Auswahl der wissenschaftlichen Literatur zum Thema „Fluides crustaux“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fluides crustaux" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Fluides crustaux"

1

HADLICH, Ingrid Weber, Fernando Jacques ALTHOFF, Luiz Henrique RONCHI und Michel DUBOIS. „Estudo de inclusões fluidas do Granito Parapente, Gaspar (SC): implicações para a evolução tectônica da Zona de Cisalhamento Itajaí-Perimbó“. Pesquisas em Geociências 44, Nr. 3 (28.05.2017): 401. http://dx.doi.org/10.22456/1807-9806.83264.

Der volle Inhalt der Quelle
Annotation:
Ao colocar rochas do Complexo Metamórfico Brusque em contato com rochas da Bacia do Itajaí, a Zona de Cisalhamento Itajaí-Perimbó assinala o limite entre os domínios central e externo do Cinturão Dom Feliciano no Escudo Catarinense. A evolução desta estrutura de escala crustal pode ser investigada por meio do estudo do Granito Parapente, que aflora no Município de Gaspar em meio à zona de cisalhamento. Com idade de cristalização de 843 Ma, este granito tipo A é um excelente marcador de deformação relacionada ao funcionamento da zona de cisalhamento. Para estimar condições de temperatura, pressão e profundidade relacionadas à deformação foram analisadas inclusões fluidas em três tipos de quartzo do Granito Parapente. As temperaturas mínimas de aprisionamento e as pressões e profundidades médias obtidas pelas inclusões fluidas são as seguintes: 220-190ºC, 6 kbar e ~23 km, para o quartzo I, da fácies menos deformada do granito, considerado mais antigo; 160-130ºC, 4 kbar e 14 km, para o quartzo II, de filonito, formado em etapa mais recente da evolução da zona de cisalhamento; e 260-220ºC, 190-170ºC, <12 km e <3 kbar para o quartzo III, de veio que corta a foliação da zona de cisalhamento. A variação de profundidade evidenciada para a formação dos quartzos I e II atesta que a zona de cisalhamento funcionou inicialmente como cavalgamento, alçando o Granito Parapente em cerca de 10 km em níveis crustais intermediários. Nos três tipos de quartzo foram observadas inclusões com fluidos aquosos com salinidades baixas, o que evidencia que a Zona de Cisalhamento Itajaí-Perimbó foi conduto para fluidos durante um longo período.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Nesbitt, Bruce E. „Electrical resistivities of crustal fluids“. Journal of Geophysical Research: Solid Earth 98, B3 (10.03.1993): 4301–10. http://dx.doi.org/10.1029/92jb02576.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Fyfe, W. S. „Fluids, tectonics and crustal deformation“. Tectonophysics 119, Nr. 1-4 (Oktober 1985): 29–36. http://dx.doi.org/10.1016/0040-1951(85)90031-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Li, Jiahao, Xing Ding und Junfeng Liu. „The Role of Fluids in Melting the Continental Crust and Generating Granitoids: An Overview“. Geosciences 12, Nr. 8 (22.07.2022): 285. http://dx.doi.org/10.3390/geosciences12080285.

Der volle Inhalt der Quelle
Annotation:
Granite is a distinctive constituent part of the continental crust on Earth, the formation and evolution of which have long been hot research topics. In this paper, we reviewed the partial melting processes of crustal rocks without or with fluid assistance and summarized the role of fluids and volatiles involved in the formation of granitic melts. As a conventional model, granitoids were thought to be derived from the dehydration melting of hydrous minerals in crustal basement metamorphic rocks in the absence of external fluids. However, the external-fluid-assisted melting of crustal metamorphic rocks has recently been proposed to produce granitoids as extensive fluids could be active in the deep continental crust, especially in the subduction zones. It has been demonstrated experimentally that H2O plays a crucial role in the partial melting of crustal rocks, in which H2O can (1) significantly lower the solidus temperature of the melted rocks to facilitate partial melting; (2) affect the melting reaction process, mineral stability, and the composition of melt; and (3) help the melt to separate more easily from the source area and aggregate to form a large-scale magma chamber. More importantly, dissolved volatiles and salts in the crustal fluids could also lower the solidus temperature of rocks, affect the partitioning behaviors of trace elements between minerals and melts, and facilitate the formation of some distinctive granitoids (e.g., B-rich, F-rich, and high-K granitoids). Furthermore, various volatiles dissolved in fluids could result in elemental or isotopic fractionation as well as the diversity of mineralization during fluid-assisted melting. In-depth studies regarding the fluid-assisted partial melting of crustal rocks will facilitate a more comprehensive understanding of melting of the Earth’s crust, thus providing strong theoretical constraints on the genesis and mineralization of granitoids as well as the formation and evolution of the continental crust.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yardley, B. W. D. „The Ligand Chemistry of Crustal Fluids“. Mineralogical Magazine 58A, Nr. 2 (1994): 994–95. http://dx.doi.org/10.1180/minmag.1994.58a.2.252.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tagirov, Boris, und Jacques Schott. „Aluminum speciation in crustal fluids revisited“. Geochimica et Cosmochimica Acta 65, Nr. 21 (November 2001): 3965–92. http://dx.doi.org/10.1016/s0016-7037(01)00705-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Saxena, S. K., und Y. Fei. „Fluids at crustal pressures and temperatures“. Contributions to Mineralogy and Petrology 95, Nr. 3 (März 1987): 370–75. http://dx.doi.org/10.1007/bf00371850.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Chen, Chien-Chih, Chow-Son Chen und Chiou-Fen Shieh. „Crustal Electrical Conductors, Crustal Fluids and 1999 Chi-Chi, Taiwan, Earthquake“. Terrestrial, Atmospheric and Oceanic Sciences 13, Nr. 3 (2002): 367. http://dx.doi.org/10.3319/tao.2002.13.3.367(cce).

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Beaudoin, Georges, D. F. Sangster und C. I. Godwin. „Isotopic evidence for complex Pb sources in the Ag–Pb–Zn–Au veins of the Kokanee Range, southeastern British Columbia“. Canadian Journal of Earth Sciences 29, Nr. 3 (01.03.1992): 418–31. http://dx.doi.org/10.1139/e92-037.

Der volle Inhalt der Quelle
Annotation:
In the Kokanee Range, more than 370 Ag–Pb–Zn–Au vein and replacement deposits are hosted by the Middle Jurassic Nelson batholith and surrounding Cambrian to Triassic metasedimentary rocks. The Kokanee Range forms the hanging wall of the Slocan Lake Fault, an Eocene, east-dipping, low-angle normal fault. The Pb isotopic compositions of galenas permit the deposits to be divided into four groups that form linear arrays in tridimensional Pb isotopic space, each group having a distinct geographic distribution that crosses geological boundaries. The Kokanee group Pb is derived from a mixture of local upper crustal country rocks. Ainsworth group Pb and Sandon group Pb plot along a mixing line between a lower crustal Pb reservoir and the upper crustal Pb reservoir. The Ainsworth group Pb isotopic signature is markedly lower crustal, whereas the Sandon group Pb is slightly lower crustal. The Bluebell group Pb plots along a mixing line between a depleted upper mantle Pb reservoir and the lower crustal Pb reservoir.The geographic distribution and the Pb isotopic composition of each group probably reflect deep structures that permitted mixing of lower crustal, upper crustal, and mantle Pb by hydrothermal fluids. Segments of, or fluids derived from, the lower crust and the upper mantle were leached by, or mixed with, evolved meteoric water convecting in the upper crust. Fracture permeability, hydrothermal fluid flow, and mineralization resulted from Eocene crustal extension in southeastern British Columbia.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kim, Heejung. „Need for Seismic Hydrology Research with a Geomicrobiological Focus“. Sustainability 13, Nr. 16 (04.08.2021): 8704. http://dx.doi.org/10.3390/su13168704.

Der volle Inhalt der Quelle
Annotation:
Earthquakes cause deformation in previously stable groundwater environments, resulting in changes to the hydrogeological characteristics. The changes to hydrological processes following large-scale earthquakes have been investigated through many physicochemical studies, but understanding of the associated geomicrobiological responses remains limited. To complement the understanding of earthquakes gathered using hydrogeochemical approaches, studies on the effects of the Earth’s deep crustal fluids on microbial community structures can be applied. These studies could help establish the degree of resilience and sustainability of the underground ecosystem following an earthquake. Furthermore, investigations on changes in the microbial community structure of the Earth’s deep crustal fluids before and after an earthquake can be used to predict an earthquake. The results derived from studies that merge hydrogeochemical and geomicrobiological changes in the deep crustal fluids due to the effect of stress on rock characteristics within a fault zone can be used to correlate these factors with earthquake occurrences. In addition, an earthquake risk evaluation method may be developed based on the observable characteristics of fault-zone aquifers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Fluides crustaux"

1

Alikouss, Saïda. „Contribution a l'étude des fluides crustaux : approche expérimentale et analytique“. Vandoeuvre-les-Nancy, INPL, 1993. http://www.theses.fr/1993INPL055N.

Der volle Inhalt der Quelle
Annotation:
Le développement des techniques d'analyse des inclusions fluides nécessite une calibration précise des installations micro-thermométriques. Une collection d'inclusions fluides synthétiques a été réalisée à partir de systèmes simples (h2o, h2o-co2) et de divers systèmes binaires bien connus (h2o-nacl, h2o-licl, h2o-kcl). Une étude d'inclusions fluides naturelles a été menée afin de caractériser la nature des paléofluides et leur éventuelle contribution à minéralisation en sn-w dans deux sites du limousin: 1) les indices du nord du granite de Saint-Goussaud: des fluides aqueux a h2o-nacl sans aucun composant volatil ont été mis en évidence. Trois groupes de fluides ont été différenciés: des fluides associés à la minéralisation qui traduisent une dilution; des fluides dilués, analogues à ceux de l'episyenisation du massif de St-Sylvestre, traduisant une évolution par condensation à 300 (100) bars; des fluides sales tardifs comparables a ceux associes au dépôt de la pechblende dans le massif de St. Sylvestre; 2) le pipe brechique du Puy-Les-Vignes mis en place au sein de l'unité inferieure des gneiss. Il se distingue du précédent par des fluides très riches en volatiles (co2-ch4-n2-naclh2s. Deux grands stades minéralisateurs ont été identifiés: un stade précoce à tungstene arsenopyrite associé à un fluide à h2o-co2-n2-nacl (ch4) et un stade tardif à sulfures (arsenopyrite, pyrite, chalcopyrite, sphalerite. . . ) Asocial à un fluide a h2o-co2-ch4-nacl(n2). Ces modifications dans la composition du fluide s'accompagnent de modifications des conditions d'oxydo-reduction du milieu qui favorisent le dépôt du minerai
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Dubois, Michel. „Fluides crustaux : approche expérimentale et analytique : 1) détermination du solvus des systèmes H2O-MCL (M=Li, K, Rb, Cs) et 2) caractérisation et dynamique des fluides des dômes thermiques, sur l'exemple du Diapir Vellave (S-E Massif Central Francais)“. Vandoeuvre-les-Nancy, INPL, 1992. http://docnum.univ-lorraine.fr/public/INPL_T_1992_DUBOIS_M.pdf.

Der volle Inhalt der Quelle
Annotation:
L’étude expérimentale réalisée sur les domaines d'immiscibilité liquide-vapeur des systèmes binaires eau-chlorure alcalin à 500 et 600°C montre une corrélation entre le rayon ionique du cation et la largeur du solvus tandis que la pression critique diminue. Cette étude a nécessité la reconstruction des diagrammes de phase des systèmes H2O-CsCl et H2O-RbCl par une méthode des moindres carrés modifiée. Une étude d'inclusions fluides a été menée sur les différents faciès lithologiques du dôme du Velay (Massif Central Francais). Dans les vaugnerites et les pegmatites associes ont été observés des fluides H2O-CO2-CH4-N2+-H2S. Dans les vaugnerites, ces fluides indiquent des pressions de mise en place trop faible suggérant des modifications post-piégeages. Dans les pegmatites, ces fluides subissent une ébullition à basse pression lors du retour en conditions retromorphiques. Des fluides à CH4-N2+-H2O ont également été retrouvés dans les vaugnerites. Les densités des fluides du métamorphisme (H2O-CO2+-CH4) sont globalement concordantes avec les données geothermobarométriques. Des fluides aqueux de faible salinité ont circulé durant les étapes finales de la mise en place du dôme
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Eglinger, Aurélien. „Cycle de l'uranium et évolution tectono-métamorphique de la ceinture orogénique Pan-Africaine du Lufilien (Zambie)“. Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0306/document.

Der volle Inhalt der Quelle
Annotation:
L'uranium, élément lithophile et incompatible, peut être utilisé en traceur géochimique pour discuter des différents modèles de formation et d'évolution de la croûte continentale. Ce travail de thèse, ciblé sur la ceinture Pan-Africaine du Lufilien en Zambie, caractérise le cycle de l'U et les minéralisations d'U pour ce segment de croûte continentale. Les séries silicoclastiques/évaporitiques de la ceinture du Lufilien, encaissant les minéralisations d'U, se sont déposées en contexte de rift (bassin du Roan) lors de la dislocation du supercontinent Rodinia au Néoprotérozoïque inférieur. Les âges U-Pb des grains de zircon détritique de ces séries métasédimentaires soulignent une source principalement Paléoprotérozoïque. Ces mêmes grains de zircon présentent des signatures isotopiques epsilonHf inférieures au CHUR (entre 0 et -15) et des âges modèles TDM Hf, compris entre ~2.9 et 2.5 Ga. Ces données suggèrent donc la formation d'une croûte continentale précoce, et donc une extraction mantellique de l'U dès la fin de l'Archéen puis une remobilisation par déformation et métamorphisme au cours du Protérozoïque. L'U aurait donc été remobilisé et re-concentré au cours d'orogenèses successives jusqu'au cycle Pan-Africain. Durant ce cycle Pan-Africain, la datation U-Pb et la signature REY (REE et Yttrium) des cristaux d'uraninite caractérisent un premier évènement minéralisateur, daté vers 650 Ma, associé à la circulation de fluides de bassin expulsés des évaporites du Roan, circulant à l'interface socle/couverture, dans ce contexte de rift continental. Un second événement minéralisateur, daté vers 530 Ma et contemporain du pic métamorphique, est assuré par des fluides métamorphiques issus de la dissolution des évaporites, en contexte de subduction/accrétion continentale. Quelques remobilisations tardives de l'U sont observées lors de l'exhumation des roches métamorphiques
Uranium is an incompatible and lithophile element and can be used as a geochemical tracer to discuss the generation and the evolution of continental crust. This thesis, focused on the Pan-African Lufilian belt in Zambia, characterizes the U cycle for this crustal segment. Silici-clastic and evaporitic sediments have been deposited within an intracontinental rift during the dislocation of the Rodinia supercontinent during the early Neoproterozoic. U-Pb ages on detrital zircon grains in these units indicate a dominant Paleoproterozoic provenance. The same zircon grains show subchondritic epsilonHf (between 0 and -15) and yield Hf model ages between ~2.9 and 2.5 Ga. These data suggest that the continental crust was generated before the end of the Archean associated with U extraction from the mantle. This old crust has been reworked by deformation and metamorphism during the Proterozoic. U has been remobilized and re-concentrated during several orogenic cycles until the Pan-African orogeny. During this Pan-African cycle, U-Pb and REY (REE and Yttrium) signatures of uranium oxides indicate a first mineralizing event at ca. 650 Ma during the continental rifting. This event is related to late diagenesis hydrothermal processes at the basement/cover interface with the circulation of basinal brines linked to evaporites of the Roan. The second stage, dated at 530 Ma, is connected to metamorphic highly saline fluid circulations, synchronous to the metamorphic peak of the Lufilian orogeny. These fluids are derived from the Roan evaporite dissolution. Some late uranium remobilizations are described during exhumation of metamorphic rocks and their tectonic accretion in the internal zone of the Lufilian orogenic belt
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ballentine, Christopher John. „He, Ne, and Ar isotopes as tracers in crustal fluids“. Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387053.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Barker, Shaun, und sbarker@eos ubc ca. „Dynamics of fluid flow and fluid chemistry during crustal shortening“. The Australian National University. Research School of Earth Sciences, 2007. http://thesis.anu.edu.au./public/adt-ANU20090711.074630.

Der volle Inhalt der Quelle
Annotation:
In this thesis, an integrated structural and chemical approach has been used to investigate the spatial and temporal evolution of fluid chemistry, and fluid flow pathways, during crustal shortening. The Taemas Vein Swarm is hosted in a limestone-shale sequence, the Murrumbidgee Group, in the Eastern Belt of the Lachlan Orogen, in New South Wales, Australia. The Taemas Vein Swarm (TVS) is composed of calcite ± quartz veins, hosted in a series of faults and fractures, which extends over an area of approximately 20 km2. The Murrumbidgee Group is composed of several formations, comprising massive grey micritic limestones, redbed sandstones and shales,and thinly interbedded (10–20 cm scale) limestones and shales. ¶ The sedimentary sequence has been folded into a series of upright, open to close folds, and was probably deformed during either mid-late Devonian, or early Carboniferous, crustal shortening. To the east, the Murrumbidgee Group is overthrust by a Silurian volcanic sedimentary sequence along the Deakin-Warroo Fault System. Crosscutting and overprinting relationships demonstrate that vein growth was synchronous with folding, with different vein types related to different fold mechanisms at various stages of fold growth. ¶ Flexural slip folding led to the development of bedding-concordant veins (hereafter called bedding-parallel veins). Flexural flow in semicompetent to incompetent beds caused en echelon extension vein arrays to grow. Decoupling between beds, and dilatancy at fold hinges led to significant vein growth. In addition, fold lock-up led to limb-parallel stretching, and the growth of bedding-orthogonal extension fractures. ¶ Vein growth is inferred to have occurred in a compressional tectonic regime (i.e. sigma3=vertical). Oxygen isotope quartz-calcite thermometry suggests that veins formed at temperatures of 100–200 oC. The depth of vein formation may have been between about 5 and 8 km. Vein textures indicate that growth of veins occurred during multiple cycles of permeability enhancement and destruction. Subhorizontal extension fractures, and faults at unfavourable angles for reactivation, imply that fluid pressures exceeded lithostatic levels during the growth of some veins. Coexisting extension and shear fractures imply that differential stress levels varied over time. ¶ Flexural slip continued throughout folding at Taemas, despite some fold limbs being at angles extremely unfavourable for reactivation ( > 60). As folds approached frictional lock-up, flexural slip continued to occur when supralithostatic fluid pressures were developed. Therefore, large, bedding-discordant faults were not developed to accommodate strain during folding, explaining a deficiency of larger faults in the TVS. ¶ Infiltration of overpressured fluids occurred into the base of the Murrumbidgee Group, and was channelled into a distributed mesh of small faults and fractures. At the point that a connected ‘backbone’ flow network developed in the TVS, highpressure fluids would no longer be available to allow continuing flexural slip on fold limbs approaching lockup. Thereafter, larger faults would develop, which would adjust the fault population in the TVS to a more ‘typical’ displacement-frequency distribution. This had not occurred in the Taemas area by the time crustal shortening ceased. An abundance of small faults, and fracturing driven by invasion of overpressured fluid, implies that the TVS formed via an ‘earthquake swarm’ process. ¶ Modern analytical techniques, utilising laser ablation sampling technology, allow high-spatial resolution chemical data to be collected from syntectonic veins. Insights into the role that fluid-mineral interface processes may have on the chemistry of minerals grown in syntectonic veins were provided by an experimental study. Moderate sized ( < 1−5 mm) synthetic calcite crystals were successfully grown to investigate the uptake of rare earth elements (REE) into calcite. Changes in crystal morphology are linked to variable solution chemistry, which has important implications for the interpretation of hydrothermal vein textures. High-spatial resolution chemical analyses of synthetic calcite crystals demonstrate significant fluctuations in REE concentrations over distances of < 200 μm within calcite crystals. Time-equivalent regions on different crystal faces have significantly different REE concentrations, indicating that fluctuations in calcite trace element composition cannot be interpreted exclusively in terms of changing ‘bulk fluid’ composition. Rare earth element anomalies (Eu/Eu* and Ce/Ce*) are not significantly influenced by compositional zoning, and may be robust indicators of changes in solution bulk chemistry and fluid oxidation state. ¶ Changes in isotopic ratios (13C, 18O and 87Sr/86Sr), and trace element concentrations in veins from the TVS are related to variations in fluid source, flow pathways and chemical conditions (e.g. trace element complexation, precipitation rate, fluid oxidation) during hydrothermal fluid flow. This integrated structural, textural and chemical approach has direct application to the examination of hydrothermal veins in fracture-hosted ore deposits, and may allow the fluid source and/or chemical conditions conducive to the formation of high-grade ore to be discerned. ¶ Vein 18O compositions systematically increase upwards through the Murrumbidgee Group, caused by progressive reaction of an externally derived, low-18O fluid (of probable meteoric origin) with host limestones. Vein 18O and 87Sr/86Sr compositions vary spatially and temporally within the same outcrop, and within individual veins, which is inferred to be caused by the ascent of packages of fluid along constantly changing flow pathways. Fluid-buffered oxygen isotope ratios at the earliest stages of deformation imply that the TVS formed via an ‘invasion percolation’ process. Fluid pathways are inferred to have changed constantly, with fractures ‘toggleswitching’ between high-permeability and low-permeability states, due to repeated fracture opening and sealing events.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wilkinson, Jamie John. „The origin and evolution of Hercynian crustal fluids, South Cornwall, England“. Thesis, University of Southampton, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252719.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Siebenaller, Luc Vanderhaeghe Olivier. „Circulations fluides au cours de l'effondrement d'un prisme d'accrétion crustal l'exemple du "Metamorphic Core Complex" de l'île de Naxos (Cyclades, Grèce) /“. S. l. : Nancy 1, 2008. http://www.scd.uhp-nancy.fr/docnum/SCD_T_2008_0139_SIEBENALLER.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Siebenaller, Luc. „Circulations fluides au cours de l'effondrement d'un prisme d'accrétion crustal : l'exemple du "Metamorphic Core Complex" de l'île de Naxos (Cyclades, Grèce)“. Thesis, Nancy 1, 2008. http://www.theses.fr/2008NAN10139/document.

Der volle Inhalt der Quelle
Annotation:
Cette thèse a pour objectif de caractériser les circulations de fluides en contexte d’effondrement d’un prisme d’accrétion crustal. Le Metamorphic Core Complex (MCC) de Naxos comprend un système de détachement/décollement caractérisé par mylonites, ultramylonites, cataclasites et failles normales dont les relations géométriques témoignent du litage rhéologique de la croûte continentale. La chimie des inclusions fluides déterminée par l’analyse microthermométrique, la spectroscopie RAMAN, l’ablation laser couplée à l’analyse spectroscopique (LA-ICP-MS), le « crush-leach », et les signatures isotopiques C et H des inclusions fluides permettent d’identifier trois grands types de fluides (1) des fluides salés riche en métaux, ii) des fluides aquo-carboniques en équilibre avec les encaissants métamorphiques, et iii) des fluides aqueux, probablement d’origine météorique. Ces données indiquent que la croûte est subdivisée en deux réservoirs séparés par la transition fragile-ductile. Les fluides météoriques circulent en association avec la déformation fragile de la croûte supérieure alors que les fluides salés et les fluides aquo-carboniques circulent en relation avec la déformation ductile. La géométrie de ces réservoirs évolue lors de la formation du MCC, conjointement avec l’exhumation et le refroidissement des roches métamorphiques. Le passage des roches du réservoir ductile au réservoir fragile est associée à un changement depuis un gradient géothermique élevé (60-100°C/km) vers un gradient géothermique plus faible (35-60°C/km). La transition fragile-ductile correspond ainsi à la fois à une limite rhéologique corrélée à une limite thermique et une limite de perméabilité
The aim of this thesis is to characterize fluid circulations in the context of the collapse of a crustal accretionary belt. The Naxos Metamorphic Core Complex comprises a detachment/decollement system characterized by mylonites, ultramylonites, cataclasites and normal faults with structural relationships reflecting the rheological layering at the crustal scale. Fluid inclusion chemistry is determined by microthermometry, Raman spectroscopy; laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), crush-leach and stable isotopes (C and H) analyses. These data characterize three different types of fluids: (1) high salinity fluids with a high metal content and high Th, (2) aqueous-carbonic fluids in equilibrium with the wall rocks and (3) aqueous probably surface-derived fluids. These data indicate that the crust is subdivided into two crustal reservoirs separated by the brittle/ductile transition. Surface-derived aqueous fluids circulate in association with the brittle deformation within the upper crust whereas aqueous-carbonic and high salinity fluids circulate in relation with ductile deformation. The characteristics of the trapped fluids indicate that as rocks have passed through the ductile/brittle transition they undergo a drastic change in geothermal gradient from 60 to 100°C/km within a lithostatic pressure regime to 35-60°C/km within a hydrostatic pressure regime. This implies that the fluid circulations are closely related to the rheological layering within the crust and its evolution during crustal extension. The ductile/brittle transition corresponds to a rheological boundary correlated to a thermal boundary and impermeable cap
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Blythe, Lara S. „Understanding Crustal Volatiles : Provenance, Processes and Implications“. Doctoral thesis, Uppsala universitet, Berggrundsgeologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-171486.

Der volle Inhalt der Quelle
Annotation:
Knowledge of the provenance of crustal volatiles and the processes by which they are released is extremely important for the dynamics of magmatic systems. Presented here are the results of multiple investigations, which aim to understand magmatic volatile contamination from contrasting but complementary perspectives. The main methodologies used include He and C isotope values and CO2/3He ratios of volcanic gases and fluids; simulation of magma-carbonate interaction using high-pressure high-temperature experimental petrology; X-ray microtomography of vesiculated xenoliths and computer modeling. Findings show that the contribution from upper crustal volatiles can be substantial, and is dependant on the upper crustal lithology on which a volcano lies, as well as the composition of the magma supplied. Carbonate dissolution in particular is strongly controlled by the viscosity of the host magma. The details of the breakdown of vesiculated xenoliths is complex but has wide reaching implications, ranging from the dissemination of crustally derived materials through a magma body to highlighting that crustal volatiles are largely unaccounted for in both individual volcano and global volatile budgets. In synthesizing the conclusions from each of the individual perspectives presented, I propose the contribution of volatiles from crustal sources to play a significant role in many geological systems. This volatile component should be taken into consideration in future research efforts.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Warwick, Alison Julie. „Mineral growth and fluid migration in mid-crustal shear zones“. Thesis, University of Plymouth, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340287.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Fluides crustaux"

1

National Research Council (U.S.). Geophysics Study Committee., Hrsg. The Role of fluids in crustal processes. Washington, D.C: National Academy Press, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bos, Bart. Faults, fluids and friction: Effect of pressure solution and phyllosilicates on fault slip behaviour, with implications for crustal rheology. [Utrecht]: Faculteit Aardwetenschappen der Universiteit Utrecht, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hooft, Emilie Ernestine Ebba. The influence of magma supply and eruptive processes on axial morphology, crustal construction and magma chambers. Woods Hole, Mass: Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Japan-U.S. Seminar on "Magmatic Contributions to Hydrothermal Systems" (1991 Kagoshima-shi, Japan, and Ebino-shi, Japan). Magmatic contributions to hydrothermal systems: Extended abstracts of the Japan-U.S. Seminar on "Magmatic Contributions to Hydrothermal Systems", held at Kagoshima and Ebino, November, 1991 and The behavior of volatiles in magma : abstracts of the 4th Symposium on Deep-crustal Fluids "The behavior of Volatiles in Magma", held at Tsukuba, November, 1991. Tsukuba-shi: Geological Survey of Japan, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

The Role of Fluids in Crustal Processes. Washington, D.C.: National Academies Press, 1990. http://dx.doi.org/10.17226/1346.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Delgado Martín, Jordi, Andrea Muñoz-Ibáñez und Ismael Himar Falcón-Suárez. 6th International Workshop on Rock Physics: A Coruña, Spain 13 -17 June 2022: Book of Abstracts. 2022. Aufl. Servizo de Publicacións da UDC, 2022. http://dx.doi.org/10.17979/spudc.000005.

Der volle Inhalt der Quelle
Annotation:
[Abstract] The 6th International Workshop on Rock Physics (6IWRP) was held A Coruña, Spain, between 13th and 17th of June, 2022. This meeting follows the track of the five successful encounters held in Golden (USA, 2011), Southampton (UK, 2013), Perth (Australia, 2015), Trondheim (Norway, 2017) and Hong Kong (China, 2019). The aim of the workshop was to bring together experiences allowing to illustrate, discuss and exchange recent advances in the wide realm of rock physics, including theoretical developments, in situ and laboratory scale experiments as well as digital analysis. While rock physics is at the core of the oil & gas industry applications, it is also essential to enable the energy transition challenge (e.g. CO2 and H2 storage, geothermal), ensure a safe and adequate use of natural resources and develop efficient waste management strategies. The topics of 6IWRP covered a broad spectrum of rock physics-related research activities, including: • Experimental rock physics. New techniques, approaches and applications; Characterization of the static and dynamic properties of rocks and fluids; Multiphysics measurements (NMR, electrical resistivity…); Deep/crustal scale rock physics. • Modelling and multiscale applications: from the lab to the field. Numerical analysis and model development; Data science applications; Upscaling; Microseismicity and earthquakes; Subsurface stresses and tectonic deformations. • Coupled phenomena and rock properties: exploring interactions. Anisotropy; Flow and fractures; Temperature effects; Rock-fluid interaction; Fluid and pressure effects on geophysical signatures. • The energy transition challenge. Applications to energy storage (hydrogen storage in porous media), geothermal resources, energy production (gas hydrates), geological utilization and storage of CO2, nuclear waste disposal. • Rock physics templates: advances and applications. Quantitative assessment; Applications to reser voir characterization (role of seismic wave anisotropy and fracture networks). • Advanced rock physics tools. Machine learning; application of imaging (X-ray CT, X-ray μCT, FIB-SEM…) to obtain rock proper ties. This book compiles more than 50 abstracts, summarizing the works presented in the 6IWRP by rock physicists from all over the world, belonging to both academia and industry. This book means an updated overview of the rock physics research worldwide.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Fluides crustaux"

1

Bosl, William J., und Amos Nur. „Crustal fluids and earthquakes“. In Geocomplexity and the Physics of Earthquakes, 267–84. Washington, D. C.: American Geophysical Union, 2000. http://dx.doi.org/10.1029/gm120p0267.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Yardley, Bruce W. D., und Kirill I. Shmulovich. „An introduction to crustal fluids“. In Fluids in the Crust, 1–12. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1226-0_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Quesnel, Benoît, Christophe Scheffer und Georges Beaudoin. „The Light Stable Isotope (Hydrogen, Boron, Carbon, Nitrogen, Oxygen, Silicon, Sulfur) Composition of Orogenic Gold Deposits“. In Isotopes in Economic Geology, Metallogenesis and Exploration, 283–328. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27897-6_10.

Der volle Inhalt der Quelle
Annotation:
AbstractOrogenic gold deposits formed in various terranes of most ages since the Paleoarchean and generally consist of quartz veins hosted in shear zones formed at the ductile brittle transition under greenschist to lower amphibolite metamorphic conditions. Vein mineralogy is dominated by quartz with various amounts of silicates, carbonates, phyllosilicates, borates, tungstates, sulfides, and oxides. The isotopic composition of these minerals and fluid inclusions has been investigated since the 1960s to constrain the characteristics of orogenic fluid systems involved in the formation of gold deposits worldwide. This review is based on 8580 stable isotope analyses, including δ18O, δD, δ13C, δ34S δ15N, δ11B, and δ30Si values, from 5478 samples from 558 orogenic gold deposits reported in the literature from 1960 to 2010. This contribution describes the variability of the light stable isotopic systems as function of the minerals, the age of the deposits, their regional setting, and their country rocks. The temperature of isotopic equilibrium of orogenic gold veins is estimated from mineral pairs for oxygen and sulfur isotopes. Based on these temperatures, and on fractionation between mineral and fluid components (H2O, CO2 and H2S), the isotopic composition of fluids is estimated to better constrain the main parameters shared by most of auriferous orogenic fluid systems. Orogenic gold deposits display similar isotopic features through time, suggesting that fluid conditions and sources leading to the formation of orogenic gold deposits did not change significantly from the Archean to the Cenozoic. No consistent secular variations of mineral isotope composition for oxygen (−8.1‰ ≤ δ18O ≤ 33‰, n = 4011), hydrogen (−187‰ ≤ δD ≤ −4‰, n = 246), carbon (−26.7‰ ≤ δ13C ≤ 12.3‰, n = 1179), boron (−21.6‰ ≤ δ11B ≤ 9‰, n = 119), and silicon (−0.5‰ ≤ δ30Si ≤ 0.8‰, n = 33) are documented. Only nitrogen (1.6‰ ≤ δ15N ≤ 23.7‰, n = 258) and sulfide sulfur from deposits hosted in sedimentary rocks (−27.2‰ ≤ δ34S ≤ 25‰, n = 717) display secular variations. For nitrogen, the change in composition is interpreted to record the variation of δ15N values of sediments devolatilized during metamorphism. For sulfur, secular variations reflect incorporation of local sedimentary sulfur of ultimate seawater origin. No significant variation of temperature of vein formation is documented for orogenic gold deposits of different ages. Quartz-silicate, quartz-carbonate and sulfide-sulfide mineral pairs display consistent temperatures of 360 ± 76 °C (1σ; n = 332), in agreement with the more common greenschist facies hostrocks and fluid inclusion microthermometry. Fluid sources for orogenic gold deposits are complex but the isotopic systems (hydrogen, boron, carbon, nitrogen, oxygen, sulfur) are most consistent with contributions from metamorphic fluids released by devolatilization of igneous, volcano-sedimentary and/or sedimentary rocks. The contribution of magmatic water exsolved from magma during crystallization is not a necessary component, even if permissible in specific cases. Isotopic data arrays can be interpreted as the result of fluid mixing between a high T (~550 °C)—high δ18O (~10‰)—low δD (~−60‰) deep-seated (metamorphic) fluid reservoir and a low T (~200 °C)—low δ18O (~2‰)—high δD (~0‰) upper crustal fluid reservoir in a number of orogenic gold deposits. The origin of the upper crustal fluid is most likely sea- or meteoric water filling the host rock porosity, with a long history of water–rock isotope exchange. Mixing of deep-seated and upper crustal fluids also explains the large variation of tourmaline δ11B values from orogenic gold veins. Regional spatial variations of oxygen and hydrogen isotope compositions of deep-seated fluid reservoirs are documented between orogenic gold districts. This is the case for the Val-d’Or (Abitibi), Coolgardie and Kalgoorlie (Yilgarn) where the oxygen isotope composition of the deep-seated fluid end-member is 4‰ lower compared to that from the Timmins, Larder Lake, and Kirkland Lake districts (Abitibi). However, both mixing trends converge towards a common, low δ18O upper crustal fluid end-member. Such variations cannot be related to fluid buffering at the site of deposition and suggest provinciality of the fluid source. The contribution of meteoric water is mainly recorded by fluid inclusions from Mesozoic and Cenozoic age deposits, but micas are not systematically in isotopic equilibrium with fluid inclusions trapped in quartz from the same vein. This suggests late involvement of meteoric water unrelated to deposit formation. Yet, a number of deposits with low δD mica may record infiltration of meteoric water in orogenic gold deposits. Isotope exchange between mineralizing fluid and country rocks is documented for oxygen, carbon, sulfur and silicon isotopes. Large variations (> 10‰) of sulfide δ34S values at the deposit scale are likely related to evolving redox conditions of the mineralizing fluid during reaction with country rocks. Deposits hosted in sedimentary rocks show a shift to higher δ18O values as a result of fluid/rock oxygen exchange with the regional sedimentary country rocks.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Thompson, A. B. „Heat, Fluids, and Melting in the Granulite Facies“. In Granulites and Crustal Evolution, 37–57. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2055-2_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Touret, J. L. R., und T. H. D. Hartel. „Synmetamorphic Fluid Inclusions in Granulites“. In Granulites and Crustal Evolution, 397–417. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2055-2_20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Weis, Philipp. „The dynamic interplay between saline fluid flow and rock permeability in magmatic-hydrothermal systems“. In Crustal Permeability, 373–92. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119166573.ch29.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Fan, Ying, Stephen Richard, R. Sky Bristol, Shanan E. Peters, Steven E. Ingebritsen, Nils Moosdorf, Aaron Packman et al. „DigitalCrust - a 4D data system of material properties for transforming research on crustal fluid flow“. In Crustal Permeability, 6–12. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119166573.ch2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Preisig, Giona, Erik Eberhardt, Valentin Gischig, Vincent Roche, Mirko van der Baan, Benoît Valley, Peter K. Kaiser, Damien Duff und Robert Lowther. „Development of connected permeability in massive crystalline rocks through hydraulic fracture propagation and shearing accompanying fluid injection“. In Crustal Permeability, 335–52. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119166573.ch26.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sen, S. K., und A. Bhattacharya. „Granulites of Satnuru and Madras: A Study in Different Behaviour of Fluids“. In Granulites and Crustal Evolution, 367–84. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2055-2_18.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Stober, Ingrid, und Kurt Bucher. „Hydraulic conductivity of fractured upper crust: insights from hydraulic tests in boreholes and fluid-rock interaction in crystalline basement rocks“. In Crustal Permeability, 174–88. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119166573.ch15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Fluides crustaux"

1

Zhong, Richen, Hao Cui, Yuling Xie, Xueyin Yuan, Joël Brugger, Huan Chen, Weihua Liu und Chang Yu. „Sulfate-Rich Crustal Fluids and REE Tranpsort“. In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.3189.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Matthews, Simon, und Dimitri A. Sverjensky. „Modelling Zr Transport in Crustal and Mantle Fluids“. In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1747.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Trunilina, Vera. „RARE-EARTH MINERALIZATION IN GRANITES OF THE NORTH-EAST OF THE VERKHOYANSK-KOLYMA OROGEN“. In 23rd SGEM International Multidisciplinary Scientific GeoConference 2023. STEF92 Technology, 2023. http://dx.doi.org/10.5593/sgem2023/1.1/s01.17.

Der volle Inhalt der Quelle
Annotation:
The results of the study of granites of the north-east of the Verkhoyansk-Kolyma orogen bearing rare-earth mineralization are summarized in the article. Ore-bearing granites are classified as A-type of postorogenic and rift-related geodynamic conditions. Three groups are identified in them, differing in the origin and scale of the associated rareearth mineralization. The most ore-bearing granites are spatially and genetically related to alkaline�ultrabasic � alkaline-basic formations and formed within a long-lived hotspot from granite melt, generated from a fenitized crustal substrate under the influence of a flow of transmagmatic fluids. Granite massifs are limited ore-bearing, crystallized from melts generated in the Paleoproterozoic substrates of the lower crust under the influence of heat and fluids, related to the mantle magmas and bearing clear signs of mixing of basic and acidic melts during crystallization. These massifs are localized within the Indigirka crustal extension belt, where the presence of buried centers of the basic melts is assumed, which activation caused the re-melting of crustal substrates. Granites that do not bear signs of mantle-crustal interaction usually have only dispersed accessory rare-earth mineralization.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Murphy, Benjamin, Jan Marten Huizenga, Jan Marten Huizenga, Paul A. Bedrosian und Paul A. Bedrosian. „TRACING CRUSTAL-SCALE FLUID PATHWAYS UNDER COVER WITH MAGNETOTELLURIC IMAGING“. In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-356916.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gysi, Alexander P. „THE MINES THERMODYNAMIC DATABASE FOR MODELING CRUSTAL FLUID-ROCK SYSTEMS“. In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-285349.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Teboul, Pierre-Alexandre, Neilma Lima, Eric Gaucher und Laury Araujo. „Fluid/rock interaction in extensional setting: a complex contribution from exhumed mantle and crustal fluids – Case study of the Aptian “Pre-salt” carbonates“. In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.10164.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Benson, Erin, und Alan Boudreau. „Stable and radiogenic isotopes in the Stillwater Complex, Montana: Evidence for contamination by crustal fluids“. In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.12394.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Erslev, Eric, Kate Miller, Lindsay Lowe Worthington, Megan Anderson und Gary Gray. „LARAMIDE CRUSTAL DETACHMENT IN THE ROCKIES: CORDILLERAN SHORTENING OF FLUID-WEAKENED CRUST“. In GSA Connects 2022 meeting in Denver, Colorado. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022am-383674.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Spotkaeff, Cherise, Michael Rappe, Sean Jungbluth, Grieg Steward und Olivia Nigro. „Phylogenomic Analysis of Viral Genomes Assembled from Juan de Fuca Ridge Flank Basalt-Hosted Crustal Fluids“. In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2448.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lages, Joao, Andrea Rizzo und Alessandro Aiuppa. „Crustal Controls on Noble Gas Signatures in Fluid Inclusions from Andean Eruptive Products“. In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1397.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Fluides crustaux"

1

Jacques, I. J., A. J. Anderson und S. G. Nielsen. The geochemistry of thallium and its isotopes in rare-element pegmatites. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328983.

Der volle Inhalt der Quelle
Annotation:
The Tl isotopic and trace element composition of K-feldspar, mica, pollucite and pyrite from 13 niobium-yttrium-fluorine (NYF)-type and 14 lithium-cesium-tantalum (LCT)-type rare-element pegmatites was investigated. In general, the epsilon-205Tl values for K-feldspar in NYF- and LCT-type pegmatites increases with increasing magmatic fractionation. Both NYF and LCT pegmatites display a wide range in epsilon-205Tl (-4.25 to 9.41), which complicates attempts to characterize source reservoirs. We suggest 205Tl-enrichment during pegmatite crystallization occurs as Tl partitions between the residual melt and a coexisting aqueous fluid or flux-rich silicate liquid. Preferential association of 205Tl with Cl in the immiscible aqueous fluid may influence the isotopic character of the growing pegmatite minerals. Subsolidus alteration of K-feldspar by aqueous fluids, as indicated by the redistribution of Cs in K-feldspar, resulted in epsilon-205Tl values below the crustal average (-2.0 epsilon-205Tl). Such low epsilon-205Tl values in K-feldspar is attributed to preferential removal and transport of 205Tl by Cl-bearing fluids during dissolution and reprecipitation. The combination of thallium isotope and trace element data may be used to examine late-stage processes related to rare-element mineralization in some pegmatites. High epsilon-205Tl and Ga in late-stage muscovite appears to be a favorable indicator of rare-element enrichment LCT pegmatites and may be a useful exploration vector.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Matte, S., M. Constantin und R. Stevenson. Mineralogical and geochemical characterisation of the Kipawa syenite complex, Quebec: implications for rare-earth element deposits. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329212.

Der volle Inhalt der Quelle
Annotation:
The Kipawa rare-earth element (REE) deposit is located in the Parautochton zone of the Grenville Province 55 km south of the boundary with the Superior Province. The deposit is part of the Kipawa syenite complex of peralkaline syenites, gneisses, and amphibolites that are intercalated with calc-silicate rocks and marbles overlain by a peralkaline gneissic granite. The REE deposit is principally composed of eudialyte, mosandrite and britholite, and less abundant minerals such as xenotime, monazite or euxenite. The Kipawa Complex outcrops as a series of thin, folded sheet imbricates located between regional metasediments, suggesting a regional tectonic control. Several hypotheses for the origin of the complex have been suggested: crustal contamination of mantle-derived magmas, crustal melting, fluid alteration, metamorphism, and hydrothermal activity. Our objective is to characterize the mineralogical, geochemical, and isotopic composition of the Kipawa complex in order to improve our understanding of the formation and the post-formation processes, and the age of the complex. The complex has been deformed and metamorphosed with evidence of melting-recrystallization textures among REE and Zr rich magmatic and post magmatic minerals. Major and trace element geochemistry obtained by ICP-MS suggest that syenites, granites and monzonite of the complex have within-plate A2 type anorogenic signatures, and our analyses indicate a strong crustal signature based on TIMS whole rock Nd isotopes. We have analyzed zircon grains by SEM, EPMA, ICP-MS and MC-ICP-MS coupled with laser ablation (Lu-Hf). Initial isotopic results also support a strong crustal signature. Taken together, these results suggest that alkaline magmas of the Kipawa complex/deposit could have formed by partial melting of the mantle followed by strong crustal contamination or by melting of metasomatized continental crust. These processes and origins strongly differ compare to most alkaline complexes in the world. Additional TIMS and LA-MC-ICP-MS analyses are planned to investigate whether all lithologies share the same strong crustal signature.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Rye, Danny M., und Edward W. Bolton. Reactive Fluid Flow and Applications to Diagenesis, Mineral Deposits, and Crustal Rocks. Office of Scientific and Technical Information (OSTI), November 2002. http://dx.doi.org/10.2172/899948.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lasaga, A. C., und D. M. Rye. Reactive fluid flow models and applications to diagenesis, mineral deposits and crustal rocks. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/6973243.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lasaga, A. C., und D. M. Rye. Reactive fluid flow models and applications to diagenesis, mineral deposits and crustal rocks. Office of Scientific and Technical Information (OSTI), August 1993. http://dx.doi.org/10.2172/10173566.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Lasaga, A. C., und D. M. Rye. Reactive fluid flow models and applications to diagenesis, mineral deposits and crustal rocks. Progress report. Office of Scientific and Technical Information (OSTI), Oktober 1992. http://dx.doi.org/10.2172/10183433.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Harris, L. B., P. Adiban und E. Gloaguen. The role of enigmatic deep crustal and upper mantle structures on Au and magmatic Ni-Cu-PGE-Cr mineralization in the Superior Province. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328984.

Der volle Inhalt der Quelle
Annotation:
Aeromagnetic and ground gravity data for the Canadian Superior Province, filtered to extract long wavelength components and converted to pseudo-gravity, highlight deep, N-S trending regional-scale, rectilinear faults and margins to discrete, competent mafic or felsic granulite blocks (i.e. at high angles to most regional mapped structures and sub-province boundaries) with little to no surface expression that are spatially associated with lode ('orogenic') Au and Ni-Cu-PGE-Cr occurrences. Statistical and machine learning analysis of the Red Lake-Stormy Lake region in the W Superior Province confirms visual inspection for a greater correlation between Au deposits and these deep N-S structures than with mapped surface to upper crustal, generally E-W trending, faults and shear zones. Porphyry Au, Ni, Mo and U-Th showings are also located above these deep transverse faults. Several well defined concentric circular to elliptical structures identified in the Oxford Stull and Island Lake domains along the S boundary of the N Superior proto-craton, intersected by N- to NNW striking extensional fractures and/or faults that transect the W Superior Province, again with little to no direct surface or upper crustal expression, are spatially associated with magmatic Ni-Cu-PGE-Cr and related mineralization and Au occurrences. The McFaulds Lake greenstone belt, aka. 'Ring of Fire', constitutes only a small, crescent-shaped belt within one of these concentric features above which 2736-2733 Ma mafic-ultramafic intrusions bodies were intruded. The Big Trout Lake igneous complex that hosts Cr-Pt-Pd-Rh mineralization west of the Ring of Fire lies within a smaller concentrically ringed feature at depth and, near the Ontario-Manitoba border, the Lingman Lake Au deposit, numerous Au occurrences and minor Ni showings, are similarly located on concentric structures. Preliminary magnetotelluric (MT) interpretations suggest that these concentric structures appear to also have an expression in the subcontinental lithospheric mantle (SCLM) and that lithospheric mantle resistivity features trend N-S as well as E-W. With diameters between ca. 90 km to 185 km, elliptical structures are similar in size and internal geometry to coronae on Venus which geomorphological, radar, and gravity interpretations suggest formed above mantle upwellings. Emplacement of mafic-ultramafic bodies hosting Ni-Cr-PGE mineralization along these ringlike structures at their intersection with coeval deep transverse, ca. N-S faults (viz. phi structures), along with their location along the margin to the N Superior proto-craton, are consistent with secondary mantle upwellings portrayed in numerical models of a mantle plume beneath a craton with a deep lithospheric keel within a regional N-S compressional regime. Early, regional ca. N-S faults in the W Superior were reactivated as dilatational antithetic (secondary Riedel/R') sinistral shears during dextral transpression and as extensional fractures and/or normal faults during N-S shortening. The Kapuskasing structural zone or uplift likely represents Proterozoic reactivation of a similar deep transverse structure. Preservation of discrete faults in the deep crust beneath zones of distributed Neoarchean dextral transcurrent to transpressional shear zones in the present-day upper crust suggests a 'millefeuille' lithospheric strength profile, with competent SCLM, mid- to deep, and upper crustal layers. Mechanically strong deep crustal felsic and mafic granulite layers are attributed to dehydration and melt extraction. Intra-crustal decoupling along a ductile décollement in the W Superior led to the preservation of early-formed deep structures that acted as conduits for magma transport into the overlying crust and focussed hydrothermal fluid flow during regional deformation. Increase in the thickness of semi-brittle layers in the lower crust during regional metamorphism would result in an increase in fracturing and faulting in the lower crust, facilitating hydrothermal and carbonic fluid flow in pathways linking SCLM to the upper crust, a factor explaining the late timing for most orogenic Au. Results provide an important new dataset for regional prospectively mapping, especially with machine learning, and exploration targeting for Au and Ni-Cr-Cu-PGE mineralization. Results also furnish evidence for parautochthonous development of the S Superior Province during plume-related rifting and cannot be explained by conventional subduction and arc-accretion models.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie