Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Fluid-structure interaction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fluid-structure interaction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Fluid-structure interaction"
Xing, Jing Tang. „Fluid-Structure Interaction“. Strain 39, Nr. 4 (November 2003): 186–87. http://dx.doi.org/10.1046/j.0039-2103.2003.00067.x.
Der volle Inhalt der QuelleBazilevs, Yuri, Kenji Takizawa und Tayfun E. Tezduyar. „Fluid–structure interaction“. Computational Mechanics 55, Nr. 6 (10.05.2015): 1057–58. http://dx.doi.org/10.1007/s00466-015-1162-1.
Der volle Inhalt der QuelleLee, Kyoungsoo, Ziaul Huque, Raghava Kommalapati und Sang-Eul Han. „The Evaluation of Aerodynamic Interaction of Wind Blade Using Fluid Structure Interaction Method“. Journal of Clean Energy Technologies 3, Nr. 4 (2015): 270–75. http://dx.doi.org/10.7763/jocet.2015.v3.207.
Der volle Inhalt der QuelleOrtiz, Jose L., und Alan A. Barhorst. „Modeling Fluid-Structure Interaction“. Journal of Guidance, Control, and Dynamics 20, Nr. 6 (November 1997): 1221–28. http://dx.doi.org/10.2514/2.4180.
Der volle Inhalt der QuelleKo, Sung H. „Structure–fluid interaction problems“. Journal of the Acoustical Society of America 88, Nr. 1 (Juli 1990): 367. http://dx.doi.org/10.1121/1.399912.
Der volle Inhalt der QuelleSemenov, Yuriy A. „Fluid/Structure Interactions“. Journal of Marine Science and Engineering 10, Nr. 2 (26.01.2022): 159. http://dx.doi.org/10.3390/jmse10020159.
Der volle Inhalt der QuelleTakizawa, Kenji, Yuri Bazilevs und Tayfun E. Tezduyar. „Computational fluid mechanics and fluid–structure interaction“. Computational Mechanics 50, Nr. 6 (18.09.2012): 665. http://dx.doi.org/10.1007/s00466-012-0793-8.
Der volle Inhalt der QuelleBazilevs, Yuri, Kenji Takizawa und Tayfun E. Tezduyar. „Biomedical fluid mechanics and fluid–structure interaction“. Computational Mechanics 54, Nr. 4 (15.07.2014): 893. http://dx.doi.org/10.1007/s00466-014-1056-7.
Der volle Inhalt der QuelleSouli, M., K. Mahmadi und N. Aquelet. „ALE and Fluid Structure Interaction“. Materials Science Forum 465-466 (September 2004): 143–50. http://dx.doi.org/10.4028/www.scientific.net/msf.465-466.143.
Der volle Inhalt der QuelleChung, H., und M. D. Bernstein. „Topics in Fluid Structure Interaction“. Journal of Pressure Vessel Technology 107, Nr. 1 (01.02.1985): 99. http://dx.doi.org/10.1115/1.3264418.
Der volle Inhalt der QuelleDissertationen zum Thema "Fluid-structure interaction"
Mawson, Mark. „Interactive fluid-structure interaction with many-core accelerators“. Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/interactive-fluidstructure-interaction-with-manycore-accelerators(a4fc2068-bac7-4511-960d-41d2560a0ea1).html.
Der volle Inhalt der QuelleAltstadt, Eberhard, Helmar Carl und Rainer Weiß. „Fluid-Structure Interaction Investigations for Pipelines“. Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-28993.
Der volle Inhalt der QuellePlessas, Spyridon D. „Fluid-structure interaction in composite structures“. Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/41432.
Der volle Inhalt der QuelleIn this research, dynamic characteristics of polymer composite beam and plate structures were studied when the structures were in contact with water. The effect of fluid-structure interaction (FSI) on natural frequencies, mode shapes, and dynamic responses was examined for polymer composite structures using multiphysics-based computational techniques. Composite structures were modeled using the finite element method. The fluid was modeled as an acoustic medium using the cellular automata technique. Both techniques were coupled so that both fluid and structure could interact bi-directionally. In order to make the coupling easier, the beam and plate finite elements have only displacement degrees of freedom but no rotational degrees of freedom. The fast Fourier transform (FFT) technique was applied to the transient responses of the composite structures with and without FSI, respectively, so that the effect of FSI can be examined by comparing the two results. The study showed that the effect of FSI is significant on dynamic properties of polymer composite structures. Some previous experimental observations were confirmed using the results from the computer simulations, which also enhanced understanding the effect of FSI on dynamic responses of composite structures.
Randall, Richard John. „Fluid-structure interaction of submerged shells“. Thesis, Brunel University, 1990. http://bura.brunel.ac.uk/handle/2438/5446.
Der volle Inhalt der QuelleGiannopapa, Christina-Grigoria. „Fluid structure interaction in flexible vessels“. Thesis, King's College London (University of London), 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413425.
Der volle Inhalt der QuelleWright, Stewart Andrew. „Aspects of unsteady fluid-structure interaction“. Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621939.
Der volle Inhalt der QuelleAltstadt, Eberhard, Helmar Carl und Rainer Weiß. „Fluid-Structure Interaction Investigations for Pipelines“. Forschungszentrum Rossendorf, 2003. https://hzdr.qucosa.de/id/qucosa%3A21726.
Der volle Inhalt der QuelleHolder, Justin. „Fluid Structure Interaction in Compressible Flows“. University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin159584692691518.
Der volle Inhalt der QuellePaton, Jonathan. „Computational fluid dynamics and fluid structure interaction of yacht sails“. Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/14036/.
Der volle Inhalt der QuelleGregson, James. „Fluid-structure interaction simulations in liquid-lead“. Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/12340.
Der volle Inhalt der QuelleBücher zum Thema "Fluid-structure interaction"
Bungartz, Hans-Joachim, und Michael Schäfer, Hrsg. Fluid-Structure Interaction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-34596-5.
Der volle Inhalt der QuelleSigrist, Jean-François. Fluid-Structure Interaction. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118927762.
Der volle Inhalt der Quelle1941-, Chakrabarti Subrata K., und Brebbia C. A, Hrsg. Fluid structure interaction. Southampton: WIT Press, 2001.
Den vollen Inhalt der Quelle findenBazilevs, Yuri, Kenji Takizawa und Tayfun E. Tezduyar. Computational Fluid-Structure Interaction. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118483565.
Der volle Inhalt der QuelleBungartz, Hans-Joachim, Miriam Mehl und Michael Schäfer, Hrsg. Fluid Structure Interaction II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14206-2.
Der volle Inhalt der QuelleInternational Conference on Fluid Structure Interaction (5th 2009 Chersonēsos, Crete, Greece). Fluid structure interaction V. Herausgegeben von Brebbia C. A und Wessex Institute of Technology. Southampton: WIT, 2009.
Den vollen Inhalt der Quelle findenR, Ohayon, und United States. National Aeronautics and Space Administration., Hrsg. Coupled fluid-structure interaction. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Den vollen Inhalt der Quelle findenInternational Conference on Fluid Structure Interaction (2nd 2003 Cadiz, Spain). Fluid structure interaction II. Southampton: WIT, 2003.
Den vollen Inhalt der Quelle findenCanary Islands) International Conference on Fluid Structure Interaction (7th 2013 Las Palmas. Fluid structure interaction VII. Herausgegeben von Brebbia C. A, Rodríguez G. R und Wessex Institute of Technology. Southampton: WIT Press, 2013.
Den vollen Inhalt der Quelle findenInternational Conference on Fluid Structure Interaction (6th 2011 Orlando, Fla.). Fluid structure interaction VI. Herausgegeben von Kassab, A. (Alain J.). Southampton, UK: WIT Press, 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Fluid-structure interaction"
Dolejší, Vít, und Miloslav Feistauer. „Fluid-Structure Interaction“. In Discontinuous Galerkin Method, 521–51. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_10.
Der volle Inhalt der QuelleDoyle, James F. „Structure-Fluid Interaction“. In Wave Propagation in Structures, 243–74. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1832-6_8.
Der volle Inhalt der QuelleKleinstreuer, Clement. „Fluid–Structure Interaction“. In Fluid Mechanics and Its Applications, 435–79. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8670-0_8.
Der volle Inhalt der QuelleSouli, Mhamed. „Fluid-Structure Interaction“. In Arbitrary Lagrangian-Eulerian and Fluid-Structure Interaction, 51–108. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557884.ch2.
Der volle Inhalt der QuelleYang, Z. „Fluid-Structure Interaction“. In Multiphysics Modeling with Application to Biomedical Engineering, 55–73. Boca Raton : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9780367510800-9.
Der volle Inhalt der QuelleTu, Jiyuan, Kiao Inthavong und Kelvin Kian Loong Wong. „Computational Fluid Structure Interaction“. In Computational Hemodynamics – Theory, Modelling and Applications, 95–154. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9594-4_5.
Der volle Inhalt der QuelleBrebbia, C. A. „Fluid Structure Interaction Problems“. In Vibrations of Engineering Structures, 225–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82390-9_13.
Der volle Inhalt der QuelleBerezin, Ihor, Prasanta Sarkar und Jacek Malecki. „Fluid–Structure Interaction Simulation“. In Recent Progress in Flow Control for Practical Flows, 263–81. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50568-8_14.
Der volle Inhalt der QuelleLiu, Zhen. „Hydrodynomechanics: Fluid-Structure Interaction“. In Multiphysics in Porous Materials, 319–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93028-2_25.
Der volle Inhalt der QuelleBirken, Philipp. „Thermal Fluid Structure Interaction“. In Numerical Methods for Unsteady Compressible Flow Problems, 177–86. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003025214-8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Fluid-structure interaction"
Jecl, R., L. Škerget und J. Kramer. „Heat and mass transfer in compressible fluid saturated porous media with the boundary element method“. In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090011.
Der volle Inhalt der QuellePelosi, M., und M. Ivantysynova. „A novel fluid-structure interaction model for lubricating gaps of piston machines“. In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090021.
Der volle Inhalt der QuelleYu, P., K. S. Yeo, X. Y. Wang und S. J. Ang. „A singular value decomposition based generalized finite difference method for fluid solid interaction problems“. In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090031.
Der volle Inhalt der QuelleUshijima, S., und N. Kuroda. „Multiphase modeling to predict finite deformations of elastic objects in free surface flows“. In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090041.
Der volle Inhalt der QuelleBelloli, M., B. Pizzigoni, F. Ripamonti und D. Rocchi. „Fluid-structure interaction between trains and noise-reduction barriers: numerical and experimental analysis“. In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090051.
Der volle Inhalt der QuelleFujita, S., T. Harima und H. Osaka. „Turbulent jets issuing from the rectangular nozzle with a rectangular notch at the midspan“. In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090061.
Der volle Inhalt der QuelleLiang, C. C., und W. M. Tseng. „Numerical study of water barriers produced by underwater explosions“. In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090071.
Der volle Inhalt der QuelleFujita, K. „Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls“. In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090081.
Der volle Inhalt der QuelleMoe, G., und J. M. Niedzwecki. „Flow-induced vibrations of offshore flare towers and flare booms“. In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090091.
Der volle Inhalt der QuelleJurado, J. Á., A. León, S. Hernández und F. Nieto. „Aeroelastic analysis of long-span bridges using time domain methods“. In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090101.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Fluid-structure interaction"
Benaroya, Haym, und Timothy Wei. Modeling Fluid Structure Interaction. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada382782.
Der volle Inhalt der QuelleIsaac, Daron, und Michael Iverson. Automated Fluid-Structure Interaction Analysis. Fort Belvoir, VA: Defense Technical Information Center, Februar 2003. http://dx.doi.org/10.21236/ada435321.
Der volle Inhalt der QuelleBarone, Matthew Franklin, Irina Kalashnikova, Daniel Joseph Segalman und Matthew Robert Brake. Reduced order modeling of fluid/structure interaction. Office of Scientific and Technical Information (OSTI), November 2009. http://dx.doi.org/10.2172/974411.
Der volle Inhalt der QuelleSchunk, Peter. Fluid-Structure Interaction of Deforming Porous Media. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1411752.
Der volle Inhalt der QuelleWood, Stephen L., und Ralf Deiterding. Shock-driven fluid-structure interaction for civil design. Office of Scientific and Technical Information (OSTI), November 2011. http://dx.doi.org/10.2172/1041422.
Der volle Inhalt der QuelleSchroeder, Erwin A. Infinite Elements for Three-Dimensional Fluid-Structure Interaction Problems. Fort Belvoir, VA: Defense Technical Information Center, November 1987. http://dx.doi.org/10.21236/ada189462.
Der volle Inhalt der QuelleBarone, Matthew Franklin, und Jeffrey L. Payne. Methods for simulation-based analysis of fluid-structure interaction. Office of Scientific and Technical Information (OSTI), Oktober 2005. http://dx.doi.org/10.2172/875605.
Der volle Inhalt der QuelleZhu, Minjie, und Michael Scott. Fluid-Structure Interaction and Python-Scripting Capabilities in OpenSees. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, August 2019. http://dx.doi.org/10.55461/vdix3057.
Der volle Inhalt der QuelleTezduyar, Tayfun E. Multiscale and Sequential Coupling Techniques for Fluid-Structure Interaction Computations. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2012. http://dx.doi.org/10.21236/ada585768.
Der volle Inhalt der QuelleLiszka, Tadeusz J., C. A. Duarte und O. P. Hamzeh. Hp-Meshless Cloud Method for Dynamic Fracture in Fluid Structure Interaction. Fort Belvoir, VA: Defense Technical Information Center, März 2000. http://dx.doi.org/10.21236/ada376673.
Der volle Inhalt der Quelle