Zeitschriftenartikel zum Thema „Fluid-structure interaction“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Fluid-structure interaction.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Fluid-structure interaction" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Xing, Jing Tang. „Fluid-Structure Interaction“. Strain 39, Nr. 4 (November 2003): 186–87. http://dx.doi.org/10.1046/j.0039-2103.2003.00067.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bazilevs, Yuri, Kenji Takizawa und Tayfun E. Tezduyar. „Fluid–structure interaction“. Computational Mechanics 55, Nr. 6 (10.05.2015): 1057–58. http://dx.doi.org/10.1007/s00466-015-1162-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lee, Kyoungsoo, Ziaul Huque, Raghava Kommalapati und Sang-Eul Han. „The Evaluation of Aerodynamic Interaction of Wind Blade Using Fluid Structure Interaction Method“. Journal of Clean Energy Technologies 3, Nr. 4 (2015): 270–75. http://dx.doi.org/10.7763/jocet.2015.v3.207.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ortiz, Jose L., und Alan A. Barhorst. „Modeling Fluid-Structure Interaction“. Journal of Guidance, Control, and Dynamics 20, Nr. 6 (November 1997): 1221–28. http://dx.doi.org/10.2514/2.4180.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ko, Sung H. „Structure–fluid interaction problems“. Journal of the Acoustical Society of America 88, Nr. 1 (Juli 1990): 367. http://dx.doi.org/10.1121/1.399912.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Semenov, Yuriy A. „Fluid/Structure Interactions“. Journal of Marine Science and Engineering 10, Nr. 2 (26.01.2022): 159. http://dx.doi.org/10.3390/jmse10020159.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Takizawa, Kenji, Yuri Bazilevs und Tayfun E. Tezduyar. „Computational fluid mechanics and fluid–structure interaction“. Computational Mechanics 50, Nr. 6 (18.09.2012): 665. http://dx.doi.org/10.1007/s00466-012-0793-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bazilevs, Yuri, Kenji Takizawa und Tayfun E. Tezduyar. „Biomedical fluid mechanics and fluid–structure interaction“. Computational Mechanics 54, Nr. 4 (15.07.2014): 893. http://dx.doi.org/10.1007/s00466-014-1056-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Souli, M., K. Mahmadi und N. Aquelet. „ALE and Fluid Structure Interaction“. Materials Science Forum 465-466 (September 2004): 143–50. http://dx.doi.org/10.4028/www.scientific.net/msf.465-466.143.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Chung, H., und M. D. Bernstein. „Topics in Fluid Structure Interaction“. Journal of Pressure Vessel Technology 107, Nr. 1 (01.02.1985): 99. http://dx.doi.org/10.1115/1.3264418.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

van Rij, J., T. Harman und T. Ameel. „Slip flow fluid-structure-interaction“. International Journal of Thermal Sciences 58 (August 2012): 9–19. http://dx.doi.org/10.1016/j.ijthermalsci.2012.03.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Izadpanah, Kamran, Robert L. Harder, Raj Kansakar und Mike Reymond. „Coupled fluid-structure interaction analysis“. Finite Elements in Analysis and Design 7, Nr. 4 (Februar 1991): 331–42. http://dx.doi.org/10.1016/0168-874x(91)90049-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Hsiao, George C., Francisco-Javier Sayas und Richard J. Weinacht. „Time-dependent fluid-structure interaction“. Mathematical Methods in the Applied Sciences 40, Nr. 2 (19.03.2015): 486–500. http://dx.doi.org/10.1002/mma.3427.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Tijsseling, A. S., und C. S. W. Lavooij. „Waterhammer with fluid-structure interaction“. Applied Scientific Research 47, Nr. 3 (Juli 1990): 273–85. http://dx.doi.org/10.1007/bf00418055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Jensen, J. S. „FLUID TRANSPORT DUE TO NONLINEAR FLUID–STRUCTURE INTERACTION“. Journal of Fluids and Structures 11, Nr. 3 (April 1997): 327–44. http://dx.doi.org/10.1006/jfls.1996.0080.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Bathe, Klaus-Ju¨rgen. „Fluid-structure Interactions“. Mechanical Engineering 120, Nr. 04 (01.04.1998): 66–68. http://dx.doi.org/10.1115/1.1998-apr-4.

Der volle Inhalt der Quelle
Annotation:
This article reviews finite element methods that are widely used in the analysis of solids and structures, and they provide great benefits in product design. In fact, with today’s highly competitive design and manufacturing markets, it is nearly impossible to ignore the advances that have been made in the computer analysis of structures without losing an edge in innovation and productivity. Various commercial finite-element programs are widely used and have proven to be indispensable in designing safer, more economical products. Applications of acoustic-fluid/structure interactions are found whenever the fluid can be modeled to be inviscid and to undergo only relatively small particle motions. The interplay between finite-element modeling and analysis with the recognition and understanding of new physical phenomena will advance the understanding of physical processes. This will lead to increasingly better simulations. Based on current technology and realistic expectations of further hardware and software developments, a tremendous future for fluid–structure interaction applications lies ahead.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Rafatpanah, Ramin M., und Jianfeng Yang. „ICONE23-1732 SIMULATING FLUID-STRUCTURE INTERACTION UTILIZING THREE-DIMENSIONAL ACOUSTIC FLUID ELEMENTS FOR REACTOR EQUIPMENT SYSTEM MODEL“. Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015): _ICONE23–1—_ICONE23–1. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-1_362.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Toma, Milan, Rosalyn Chan-Akeley, Jonathan Arias, Gregory D. Kurgansky und Wenbin Mao. „Fluid–Structure Interaction Analyses of Biological Systems Using Smoothed-Particle Hydrodynamics“. Biology 10, Nr. 3 (02.03.2021): 185. http://dx.doi.org/10.3390/biology10030185.

Der volle Inhalt der Quelle
Annotation:
Due to the inherent complexity of biological applications that more often than not include fluids and structures interacting together, the development of computational fluid–structure interaction models is necessary to achieve a quantitative understanding of their structure and function in both health and disease. The functions of biological structures usually include their interactions with the surrounding fluids. Hence, we contend that the use of fluid–structure interaction models in computational studies of biological systems is practical, if not necessary. The ultimate goal is to develop computational models to predict human biological processes. These models are meant to guide us through the multitude of possible diseases affecting our organs and lead to more effective methods for disease diagnosis, risk stratification, and therapy. This review paper summarizes computational models that use smoothed-particle hydrodynamics to simulate the fluid–structure interactions in complex biological systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Lefrançois, Emmanuel. „Fluid-structure interaction in rocket engines“. European Journal of Computational Mechanics 19, Nr. 5-7 (Januar 2010): 637–52. http://dx.doi.org/10.3166/ejcm.19.637-652.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Chen, Wenli, Zifeng Yang, Gang Hu, Haiquan Jing und Junlei Wang. „New Advances in Fluid–Structure Interaction“. Applied Sciences 12, Nr. 11 (26.05.2022): 5366. http://dx.doi.org/10.3390/app12115366.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Meywerk, M., F. Decker und J. Cordes. „Fluid-structure interaction in crash simulation“. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 214, Nr. 7 (Juli 2000): 669–73. http://dx.doi.org/10.1243/0954407001527547.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Lohner, R., J. Cebral, Chi Yang, J. D. Baum, E. Mestreau, C. Charman und D. Pelessone. „Large-scale fluid-structure interaction simulations“. Computing in Science & Engineering 6, Nr. 3 (Mai 2004): 27–37. http://dx.doi.org/10.1109/mcise.2004.1289306.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Oden, J. T., L. Demkowicz und J. Bennighof. „Fluid-Structure Interaction in Underwater Acoustics“. Applied Mechanics Reviews 43, Nr. 5S (01.05.1990): S374—S380. http://dx.doi.org/10.1115/1.3120843.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Benaroya, Haym, und Rene D. Gabbai. „Modelling vortex-induced fluid–structure interaction“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, Nr. 1868 (05.11.2007): 1231–74. http://dx.doi.org/10.1098/rsta.2007.2130.

Der volle Inhalt der Quelle
Annotation:
The principal goal of this research is developing physics-based, reduced-order, analytical models of nonlinear fluid–structure interactions associated with offshore structures. Our primary focus is to generalize the Hamilton's variational framework so that systems of flow-oscillator equations can be derived from first principles. This is an extension of earlier work that led to a single energy equation describing the fluid–structure interaction. It is demonstrated here that flow-oscillator models are a subclass of the general, physical-based framework. A flow-oscillator model is a reduced-order mechanical model, generally comprising two mechanical oscillators, one modelling the structural oscillation and the other a nonlinear oscillator representing the fluid behaviour coupled to the structural motion. Reduced-order analytical model development continues to be carried out using a Hamilton's principle-based variational approach. This provides flexibility in the long run for generalizing the modelling paradigm to complex, three-dimensional problems with multiple degrees of freedom, although such extension is very difficult. As both experimental and analytical capabilities advance, the critical research path to developing and implementing fluid–structure interaction models entails formulating generalized equations of motion, as a superset of the flow-oscillator models; and developing experimentally derived, semi-analytical functions to describe key terms in the governing equations of motion. The developed variational approach yields a system of governing equations. This will allow modelling of multiple d.f. systems. The extensions derived generalize the Hamilton's variational formulation for such problems. The Navier–Stokes equations are derived and coupled to the structural oscillator. This general model has been shown to be a superset of the flow-oscillator model. Based on different assumptions, one can derive a variety of flow-oscillator models.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Souli, Mhamed, und Nicolas Aquelet. „Fluid Structure Interaction for Hydraulic Problems“. La Houille Blanche, Nr. 6 (Dezember 2011): 5–10. http://dx.doi.org/10.1051/lhb/2011054.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Benyahia, Nabil, und Ferhat Souidi. „Fluid-structure interaction in pipe flow“. Progress in Computational Fluid Dynamics, An International Journal 7, Nr. 6 (2007): 354. http://dx.doi.org/10.1504/pcfd.2007.014685.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Chakraborty, Debadi, J. Ravi Prakash, James Friend und Leslie Yeo. „Fluid-structure interaction in deformable microchannels“. Physics of Fluids 24, Nr. 10 (Oktober 2012): 102002. http://dx.doi.org/10.1063/1.4759493.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

TAKIZAWA, KENJI, und TAYFUN E. TEZDUYAR. „SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS“. Mathematical Models and Methods in Applied Sciences 22, supp02 (25.07.2012): 1230001. http://dx.doi.org/10.1142/s0218202512300013.

Der volle Inhalt der Quelle
Annotation:
Since its introduction in 1991 for computation of flow problems with moving boundaries and interfaces, the Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) formulation has been applied to a diverse set of challenging problems. The classes of problems computed include free-surface and two-fluid flows, fluid–object, fluid–particle and fluid–structure interaction (FSI), and flows with mechanical components in fast, linear or rotational relative motion. The DSD/SST formulation, as a core technology, is being used for some of the most challenging FSI problems, including parachute modeling and arterial FSI. Versions of the DSD/SST formulation introduced in recent years serve as lower-cost alternatives. More recent variational multiscale (VMS) version, which is called DSD/SST-VMST (and also ST-VMS), has brought better computational accuracy and serves as a reliable turbulence model. Special space–time FSI techniques introduced for specific classes of problems, such as parachute modeling and arterial FSI, have increased the scope and accuracy of the FSI modeling in those classes of computations. This paper provides an overview of the core space–time FSI technique, its recent versions, and the special space–time FSI techniques. The paper includes test computations with the DSD/SST-VMST technique.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Gorla, Rama Subba Reddy, Shantaram S. Pai und Jeffrey J. Rusick. „Probabilistic study of fluid structure interaction“. International Journal of Engineering Science 41, Nr. 3-5 (März 2003): 271–82. http://dx.doi.org/10.1016/s0020-7225(02)00205-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Haase, Werner. „Unsteady aerodynamics including fluid/structure interaction“. Air & Space Europe 3, Nr. 3-4 (Mai 2001): 83–86. http://dx.doi.org/10.1016/s1290-0958(01)90063-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Casoni, Eva, Guillaume Houzeaux und Mariano Vázquez. „Parallel Aspects of Fluid-structure Interaction“. Procedia Engineering 61 (2013): 117–21. http://dx.doi.org/10.1016/j.proeng.2013.07.103.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Degroote, Joris. „Partitioned Simulation of Fluid-Structure Interaction“. Archives of Computational Methods in Engineering 20, Nr. 3 (14.07.2013): 185–238. http://dx.doi.org/10.1007/s11831-013-9085-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Griffith, Boyce E., und Neelesh A. Patankar. „Immersed Methods for Fluid–Structure Interaction“. Annual Review of Fluid Mechanics 52, Nr. 1 (05.01.2020): 421–48. http://dx.doi.org/10.1146/annurev-fluid-010719-060228.

Der volle Inhalt der Quelle
Annotation:
Fluid–structure interaction is ubiquitous in nature and occurs at all biological scales. Immersed methods provide mathematical and computational frameworks for modeling fluid–structure systems. These methods, which typically use an Eulerian description of the fluid and a Lagrangian description of the structure, can treat thin immersed boundaries and volumetric bodies, and they can model structures that are flexible or rigid or that move with prescribed deformational kinematics. Immersed formulations do not require body-fitted discretizations and thereby avoid the frequent grid regeneration that can otherwise be required for models involving large deformations and displacements. This article reviews immersed methods for both elastic structures and structures with prescribed kinematics. It considers formulations using integral operators to connect the Eulerian and Lagrangian frames and methods that directly apply jump conditions along fluid–structure interfaces. Benchmark problems demonstrate the effectiveness of these methods, and selected applications at Reynolds numbers up to approximately 20,000 highlight their impact in biological and biomedical modeling and simulation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Kamakoti, Ramji, und Wei Shyy. „Fluid–structure interaction for aeroelastic applications“. Progress in Aerospace Sciences 40, Nr. 8 (November 2004): 535–58. http://dx.doi.org/10.1016/j.paerosci.2005.01.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Han, Luhui, und Xiangyu Hu. „SPH modeling of fluid-structure interaction“. Journal of Hydrodynamics 30, Nr. 1 (Februar 2018): 62–69. http://dx.doi.org/10.1007/s42241-018-0006-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Dumitrache, C. L., und D. Deleanu. „Sloshing effect, Fluid Structure Interaction analysis“. IOP Conference Series: Materials Science and Engineering 916 (11.09.2020): 012030. http://dx.doi.org/10.1088/1757-899x/916/1/012030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Samuelides, E., und P. A. Frieze. „Fluid-structure interaction in ship collisions“. Marine Structures 2, Nr. 1 (Januar 1989): 65–88. http://dx.doi.org/10.1016/0951-8339(89)90024-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Jung, Sunghwan, und Ramiro Godoy-Diana. „Special issue: bioinspired fluid-structure interaction“. Bioinspiration & Biomimetics 18, Nr. 3 (03.04.2023): 030401. http://dx.doi.org/10.1088/1748-3190/acc778.

Der volle Inhalt der Quelle
Annotation:
Abstract Fluid-structure interaction (FSI) studies the interaction between fluid and solid objects. It helps understand how fluid motion affects solid objects and vice versa. FSI research is important in engineering applications such as aerodynamics, hydrodynamics, and structural analysis. It has been used to design efficient systems such as ships, aircraft, and buildings. FSI in biological systems has gained interest in recent years for understanding how organisms interact with their fluidic environment. Our special issue features papers on various biological and bio-inspired FSI problems. Papers in this special issue cover topics ranging from flow physics to optimization and diagonistics. These papers offer new insights into natural systems and inspire the development of new technologies based on natural principles.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Musharaf, Hafiz Muhammad, Uditha Roshan, Amith Mudugamuwa, Quang Thang Trinh, Jun Zhang und Nam-Trung Nguyen. „Computational Fluid–Structure Interaction in Microfluidics“. Micromachines 15, Nr. 7 (09.07.2024): 897. http://dx.doi.org/10.3390/mi15070897.

Der volle Inhalt der Quelle
Annotation:
Micro elastofluidics is a transformative branch of microfluidics, leveraging the fluid–structure interaction (FSI) at the microscale to enhance the functionality and efficiency of various microdevices. This review paper elucidates the critical role of advanced computational FSI methods in the field of micro elastofluidics. By focusing on the interplay between fluid mechanics and structural responses, these computational methods facilitate the intricate design and optimisation of microdevices such as microvalves, micropumps, and micromixers, which rely on the precise control of fluidic and structural dynamics. In addition, these computational tools extend to the development of biomedical devices, enabling precise particle manipulation and enhancing therapeutic outcomes in cardiovascular applications. Furthermore, this paper addresses the current challenges in computational FSI and highlights the necessity for further development of tools to tackle complex, time-dependent models under microfluidic environments and varying conditions. Our review highlights the expanding potential of FSI in micro elastofluidics, offering a roadmap for future research and development in this promising area.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Hou, Gene, Jin Wang und Anita Layton. „Numerical Methods for Fluid-Structure Interaction — A Review“. Communications in Computational Physics 12, Nr. 2 (August 2012): 337–77. http://dx.doi.org/10.4208/cicp.291210.290411s.

Der volle Inhalt der Quelle
Annotation:
AbstractThe interactions between incompressible fluid flows and immersed structures are nonlinear multi-physics phenomena that have applications to a wide range of scientific and engineering disciplines. In this article, we review representative numerical methods based on conforming and non-conforming meshes that are currently available for computing fluid-structure interaction problems, with an emphasis on some of the recent developments in the field. A goal is to categorize the selected methods and assess their accuracy and efficiency. We discuss challenges faced by researchers in this field, and we emphasize the importance of interdisciplinary effort for advancing the study in fluid-structure interactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Huerta, A., und W. K. Liu. „Viscous Flow Structure Interaction“. Journal of Pressure Vessel Technology 110, Nr. 1 (01.02.1988): 15–21. http://dx.doi.org/10.1115/1.3265561.

Der volle Inhalt der Quelle
Annotation:
Considerable research activities in vibration and seismic analysis for various fluid-structure systems have been carried out in the past two decades. Most of the approaches are formulated within the framework of finite elements, and the majority of work deals with inviscid fluids. However, there has been little work done in the area of fluid-structure interaction problems accounting for flow separation and nonlinear phenomenon of steady streaming. In this paper, the Arbitrary Lagrangian Eulerian (ALE) finite element method is extended to address the flow separation and nonlinear phenomenon of steady streaming for arbitrarily shaped bodies undergoing large periodic motion in a viscous fluid. The results are designed to evaluate the fluid force acting on the body; thus, the coupled rigid body-viscous flow problem can be simplified to a standard structural problem using the concept of added mass and added damping. Formulas for these two constants are given for the particular case of a cylinder immersed in an infinite viscous fluid. The finite element modeling is based on a pressure-velocity mixed formulation and a streamline upwind Petrov/Galerkin technique. All computations are performed using a personal computer.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Nho, In-Sik, und Sang-Mook Shin. „Fluid-Structure Interaction Analysis for Structure in Viscous Flow“. Journal of the Society of Naval Architects of Korea 45, Nr. 2 (20.04.2008): 168–74. http://dx.doi.org/10.3744/snak.2008.45.2.168.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Liu, Tiegang, A. W. Chowdhury und Boo Cheong Khoo. „The Modified Ghost Fluid Method Applied to Fluid-Elastic Structure Interaction“. Advances in Applied Mathematics and Mechanics 3, Nr. 5 (Oktober 2011): 611–32. http://dx.doi.org/10.4208/aamm.10-m1054.

Der volle Inhalt der Quelle
Annotation:
AbstractIn this work, the modified ghost fluid method is developed to deal with 2D compressible fluid interacting with elastic solid in an Euler-Lagrange coupled system. In applying the modified Ghost Fluid Method to treat the fluid-elastic solid coupling, the Navier equations for elastic solid are cast into a system similar to the Euler equations but in Lagrangian coordinates. Furthermore, to take into account the influence of material deformation and nonlinear wave interaction at the interface, an Euler-Lagrange Riemann problem is constructed and solved approximately along the normal direction of the interface to predict the interfacial status and then define the ghost fluid and ghost solid states. Numerical tests are presented to verify the resultant method.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Wang, Xiaolin, Ken Kamrin und Chris H. Rycroft. „An incompressible Eulerian method for fluid–structure interaction with mixed soft and rigid solids“. Physics of Fluids 34, Nr. 3 (März 2022): 033604. http://dx.doi.org/10.1063/5.0082233.

Der volle Inhalt der Quelle
Annotation:
We present a general simulation approach for incompressible fluid–structure interactions in a fully Eulerian framework using the reference map technique. The approach is suitable for modeling one or more rigid or finitely deformable objects or soft objects with rigid components interacting with the fluid and with each other. It is also extended to control the kinematics of structures in fluids. The model is based on our previous Eulerian fluid–soft solver [Rycroft et al., “Reference map technique for incompressible fluid–structure interaction,” J. Fluid Mech. 898, A9 (2020)] and generalized to rigid structures by constraining the deformation-rate tensor in a projection framework. Several numerical examples are presented to illustrate the capability of the method.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Tchieu, A. A., D. Crowdy und A. Leonard. „Fluid-structure interaction of two bodies in an inviscid fluid“. Physics of Fluids 22, Nr. 10 (Oktober 2010): 107101. http://dx.doi.org/10.1063/1.3485063.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Hamdan, F. H. „Near-field fluid–structure interaction using Lagrangian fluid finite elements“. Computers & Structures 71, Nr. 2 (April 1999): 123–41. http://dx.doi.org/10.1016/s0045-7949(98)00298-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Yang, Liang. „One-fluid formulation for fluid–structure interaction with free surface“. Computer Methods in Applied Mechanics and Engineering 332 (April 2018): 102–35. http://dx.doi.org/10.1016/j.cma.2017.12.016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Bazilevs, Yuri, Kenji Takizawa und Tayfun E. Tezduyar. „Special issue on computational fluid mechanics and fluid–structure interaction“. Computational Mechanics 48, Nr. 3 (08.07.2011): 245. http://dx.doi.org/10.1007/s00466-011-0621-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Leary, P. C. „Relating microscale rock-fluid interaction to macroscale fluid flow structure“. Geological Society, London, Special Publications 147, Nr. 1 (1998): 243–60. http://dx.doi.org/10.1144/gsl.sp.1998.147.01.16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Sheldon Wang, X., Ye Yang und TaoWu. „Model Studies of Fluid-Structure Interaction Problems“. Computer Modeling in Engineering & Sciences 119, Nr. 1 (2019): 5–34. http://dx.doi.org/10.32604/cmes.2019.04204.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie