Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Fluid effects“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fluid effects" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Fluid effects"
Roper, T. J. „Effects of Novelty On Taste-Avoidance Learning in Chicks“. Behaviour 125, Nr. 3-4 (1993): 265–81. http://dx.doi.org/10.1163/156853993x00281.
Der volle Inhalt der QuelleJamil, Muhammad, und Najeeb Alam Khan. „Slip Effects on Fractional Viscoelastic Fluids“. International Journal of Differential Equations 2011 (2011): 1–19. http://dx.doi.org/10.1155/2011/193813.
Der volle Inhalt der QuelleBelayneh, Mesfin, Bernt Aadnøy und Simen Moe Strømø. „MoS2 Nanoparticle Effects on 80 °C Thermally Stable Water-Based Drilling Fluid“. Materials 14, Nr. 23 (25.11.2021): 7195. http://dx.doi.org/10.3390/ma14237195.
Der volle Inhalt der QuelleSTOKES, JASON R., LACHLAN J. W. GRAHAM, NICK J. LAWSON und DAVID V. BOGER. „Swirling flow of viscoelastic fluids. Part 2. Elastic effects“. Journal of Fluid Mechanics 429 (25.02.2001): 117–53. http://dx.doi.org/10.1017/s0022112000002901.
Der volle Inhalt der QuelleGallagher, John S., und Graham Morrison. „Modeling of impurity effects in fluids and fluid mixtures“. Journal of Chemical & Engineering Data 32, Nr. 4 (Oktober 1987): 412–18. http://dx.doi.org/10.1021/je00050a007.
Der volle Inhalt der QuelleZhang, Jun Hui, Zhi Li Zhang, De Cai Li und Jie Yao. „Effects of Magnetic Fluid on Magnetic Fluid Damper“. Key Engineering Materials 512-515 (Juni 2012): 1479–83. http://dx.doi.org/10.4028/www.scientific.net/kem.512-515.1479.
Der volle Inhalt der QuelleYin, Shao Hui, Zhi Qiang Xu, Hong Jie Duan und Feng Jun Chen. „Effects of Magnetic Fluid on Machining Characteristics in Magnetic Field Assisted Polishing Process“. Advanced Materials Research 797 (September 2013): 396–400. http://dx.doi.org/10.4028/www.scientific.net/amr.797.396.
Der volle Inhalt der QuelleZhang, Zhi Li, Nan Nan Di, Le Bai, Yang Yang und De Cai Li. „Investigation on Magnetoviscous Effects of Water-Based Magnetic Fluid“. Solid State Phenomena 281 (August 2018): 906–11. http://dx.doi.org/10.4028/www.scientific.net/ssp.281.906.
Der volle Inhalt der QuelleTom Joseph, Chrison, und Vinay S. Appannavar. „FLUID MANAGEMENT IN SPACE: OVERCOMING GRAVITATIONAL CHALLENGES FOR SAFE IV THERAPY ON MARS AND BEYOND“. International Journal of Advanced Research 12, Nr. 09 (30.09.2024): 1525–27. http://dx.doi.org/10.21474/ijar01/19590.
Der volle Inhalt der QuelleTrung, Hieu Nguyen, Jun Ishimatsu und Hiromi Isobe. „Effects of Grinding Fluid Excited by Ultrasonic Vibration“. Materials Science Forum 874 (Oktober 2016): 308–12. http://dx.doi.org/10.4028/www.scientific.net/msf.874.308.
Der volle Inhalt der QuelleDissertationen zum Thema "Fluid effects"
Wrenninge, Magnus. „Fluid Simulation for Visual Effects“. Thesis, Linköping University, Department of Science and Technology, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2347.
Der volle Inhalt der QuelleThis thesis describes a system for dealing with free surface fluid simulations, and the components needed in order to construct such a system. It builds upon recent research, but in a computer graphics context the amount of available literature is limited and difficult to implement. Because of this, the text aims at providing a solid foundation of the mathematics needed, at explaining in greater detail the steps needed to solve the problem, and lastly at improving some aspects of the animation process as it has been described in earlier works.
The aim of the system itself is to provide visually plausible renditions of animated fluids in three dimensions in a manner that allows it to be usable in a visual effects production context.
The novel features described include a generalized interaction layer providing greater control to artists, a new way of dealing with moving objects that interact with the fluid and a method for adding source and drain capabilities.
Schwabe, Mierk. „Dynamical effects in fluid complex plasmas“. Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-109050.
Der volle Inhalt der QuelleKwok, Peter (Peter Yu) 1975. „Fluid effects in vibrating micromachined structure“. Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9419.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 114-116).
This thesis presents the study of the fluid damping and surfboarding effects for the tuning fork gyroscope. The quality factors in the drive and sense axes will be evaluated and compared with the experimental results for a range of pressures. The effects of the holes and the proof mass thickness (chimney) will be derived and discussed, and a parametric study on several design parameters will be performed. An analytical model based on the classic slider bearing with slip boundary will be derived and numerical models will be developed to estimate the lift force from "surfboarding", and the numerical solution will be compared with the bias of the 1FG from experiments over a range or pressures. Original contribution includes 1 ). Experimental work performed to obtain the inphase bias and quality factors in the drive and sense axes, 2). Data post-processing technique developed to obtain the structural and fluid damping of the tuning fork gyroscope, 3). Numerical simulations of the normalized Reynolds squeeze film equation and normalized Reynolds slider bearing equation on nontrivial geometry, and 4). Network model developed to solve for the pressure distribution from surfboarding with the chimney effect.
by Peter Kwok.
S.M.
Wang, Zhongzheng. „Capillary Effects on Fluid Transport in Granular Media“. Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25895.
Der volle Inhalt der QuelleOzkok, Okan. „Investigation Of Fluid Rheology Effects On Ultrasound Propagation“. Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614621/index.pdf.
Der volle Inhalt der QuelleLundberg, Lukas. „Art Directed Fluid Flow With Secondary Water Effects“. Thesis, Linköpings universitet, Medie- och Informationsteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-81808.
Der volle Inhalt der QuelleHughes, Jason Peter. „Fluid inertia and end effects in rheometer flows“. Thesis, University of Plymouth, 1998. http://hdl.handle.net/10026.1/1889.
Der volle Inhalt der QuelleLiu, Man. „Fluid-structural interaction effects on vibrations of pipework“. Thesis, University of Aberdeen, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385271.
Der volle Inhalt der QuelleJeon, Jaewoo. „Displacing visco plastic fluid with Newtonian fluid in a vertical circular pipe with buoyancy effects“. Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/60318.
Der volle Inhalt der QuelleApplied Science, Faculty of
Mechanical Engineering, Department of
Graduate
Sanders, Barry. „The effects of sodium chloride ingestion on fluid balance and body fluid distribution during exercise“. Master's thesis, University of Cape Town, 1993. http://hdl.handle.net/11427/27124.
Der volle Inhalt der QuelleBücher zum Thema "Fluid effects"
L, Ash Robert, und United States. National Aeronautics and Space Administration., Hrsg. Viscous effects on a vortex wake in ground effect. Norfolk, Va: Old Dominion University Research Foundation, Dept. of Mechanical Engineering & Mechanics, College of Engineering & Technology, Old Dominion University, 1992.
Den vollen Inhalt der Quelle findenWeitsman, Y. Jack. Fluid Effects in Polymers and Polymeric Composites. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1059-1.
Der volle Inhalt der QuelleAndrés, Negro-Vilar, und Conn P. Michael, Hrsg. Peptide hormones: Effects and mechanisms of action. Boca Raton, Fla: CRC Press, 1988.
Den vollen Inhalt der Quelle findenBaines, Peter G. Topographic effects in stratified flows. Cambridge: Cambridge University Press, 1995.
Den vollen Inhalt der Quelle findenR, Claybaugh John, Wade Charles E, Federation of American Societies for Experimental Biology. und Federation of American Societies of Experimental Biology Conference on Hormonal Regulation of Fluid and Electrolytes: Environmental Effects (1987 : Washington, D.C.), Hrsg. Hormonal regulation of fluid and electrolytes: Environmental effects. New York: Plenum Press, 1989.
Den vollen Inhalt der Quelle findenB, Jamtveit, und Yardley B. W. D, Hrsg. Fluid flow and transport in rocks: Mechanisms and effects. London: Chapman & Hall, 1997.
Den vollen Inhalt der Quelle findenHilibrand, Alan Sander. The effects of hydration fluids during prolonged exercise. [New Haven: s.n.], 1990.
Den vollen Inhalt der Quelle findenG, Zimmerli, und United States. National Aeronautics and Space Administration., Hrsg. Electric field effects on a near-critical fluid in microgravity. [Washington, D.C.]: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenSmolyakov, A. I. Fluid model of collisionless plasma with finite Larmor radius effects. Saskatoon, Sask: Plasma Physics Laboratory, University of Saskatchewan, 1995.
Den vollen Inhalt der Quelle findenM, Seiner John, und United States. National Aeronautics and Space Administration., Hrsg. Viscous effects on the instability of an axisymmetric jet. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Fluid effects"
Reader-Harris, Michael. „Installation Effects“. In Experimental Fluid Mechanics, 245–80. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16880-7_8.
Der volle Inhalt der QuelleKim, Chang-Hun, Sun-Jeong Kim, Soo-Kyun Kim und Shin-Jin Kang. „Fluid Interaction“. In Real-Time Visual Effects for Game Programming, 163–200. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-487-0_5.
Der volle Inhalt der QuelleBoubnov, B. M., und G. S. Golitsyn. „Centrifugal Effects“. In Fluid Mechanics and Its Applications, 183–92. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0243-8_7.
Der volle Inhalt der QuelleChoudhuri, Anirban Hom, und Kiranlata Kiro. „Perioperative Fluid Manangement“. In Rational Use of Intravenous Fluids in Critically Ill Patients, 363–78. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-42205-8_18.
Der volle Inhalt der QuelleSchwabe, D. „Experimental Studies of Thermal Marangoni-Effects“. In Microgravity Fluid Mechanics, 201–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-50091-6_21.
Der volle Inhalt der QuelleMalbrain, Manu L. N. G., Adrian Wong, Luca Malbrain, Prashant Nasa und Jonny Wilkinson. „Terms and Definitions of Fluid Therapy“. In Rational Use of Intravenous Fluids in Critically Ill Patients, 3–46. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-42205-8_1.
Der volle Inhalt der QuelleVera, Juan H., Grazyna Wilczek-Vera, Claudio Olivera-Fuentes und Costas Panayiotou. „Heat Effects“. In Classical and Molecular Thermodynamics of Fluid Systems, 254–83. 2. Aufl. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003431985-26.
Der volle Inhalt der QuelleBelda, Isabel, Tomeu Ramis, Ana Fervienza, Neus Fàbregas und Ricard Valero. „Adverse Effects of Fluid Administration“. In Transfusion Practice in Clinical Neurosciences, 235–45. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0954-2_23.
Der volle Inhalt der QuelleWong, Adrian, Jonny Wilkinson, Prashant Nasa, Luca Malbrain und Manu L. N. G. Malbrain. „Introduction to Fluid Stewardship“. In Rational Use of Intravenous Fluids in Critically Ill Patients, 545–65. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-42205-8_27.
Der volle Inhalt der QuelleGibson, M. M. „Effects of Streamline Curvature on Turbulence“. In Frontiers in Fluid Mechanics, 184–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-46543-7_10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Fluid effects"
Briassulis, G., und J. Andreopoulos. „Compressibility effects in grid generated turbulence“. In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2055.
Der volle Inhalt der QuelleGeorges, Marc P., Luc Joannes, Cedric Thizy, Frank Dubois, Olivier Dupont, Philippe C. Lemaire und Jean-Claude Legros. „Holographic camera with BSO applied to microgravity fluid experiment aboard ISS“. In Photorefractive Effects, Materials, and Devices. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/pemd.2001.18.
Der volle Inhalt der QuelleNoguchi, Y., und T. Shiratori. „Effects of turbulent models in transonic cascade flow computations“. In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2344.
Der volle Inhalt der QuelleWiecek, Kevin, und Rabindra Mehta. „Effects of velocity ratio on mixing layer three-dimensionality“. In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1932.
Der volle Inhalt der QuelleDeshpande, Akshay S., und Jonathan Poggie. „Effects of curvature in high-speed inlets“. In 2018 Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-3393.
Der volle Inhalt der QuelleOh, Choong, und Eric Loth. „A numerical investigation of supersonic turbulent shear layers - Compressibility effects“. In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2244.
Der volle Inhalt der QuelleRamachandran, N., und C. Baughler. „G-jitter effects in protein crystal growth - A numerical study“. In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-2232.
Der volle Inhalt der QuelleCulley, Scott Anthony. „ATF Additive Effects on Lead Corrosion“. In Powertrain & Fluid Systems Conference & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-3861.
Der volle Inhalt der QuelleMambretti, S. „Waterhammer effects in the case of air release“. In Fluid Structure Interaction 2011. Southampton, UK: WIT Press, 2011. http://dx.doi.org/10.2495/fsi110131.
Der volle Inhalt der QuelleMahalingam, R., N. Komerath, T. Radcliff, O. Burggraf, A. Conlisk, R. Mahalingam, N. Komerath, T. Radcliff, O. Burggraf und A. Conlisk. „Vortex-surface collision - 3-D core flow effects“. In 28th Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1785.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Fluid effects"
Phelps, M. R., M. O. Hogan und L. J. Silva. Fluid dynamic effects on precision cleaning with supercritical fluids. Office of Scientific and Technical Information (OSTI), Juni 1994. http://dx.doi.org/10.2172/10165549.
Der volle Inhalt der QuellePhelps, M. R., W. A. Willcox, L. J. Silva und R. S. Butner. Effects of fluid dynamics on cleaning efficacy of supercritical fluids. Office of Scientific and Technical Information (OSTI), März 1993. http://dx.doi.org/10.2172/10136973.
Der volle Inhalt der QuellePhelps, M. R., W. A. Willcox, L. J. Silva und R. S. Butner. Effects of fluid dynamics on cleaning efficacy of supercritical fluids. Office of Scientific and Technical Information (OSTI), März 1993. http://dx.doi.org/10.2172/6665473.
Der volle Inhalt der QuelleKirkpatrick, J. R. Fluid flow effects on electroplating. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6430941.
Der volle Inhalt der QuelleMadsen, Ole S. Acceleration Effects on Fluid-Sediment Interaction. Fort Belvoir, VA: Defense Technical Information Center, Januar 2006. http://dx.doi.org/10.21236/ada522452.
Der volle Inhalt der QuelleMadsen, Ole S. Acceleration Effects on Fluid-Sediment Interaction. Fort Belvoir, VA: Defense Technical Information Center, Juni 2008. http://dx.doi.org/10.21236/ada482733.
Der volle Inhalt der QuelleKirkpatrick, J. Addendum to fluid flow effects on electroplating. Office of Scientific and Technical Information (OSTI), Oktober 1990. http://dx.doi.org/10.2172/6487257.
Der volle Inhalt der QuelleGraves, Joshua, und Andrew C. Klein. Fluid Stratification Separate Effects Analysis, Testing and Benchmarking. Office of Scientific and Technical Information (OSTI), Juli 2018. http://dx.doi.org/10.2172/1463114.
Der volle Inhalt der QuelleVan Atta, Charles W. Effects of Buoyancy on Fluid Flows and Turbulence. Fort Belvoir, VA: Defense Technical Information Center, Februar 1994. http://dx.doi.org/10.21236/ada276586.
Der volle Inhalt der QuelleNicolas Spycher und Eric Sonnenthal. Temperature Effects on seepage Fluid Compositions at Yucca Mountain. Office of Scientific and Technical Information (OSTI), Juni 2001. http://dx.doi.org/10.2172/786552.
Der volle Inhalt der Quelle