Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Fluid-structure interaction – Mathematical models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fluid-structure interaction – Mathematical models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Fluid-structure interaction – Mathematical models"
Griffith, Boyce E., und Neelesh A. Patankar. „Immersed Methods for Fluid–Structure Interaction“. Annual Review of Fluid Mechanics 52, Nr. 1 (05.01.2020): 421–48. http://dx.doi.org/10.1146/annurev-fluid-010719-060228.
Der volle Inhalt der QuelleBenaroya, Haym, und Rene D. Gabbai. „Modelling vortex-induced fluid–structure interaction“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, Nr. 1868 (05.11.2007): 1231–74. http://dx.doi.org/10.1098/rsta.2007.2130.
Der volle Inhalt der QuelleSurana, K. S., B. Blackwell, M. Powell und J. N. Reddy. „Mathematical models for fluid–solid interaction and their numerical solutions“. Journal of Fluids and Structures 50 (Oktober 2014): 184–216. http://dx.doi.org/10.1016/j.jfluidstructs.2014.06.023.
Der volle Inhalt der QuelleLopes, D., H. Puga, J. C. Teixeira und S. F. Teixeira. „Fluid–Structure Interaction study of carotid blood flow: Comparison between viscosity models“. European Journal of Mechanics - B/Fluids 83 (September 2020): 226–34. http://dx.doi.org/10.1016/j.euromechflu.2020.05.010.
Der volle Inhalt der QuelleMarom, Gil. „Numerical Methods for Fluid–Structure Interaction Models of Aortic Valves“. Archives of Computational Methods in Engineering 22, Nr. 4 (02.10.2014): 595–620. http://dx.doi.org/10.1007/s11831-014-9133-9.
Der volle Inhalt der QuelleTello, Alexis, Ramon Codina und Joan Baiges. „Fluid structure interaction by means of variational multiscale reduced order models“. International Journal for Numerical Methods in Engineering 121, Nr. 12 (27.02.2020): 2601–25. http://dx.doi.org/10.1002/nme.6321.
Der volle Inhalt der QuelleLarsson, Jonas. „A new Hamiltonian formulation for fluids and plasmas. Part 2. MHD models“. Journal of Plasma Physics 55, Nr. 2 (April 1996): 261–78. http://dx.doi.org/10.1017/s0022377800018821.
Der volle Inhalt der QuelleCottet, Georges-Henri, Emmanuel Maitre und Thomas Milcent. „Eulerian formulation and level set models for incompressible fluid-structure interaction“. ESAIM: Mathematical Modelling and Numerical Analysis 42, Nr. 3 (03.04.2008): 471–92. http://dx.doi.org/10.1051/m2an:2008013.
Der volle Inhalt der QuelleDesjardins, B., und M. J. Esteban. „On Weak Solutions for Fluid‐Rigid Structure Interaction: Compressible and Incompressible Models“. Communications in Partial Differential Equations 25, Nr. 7-8 (Januar 1999): 263–85. http://dx.doi.org/10.1080/03605300008821553.
Der volle Inhalt der QuelleColciago, C. M., S. Deparis und A. Quarteroni. „Comparisons between reduced order models and full 3D models for fluid–structure interaction problems in haemodynamics“. Journal of Computational and Applied Mathematics 265 (August 2014): 120–38. http://dx.doi.org/10.1016/j.cam.2013.09.049.
Der volle Inhalt der QuelleDissertationen zum Thema "Fluid-structure interaction – Mathematical models"
Taylor, Richard. „Finite element modelling of three dimensional fluid-structure interaction“. Thesis, Swansea University, 2013. https://cronfa.swan.ac.uk/Record/cronfa42308.
Der volle Inhalt der QuelleLemmon, Jack David Jr. „Three-dimensional computational modeling of fluid-structure interaction : study of diastolic function in a thin-walled left heart model“. Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/15912.
Der volle Inhalt der QuelleHong, Say Yenh. „Fluid structure interaction modeling of pulsatile blood flow in serial pulmonary artery stenoses“. Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112571.
Der volle Inhalt der QuelleObando, Vallejos Benjamin. „Mathematical models for the study of granular fluids“. Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0274/document.
Der volle Inhalt der QuelleThis Ph.D. thesis aims to obtain and to develop some mathematical models to understand some aspects of the dynamics of heterogeneous granular fluids. More precisely, the expected result is to develop three models, one where the dynamics of the granular material is modeled using a mixture theory approach, and the other two, where we consider the granular fluid is modeled using a multiphase approach involving rigid structures and fluids. More precisely : • In the first model, we obtained a set of equations based on the mixture theory using homogenization tools and a thermodynamic procedure. These equations reflect two essential properties of granular fluids : the viscous nature of the interstitial fluid and a Coulomb-type of behavior of the granular component. With our equations, we study the problem of a dense granular heterogeneous flow, composed by a Newtonian fluid and a solid component in the setting of the Couette flow between two infinite cylinders. • In the second model, we consider the motion of a rigid body in a viscoplastic material. The 3D Bingham equations model this material, and the Newton laws govern the displacement of the rigid body. Our main result is the existence of a weak solution for the corresponding system. • In the third model, we consider the motion of a perfect heat conductor rigid body in a heat conducting Newtonian fluid. The 3D Fourier-Navier-Stokes equations model the fluid, and the Newton laws and the balance of internal energy model the rigid body. Our main result is the existence of a weak solution for the corresponding system. The weak formulation is composed by the balance of momentum and the balance of total energy equation which includes the pressure of the fluid, and it involves a free boundary (due to the motion of the rigid body). To obtain an integrable pressure, we consider a Navier slip boundary condition for the outer boundary and the mutual interface
Romanel, Celso 1952. „DYNAMIC SOIL-STRUCTURE INTERACTION IN A LAYERED MEDIUM“. Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276511.
Der volle Inhalt der QuelleJones, Piet. „Structure learning of gene interaction networks“. Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86650.
Der volle Inhalt der QuelleENGLISH ABSTRACT: There is an ever increasing wealth of information that is being generated regarding biological systems, in particular information on the interactions and dependencies of genes and their regulatory process. It is thus important to be able to attach functional understanding to this wealth of information. Mathematics can potentially provide the tools needed to generate the necessary abstractions to model the complex system of gene interaction. Here the problem of uncovering gene interactions is cast in several contexts, namely uncovering gene interaction patterns using statistical dependence, cooccurrence as well as feature enrichment. Several techniques have been proposed in the past to solve these, with various levels of success. Techniques have ranged from supervised learning, clustering analysis, boolean networks to dynamical Bayesian models and complex system of di erential equations. These models attempt to navigate a high dimensional space with challenging degrees of freedom. In this work a number of approaches are applied to hypothesize a gene interaction network structure. Three di erent models are applied to real biological data to generate hypotheses on putative biological interactions. A cluster-based analysis combined with a feature enrichment detection is initially applied to a Vitis vinifera dataset, in a targetted analysis. This model bridges a disjointed set of putatively co-expressed genes based on signi cantly associated features, or experimental conditions. We then apply a cross-cluster Markov Blanket based model, on a Saccharomyces cerevisiae dataset. Here the disjointed clusters are bridged by estimating statistical dependence relationship across clusters, in an un-targetted approach. The nal model applied to the same Saccharomyces cerevisiae dataset is a non-parametric Bayesian method that detects probeset co-occurrence given a local background and inferring gene interaction based on the topological network structure resulting from gene co-occurance. In each case we gather evidence to support the biological relevance of these hypothesized interactions by investigating their relation to currently established biological knowledge. The various methods applied here appear to capture di erent aspects of gene interaction, in the datasets we applied them to. The targetted approach appears to putatively infer gene interactions based on functional similarities. The cross-cluster-analysis-based methods, appear to capture interactions within pathways. The probabilistic-co-occurrence-based method appears to generate modules of functionally related genes that are connected to potentially explain the underlying experimental dynamics.
AFRIKAANSE OPSOMMING: Daar is 'n toenemende rykdom van inligting wat gegenereer word met betrekking tot biologiese stelsels, veral inligting oor die interaksies en afhanklikheidsverhoudinge van gene asook hul regulatoriese prosesse. Dit is dus belangrik om in staat te wees om funksionele begrip te kan heg aan hierdie rykdom van inligting. Wiskunde kan moontlik die gereedskap verskaf en die nodige abstraksies bied om die komplekse sisteem van gene interaksies te modelleer. Hier is die probleem met die beraming van die interaksies tussen gene benader uit verskeie kontekste uit, soos die ontdekking van patrone in gene interaksie met behulp van statistiese afhanklikheid , mede-voorkoms asook funksie verryking. Verskeie tegnieke is in die verlede voorgestel om hierdie probleem te benader, met verskillende vlakke van sukses. Tegnieke het gewissel van toesig leer , die groepering analise, boolean netwerke, dinamiese Bayesian modelle en 'n komplekse stelsel van di erensiaalvergelykings. Hierdie modelle poog om 'n hoë dimensionele ruimte te navigeer met uitdagende grade van vryheid. In hierdie werk word 'n aantal benaderings toegepas om 'n genetiese interaksie netwerk struktuur voor te stel. Drie verskillende modelle word toegepas op werklike biologiese data met die doel om hipoteses oor vermeende biologiese interaksies te genereer. 'n Geteikende groeperings gebaseerde analise gekombineer met die opsporing van verrykte kenmerke is aanvanklik toegepas op 'n Vitis vinifera datastel. Hierdie model verbind disjunkte groepe van vermeende mede-uitgedrukte gene wat gebaseer is op beduidende verrykte kenmerke, hier eksperimentele toestande . Ons pas dan 'n tussen groepering Markov Kombers model toe, op 'n Saccharomyces cerevisiae datastel. Hier is die disjunkte groeperings ge-oorbrug deur die beraming van statistiese afhanklikheid verhoudings tussen die elemente in die afsondelike groeperings. Die nale model was ons toepas op dieselfde Saccharomyces cerevisiae datastel is 'n nie- parametriese Bayes metode wat probe stelle van mede-voorkommende gene ontdek, gegee 'n plaaslike agtergrond. Die gene interaksie is beraam op grond van die topologie van die netwerk struktuur veroorsaak deur die gesamentlike voorkoms gene. In elk van die voorgenome gevalle word ons hipotese vermoedelik ondersteun deur die beraamde gene interaksies in terme van huidige biologiese kennis na te vors. Die verskillende metodes wat hier toegepas is, modelleer verskillende aspekte van die interaksies tussen gene met betrekking tot die datastelle wat ons ondersoek het. In die geteikende benadering blyk dit asof ons vermeemde interaksies beraam gebaseer op die ooreenkoms van biologiese funksies. Waar die a eide gene interaksies moontlik gebaseer kan wees op funksionele ooreenkomste tussen die verskeie gene. In die analise gebaseer op die tussen modelering van gene groepe, blyk dit asof die verhouding van gene in bekende biologiese substelsels gemodelleer word. Dit blyk of die model gebaseer op die gesamentlike voorkoms van gene die verband tussen groepe van funksionele verbonde gene modelleer om die onderliggende dinamiese eienskappe van die experiment te verduidelik.
Chin, David 1982. „Wall shear patterns of a 50% asymmetric stenosis model using photochromic molecular flow visualization“. Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111613.
Der volle Inhalt der QuelleMagal, Rithvik. „Development and validation of a mathematical model for a monotube automotive damper“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22951/.
Der volle Inhalt der QuelleRomanel, Celso. „A global-local approach for dynamic soil-structure interaction analysis of deeply embedded structures in a layered medium“. Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184762.
Der volle Inhalt der QuelleRuckman, Christopher E. „A regression-based approach for simulating feedfoward active noise control, with application to fluid-structure interaction problems“. Diss., This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-06062008-170941/.
Der volle Inhalt der QuelleBücher zum Thema "Fluid-structure interaction – Mathematical models"
Fluid structure interaction: Applied numerical methods. Chichester: Wiley, 1995.
Den vollen Inhalt der Quelle findenWang, Xiaodong Sheldon. Fundamentals of fluid-solid interactions: Analytical and computational approaches. Amsterdam: Elsevier, 2008.
Den vollen Inhalt der Quelle findenJournées numériques de Besançon (1992 Les Moussières, France). Computational methods for fluid-structure interaction: Proceedings of the Journées numériques de Besançon, 1992. Herausgegeben von Crolet J. M und Ohayon R. Harlow: Longman Scientific & Technical, 1994.
Den vollen Inhalt der Quelle findenKolář, Vladimír. Modelling of soil-structure interaction. Amsterdam: Elsevier, 1989.
Den vollen Inhalt der Quelle findenKolář, Vladimír. Modelling of soil-structure interaction. Amsterdam: Elsevier, 1989.
Den vollen Inhalt der Quelle findenKolář, Vladimír. Studie nového modelu podloží staveb. Praha: Academia, nakl. Československé akademie věd, 1986.
Den vollen Inhalt der Quelle findenDłużewski, Janusz Maciej. Numerical modelling of soil-structure interactions in consolidation problems. Warszawa: Wydawnictwa Politechniki Warszawskiej, 1993.
Den vollen Inhalt der Quelle findenInternational, Workshop on Physical Modelling of Flow and Dispersion Phenomena (2003 Prato Italy). Proceedings of PHYSMOD2003: International Workshop on Physical Modelling of Flow and Dispersion phenomena, 3-5 September 2003, Prato, Italy. Firenze: Firenze University Press, 2003.
Den vollen Inhalt der Quelle findenLeenders, Roger Th A. J. Structure and influence: Statistical models for the dynamics of actor attributes, network structure, and their interdependence. Amsterdam: Thesis Publishers, 1995.
Den vollen Inhalt der Quelle findenKuramoto, Y. Dynamics of one-dimensional quantum systems: Inverse-square interaction models. Cambridge, UK: Cambridge University Press, 2009.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Fluid-structure interaction – Mathematical models"
Bodnár, Tomáš, Antonio Fasano und Adélia Sequeira. „Mathematical Models for Blood Coagulation“. In Fluid-Structure Interaction and Biomedical Applications, 483–569. Basel: Springer Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0822-4_7.
Der volle Inhalt der QuelleKaltenbacher, Manfred, und Stefan Schoder. „Physical Models for Flow: Acoustic Interaction“. In Advances in Mathematical Fluid Mechanics, 265–353. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67845-6_6.
Der volle Inhalt der QuelleTriggiani, Roberto. „Linear parabolic-hyperbolic fluid-structure interaction models. The case of static interface“. In Mathematical Theory of Evolutionary Fluid-Flow Structure Interactions, 53–171. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92783-1_2.
Der volle Inhalt der QuelleBukal, Mario, und Boris Muha. „A Review on Rigorous Derivation of Reduced Models for Fluid–Structure Interaction Systems“. In Advances in Mathematical Fluid Mechanics, 203–37. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-68144-9_8.
Der volle Inhalt der QuelleMaday, Yvon. „Analysis of coupled models for fluid-structure interaction of internal flows“. In Cardiovascular Mathematics, 279–306. Milano: Springer Milan, 2009. http://dx.doi.org/10.1007/978-88-470-1152-6_8.
Der volle Inhalt der QuelleAvalos, George, und Francesca Bucci. „Exponential Decay Properties of a Mathematical Model for a Certain Fluid-Structure Interaction“. In Springer INdAM Series, 49–78. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11406-4_3.
Der volle Inhalt der QuelleBhattacharya, Paritosh, Susmita Paul und K. S. Choudhury. „Analysis on Food Web Structure, Interaction, Strength and Stability of Different Mathematical Models of Prey and Predator“. In Lecture Notes in Electrical Engineering, 207–17. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1817-3_22.
Der volle Inhalt der QuelleKukavica, Igor, und Amjad Tuffaha. „An introduction to a fluid-structure model“. In Mathematical Theory of Evolutionary Fluid-Flow Structure Interactions, 1–52. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92783-1_1.
Der volle Inhalt der QuelleČanić, Sunčica. „Fluid-Structure Interaction with Incompressible Fluids“. In Progress in Mathematical Fluid Dynamics, 15–87. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54899-5_2.
Der volle Inhalt der QuelleHasnedlová-Prokopová, J., M. Feistauer, A. Kosík und V. Kučera. „Two Dimensional Compressible Fluid-Structure Interaction Model Using DGFEM“. In Numerical Mathematics and Advanced Applications 2011, 361–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33134-3_39.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Fluid-structure interaction – Mathematical models"
Elliott, Novak S. J. „Cerebrospinal Fluid-Structure Interactions: The Development of Mathematical Models Accessible to Clinicians“. In ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-29096.
Der volle Inhalt der QuelleHamadiche, Mahmoud. „Fluid and Structure Interaction in Cochlea’s Similar Geometry“. In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30019.
Der volle Inhalt der QuelleLiang, Yue, Jiansheng Chen und Liang Chen. „Mathematical Model for Piping Erosion Based on Fluid-Solid Interaction and Soils Structure“. In GeoHunan International Conference 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/47628(407)14.
Der volle Inhalt der QuelleEbna Hai, Bhuiyan Shameem Mahmood, und Markus Bause. „Adaptive Multigrid Methods for Extended Fluid-Structure Interaction (eXFSI) Problem: Part I — Mathematical Modelling“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53265.
Der volle Inhalt der QuelleNeiland, V. „Mathematical models of steady and unsteady flows with a strong interaction of non-vortex and vortex flows“. In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1979.
Der volle Inhalt der QuelleEbna Hai, Bhuiyan Shameem Mahmood, Markus Bause und Paul Kuberry. „Finite Element Approximation of the Extended Fluid-Structure Interaction (eXFSI) Problem“. In ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fedsm2016-7506.
Der volle Inhalt der QuelleTemis, Joury M., Alexey V. Selivanov und Ivan J. Dzeva. „Finger Seal Design Based on Fluid-Solid Interaction Model“. In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95701.
Der volle Inhalt der QuelleEbna Hai, Bhuiyan Shameem Mahmood, und Markus Bause. „Numerical Modeling and Approximation of the Coupling Lamb Wave Propagation With Fluid-Structure Interaction Problem“. In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87448.
Der volle Inhalt der QuelleRosetti, Guilherme Feitosa, Guilherme Vaz und André Luís Condino Fujarra. „On the Effects of Turbulence Modeling on the Fluid-Structure Interaction of a Rigid Cylinder“. In ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54989.
Der volle Inhalt der QuelleRouthu, Manoha, und A. G. Agwu Nnanna. „Mathematical Formulation of Transport Phenomena in Buoyancy-Driven Nanofluids“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13268.
Der volle Inhalt der Quelle