Dong Jun Kim. „F-diamane-like nanosheets from expanded fluorinated graphite“. Applied Surface Science 583 (Mai 2022): 152534. http://dx.doi.org/10.1016/j.apsusc.2022.152534.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Lukyanova, V. A., T. S. Papina, N. V. Polyakova, A. G. Buyanovskaya und N. M. Kabaeva. „Standard enthalpy of formation of fluorinated graphite CF0.96“. Moscow University Chemistry Bulletin 67, Nr. 4 (Juli 2012): 182–84. http://dx.doi.org/10.3103/s0027131412040086.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Shukla, Nisha, Jing Gui und Andrew J. Gellman. „Adsorption of Fluorinated Ethers and Alcohols on Graphite“. Langmuir 17, Nr. 8 (April 2001): 2395–401. http://dx.doi.org/10.1021/la001397n.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Sysoev, Vitalii I., Artem V. Gusel’nikov, Mikhail V. Katkov, Igor P. Asanov, Lyubov G. Bulusheva und Alexander V. Okotrub. „Sensor properties of electron beam irradiated fluorinated graphite“. Journal of Nanophotonics 10, Nr. 1 (05.11.2015): 012512. http://dx.doi.org/10.1117/1.jnp.10.012512.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Matsuo, Yoshiaki, und Tsuyoshi Nakajima. „Carbon-Fluorine Bondings of Fluorinated Fullerene and Graphite“. Zeitschrift f�r anorganische und allgemeine Chemie 621, Nr. 11 (November 1995): 1943–50. http://dx.doi.org/10.1002/zaac.19956211119.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Mar, Maimonatou, Yasser Ahmad, Marc Dubois, Katia Guérin, Nicolas Batisse und André Hamwi. „Dual C F bonding in fluorinated exfoliated graphite“. Journal of Fluorine Chemistry 174 (Juni 2015): 36–41. http://dx.doi.org/10.1016/j.jfluchem.2014.07.026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Chen, Li, und Yawen Meng. „Liquid-phase exfoliation of fluorinated graphite to produce high-quality graphene sheets“. Journal of Vacuum Science & Technology B 37, Nr. 3 (Mai 2019): 031801. http://dx.doi.org/10.1116/1.5081961.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Asanov, I. P., L. G. Bulusheva, M. Dubois, N. F. Yudanov, A. V. Alexeev, T. L. Makarova und A. V. Okotrub. „Graphene nanochains and nanoislands in the layers of room-temperature fluorinated graphite“. Carbon 59 (August 2013): 518–29. http://dx.doi.org/10.1016/j.carbon.2013.03.048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Fedoseeva, Yu V., A. V. Okotrub, I. P. Asanov, D. V. Pinakov, G. N. Chekhova, V. A. Tur, P. E. Plyusnin, D. V. Vyalikh und L. G. Bulusheva. „Nitrogen inserting in fluorinated graphene via annealing of acetonitrile intercalated graphite fluoride“. physica status solidi (b) 251, Nr. 12 (22.09.2014): 2530–35. http://dx.doi.org/10.1002/pssb.201451281.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Sawayama, Saki, Yanko M. Todorov, Hideyuki Mimura, Masayuki Morita und Kenta Fujii. „Fluorinated alkyl-phosphate-based electrolytes with controlled lithium-ion coordination structure“. Physical Chemistry Chemical Physics 21, Nr. 21 (2019): 11435–43. http://dx.doi.org/10.1039/c9cp01974j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Makotchenko, Viktor G., Ekaterina D. Grayfer, Albert S. Nazarov, Sung-Jin Kim und Vladimir E. Fedorov. „The synthesis and properties of highly exfoliated graphites from fluorinated graphite intercalation compounds“. Carbon 49, Nr. 10 (August 2011): 3233–41. http://dx.doi.org/10.1016/j.carbon.2011.03.049.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Manning, Thomas J., Mike Mitchell, Joseph Stach und Thomas Vickers. „Synthesis of exfoliated graphite from fluorinated graphite using an atmospheric-pressure argon plasma“. Carbon 37, Nr. 7 (1999): 1159–64. http://dx.doi.org/10.1016/s0008-6223(98)00316-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Nazarov, A. S., V. G. Makotchenko und V. E. Fedorov. „Preparation of low-temperature graphite fluorides through decomposition of fluorinated-graphite intercalation compounds“. Inorganic Materials 42, Nr. 11 (November 2006): 1260–64. http://dx.doi.org/10.1134/s002016850611015x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Zhang, Xu, Karel Goossens, Wei Li, Xianjue Chen, Xiong Chen, Manav Saxena, Sun Hwa Lee, Christopher W. Bielawski und Rodney S. Ruoff. „Structural insights into hydrogenated graphite prepared from fluorinated graphite through Birch−type reduction“. Carbon 121 (September 2017): 309–21. http://dx.doi.org/10.1016/j.carbon.2017.05.089.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Su, Chi Cheung, und Khalil Amine. „Designing Novel Solvents for High Voltage Li-Ion Batteries“. ECS Meeting Abstracts MA2024-01, Nr. 2 (09.08.2024): 217. http://dx.doi.org/10.1149/ma2024-012217mtgabs.

Der volle Inhalt der Quelle
Annotation:
The pursuit of higher energy density in lithium-ion batteries has led to the development of new cathode materials that can operate at elevated voltages and provide increased specific capacities. [1-2] One such class of materials is the nickel-rich layered oxide cathodes known as LiNixMnyCozO2 (NMC). These cathodes offer high specific capacities and demonstrate electrochemical stability at high cutoff voltages, making them promising candidates for advanced lithium-ion batteries. [3-4] However, NMC cathodes face a significant challenge in the form of capacity fading during cycling. This issue primarily arises from the voltage instability of the conventional carbonate-based electrolytes used in lithium-ion batteries, which are typically designed for the 4-V lithium-ion chemistry. [5-6] As a result, researchers and scientists have directed extensive efforts toward developing new and improved electrolyte systems that can withstand the high voltage requirements of NMC cathodes and other high-energy applications. [7-8] Designing and synthesizing new molecules for use as electrolyte solvents in lithium-ion batteries is indeed a complex and challenging task. Researchers often focus on optimizing one specific property, which can lead to the development of molecules that excel in that aspect while potentially overlooking other crucial features that are necessary for stable battery cycling. For example, the development of α-fluorinated sulfones as electrolyte solvents was driven by their exceptional anodic stability. [9] This stability is achieved by introducing strong electron-withdrawing trifluoromethyl groups directly attached to the sulfonyl group. However, while this electron-withdrawing effect enhances anodic stability, it can also significantly increase the reduction potential of α-fluorinated sulfones. This heightened reduction potential renders them unstable when used with graphite anodes, highlighting the delicate balance required in designing electrolyte solvents that perform well across various aspects of battery operation. In this presentation, we embraced the concept of a "golden middle way" when designing and synthesizing new electrolyte solvents. The recently developed β-fluorinated sulfone, TFPMS, doesn't claim to be the best in any single property, but it strikes a balance across various key characteristics. This equilibrium has proven to be highly effective in ensuring the long-term stability of high-voltage graphite||NMC622 full cells. Positioned at the β site of the sulfone molecule, the strong electron-withdrawing trifluoromethyl group renders β-fluorinated sulfone sufficiently stable against the high-voltage NMC622 cathode, even if it possesses a slightly lower oxidation potential compared to its α-fluorinated counterparts. Furthermore, its reduction potential is lower than that of α-fluorinated sulfone, making it considerably more stable when paired with the graphite anode. While it may not possess the same high lithium solvating power as the typical sulfone (EMS), the lithium solvating capacity of β-fluorinated sulfone falls somewhere in between, mitigating transition metal dissolution and deposition in the graphite||NMC622 full cell that utilizes a β-fluorinated sulfone-based electrolyte. As a result, the full cell equipped with TFPMS-based electrolyte demonstrates superior cycling performance, with a significantly higher average capacity than cells using regular sulfone or α-fluorinated sulfone-based electrolytes. In summary, our approach exemplifies the successful application of the "golden middle way" in designing and synthesizing new electrolyte solvents. Reference: Santhanam, R.; Rambabu, B., Power Sources 2010, 195, 5442. Lin, F.; Markus, I. M.; Nordlund, D.; Weng, T.-C.; Asta, M. D.; Xin, H. L.; Doeff, M. M., Commun. 2014, 5, 3529. Li, W.; Song, B.; Manthiram, A., Chemical Society Reviews 2017, 46 (10), 3006. Xu, J.; Lin, F.; Doeff, M. M.; Tong, W., Journal of Materials Chemistry A 2017, 5 (3), 874. Xia, J.; Petibon, R.; Xiong, D.; Ma, L.; Dahn, J., Journal of Power Sources 2016, 328, 124. Chen, S.; Wen, K.; Fan, J.; Bando, Y.; Golberg, D., Journal of Materials Chemistry A 2018, 6 (25), 11631. Zheng, J.; Lochala, J. A.; Kwok, A.; Deng, Z. D.; Xiao, J., Advanced Science 2017, 4 (8), 1700032. Yamada, Y.; Wang, J.; Ko, S.; Watanabe, E.; Yamada, A., Nature Energy 2019, 4 (4), 269. Su, C.-C.; He, M.; Redfern, P. C.; Curtiss, L. A.; Shkrob, I. A.; Zhang, Z., Environ. Sci. 2017, 10 (4), 900.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Samoilov, V. M., E. A. Danilov, A. V. Nikolaeva, G. A. Yerpuleva, N. N. Trofimova, S. S. Abramchuk und K. V. Ponkratov. „Formation of graphene aqueous suspensions using fluorinated surfactant-assisted ultrasonication of pristine graphite“. Carbon 84 (April 2015): 38–46. http://dx.doi.org/10.1016/j.carbon.2014.11.051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Yang, Xiao-Xia, Guan-Jun Zhang, Bao-Sheng Bai, Yu Li, Yi-Xiao Li, Yong Yang, Xian Jian und Xi-Wen Wang. „Fluorinated graphite nanosheets for ultrahigh-capacity lithium primary batteries“. Rare Metals 40, Nr. 7 (10.03.2021): 1708–18. http://dx.doi.org/10.1007/s12598-020-01692-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Okotrub, A. V., G. N. Chekhova, D. V. Pinakov, I. V. Yushina und L. G. Bulusheva. „Optical absorption and photoluminescence of partially fluorinated graphite crystallites“. Carbon 193 (Juni 2022): 98–106. http://dx.doi.org/10.1016/j.carbon.2022.03.034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Paasonen, V. M., A. S. Nazarov, V. P. Fadeeva und V. A. Nadolinnyi. „Composition and structure of fluorinated graphite compounds with camphor“. Journal of Structural Chemistry 39, Nr. 2 (September 1998): 199–203. http://dx.doi.org/10.1007/bf02873618.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Licht, Stuart, Susanta Ghosh und Quanfeng Dong. „Charge Storage Effects in Alkaline Cathodes Containing Fluorinated Graphite“. Journal of The Electrochemical Society 148, Nr. 10 (2001): A1072. http://dx.doi.org/10.1149/1.1396651.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Asanov, I. P., V. M. Paasonen, L. N. Mazalov und A. S. Nazarov. „X-ray photoelectron study of fluorinated graphite intercalation compounds“. Journal of Structural Chemistry 39, Nr. 6 (November 1998): 928–32. http://dx.doi.org/10.1007/bf02903607.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

PAASONEN, V. M., und A. S. NAZAROV. „ChemInform Abstract: Intercalation of Fluorinated Graphite with Germanium Tetrachloride.“ ChemInform 29, Nr. 52 (18.06.2010): no. http://dx.doi.org/10.1002/chin.199852024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Groult, Henri, Tsuyoshi Nakajima, Laurent Perrigaud, Yoshimi Ohzawa, Hitoshi Yashiro, Shinichi Komaba und Naoaki Kumagai. „Surface-fluorinated graphite anode materials for Li-ion batteries“. Journal of Fluorine Chemistry 126, Nr. 7 (Juli 2005): 1111–16. http://dx.doi.org/10.1016/j.jfluchem.2005.03.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie