Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Fluid Dynamics.

Zeitschriftenartikel zum Thema „Fluid Dynamics“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Fluid Dynamics" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Yamagami, Shigemasa, Tetta Hashimoto und Koichi Inoue. „OS23-6 Thermo-Fluid Dynamics of Pulsating Heat Pipes for LED Lightings(Thermo-fluid dynamics(2),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)“. Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 283. http://dx.doi.org/10.1299/jsmeatem.2015.14.283.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tushar Shimpi, Palash. „Palash's Law of Fluid Dynamics“. International Journal of Science and Research (IJSR) 12, Nr. 9 (05.09.2023): 1097–103. http://dx.doi.org/10.21275/sr23910212852.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Raza, Md Shamim, Nitesh Kumar und Sourav Poddar. „Combustor Characteristics under Dynamic Condition during Fuel – Air Mixingusing Computational Fluid Dynamics“. Journal of Advances in Mechanical Engineering and Science 1, Nr. 1 (08.08.2015): 20–33. http://dx.doi.org/10.18831/james.in/2015011003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Khare, Prashant. „Fluid Dynamics: Part 1: Classical Fluid Dynamics“. Contemporary Physics 56, Nr. 3 (02.06.2015): 385–87. http://dx.doi.org/10.1080/00107514.2015.1048303.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Harlander, Uwe, Andreas Hense, Andreas Will und Michael Kurgansky. „New aspects of geophysical fluid dynamics“. Meteorologische Zeitschrift 15, Nr. 4 (23.08.2006): 387–88. http://dx.doi.org/10.1127/0941-2948/2006/0144.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ushida, Akiomi, Shuichi Ogawa, Tomiichi Hasegawa und Takatsune Narumi. „OS23-1 Pseudo-Laminarization of Dilute Polymer Solutions in Capillary Flows(Thermo-fluid dynamics(1),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)“. Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 278. http://dx.doi.org/10.1299/jsmeatem.2015.14.278.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kim, Youngho, und Sangho Yun. „Fluid Dynamics in an Anatomically Correct Total Cavopulmonary Connection : Flow Visualizations and Computational Fluid Dynamics(Cardiovascular Mechanics)“. Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 57–58. http://dx.doi.org/10.1299/jsmeapbio.2004.1.57.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sreenivasan, Katepalli R. „Chandrasekhar's Fluid Dynamics“. Annual Review of Fluid Mechanics 51, Nr. 1 (05.01.2019): 1–24. http://dx.doi.org/10.1146/annurev-fluid-010518-040537.

Der volle Inhalt der Quelle
Annotation:
Subrahmanyan Chandrasekhar (1910–1995) is justly famous for his lasting contributions to topics such as white dwarfs and black holes (which led to his Nobel Prize), stellar structure and dynamics, general relativity, and other facets of astrophysics. He also devoted some dozen or so of his prime years to fluid dynamics, especially stability and turbulence, and made important contributions. Yet in most assessments of his science, far less attention is paid to his fluid dynamics work because it is dwarfed by other, more prominent work. Even within the fluid dynamics community, his extensive research on turbulence and other problems of fluid dynamics is not well known. This review is a brief assessment of that work. After a few biographical remarks, I recapitulate and assess the essential parts of this work, putting my remarks in the context of times and people with whom Chandrasekhar interacted. I offer a few comments in perspective on how he came to work on turbulence and stability problems, on how he viewed science as an aesthetic activity, and on how one's place in history gets defined.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wood, Heather. „Fluid dynamics“. Nature Reviews Neuroscience 6, Nr. 2 (14.01.2005): 92. http://dx.doi.org/10.1038/nrn1613.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

REISCH, MARC S. „FLUID DYNAMICS“. Chemical & Engineering News 83, Nr. 8 (21.02.2005): 16–18. http://dx.doi.org/10.1021/cen-v083n008.p016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Lin, C. T., J. K. Kuo und T. H. Yen. „Quantum Fluid Dynamics and Quantum Computational Fluid Dynamics“. Journal of Computational and Theoretical Nanoscience 6, Nr. 5 (01.05.2009): 1090–108. http://dx.doi.org/10.1166/jctn.2009.1149.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Nagura, Ryo, Kanji Kawashima, Kentaro Doi und Satoyuki Kawano. „OS23-3 Observation of Electrically Induced Flows in Highly Polarized Electrolyte Solution(Thermo-fluid dynamics(1),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)“. Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 280. http://dx.doi.org/10.1299/jsmeatem.2015.14.280.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

YANAGISAWA, Shota, Masaru OGASAWARA, Takahiro ITO, Yoshiyuki TSUJI, Seiji YAMASHITA, Takashi BESSHO und Manabu ORIHASHI. „OS23-11 The Mechanism of Enhancing Pool Boiling Efficiency by Changing Surface Property(Thermo-fluid dynamics(3),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)“. Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 288. http://dx.doi.org/10.1299/jsmeatem.2015.14.288.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Thabet, Senan, und Thabit H. Thabit. „Computational Fluid Dynamics: Science of the Future“. International Journal of Research and Engineering 5, Nr. 6 (2018): 430–33. http://dx.doi.org/10.21276/ijre.2018.5.6.2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Guardone, Alberto, Piero Colonna, Matteo Pini und Andrea Spinelli. „Nonideal Compressible Fluid Dynamics of Dense Vapors and Supercritical Fluids“. Annual Review of Fluid Mechanics 56, Nr. 1 (19.01.2024): 241–69. http://dx.doi.org/10.1146/annurev-fluid-120720-033342.

Der volle Inhalt der Quelle
Annotation:
The gas dynamics of single-phase nonreacting fluids whose thermodynamic states are close to vapor-liquid saturation, close to the vapor-liquid critical point, or in supercritical conditions differs quantitatively and qualitatively from the textbook gas dynamics of dilute, ideal gases. Due to nonideal fluid thermodynamic properties, unconventional gas dynamic effects are possible, including nonclassical rarefaction shock waves and the nonmonotonic variation of the Mach number along steady isentropic expansions. This review provides a comprehensive theoretical framework of the fundamentals of nonideal compressible fluid dynamics (NICFD). The relation between nonideal gas dynamics and the complexity of the fluid molecules is clarified. The theoretical, numerical, and experimental tools currently employed to investigate NICFD flows and related applications are reviewed, followed by an overview of industrial processes involving NICFD, ranging from organic Rankine and supercritical CO2 cycle power systems to supercritical processes. The future challenges facing researchers in the field are briefly outlined.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Yamaguchi, Yukio, und Kenji Amagai. „OS23-7 Development of Binary Refrigeration System Using CO2 Coolant for Freezing Show Case(Thermo-fluid dynamics(2),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)“. Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 284. http://dx.doi.org/10.1299/jsmeatem.2015.14.284.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

KAWAMURA, Tetuya, und Hideo TAKAMI. „Computational Fluid Dynamics“. Tetsu-to-Hagane 75, Nr. 11 (1989): 1981–90. http://dx.doi.org/10.2355/tetsutohagane1955.75.11_1981.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Gilbert, W. M. „Amniotic Fluid Dynamics“. NeoReviews 7, Nr. 6 (01.06.2006): e292-e299. http://dx.doi.org/10.1542/neo.7-6-e292.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Giga, Yoshikazu, Matthias Hieber und Edriss Titi. „Geophysical Fluid Dynamics“. Oberwolfach Reports 10, Nr. 1 (2013): 521–77. http://dx.doi.org/10.4171/owr/2013/10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Giga, Yoshikazu, Matthias Hieber und Edriss Titi. „Geophysical Fluid Dynamics“. Oberwolfach Reports 14, Nr. 2 (27.04.2018): 1421–62. http://dx.doi.org/10.4171/owr/2017/23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Hjertager, Bjørn. „Engineering Fluid Dynamics“. Energies 10, Nr. 10 (22.09.2017): 1467. http://dx.doi.org/10.3390/en10101467.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Morishita, Etsuo. „Spreadsheet Fluid Dynamics“. Journal of Aircraft 36, Nr. 4 (Juli 1999): 720–23. http://dx.doi.org/10.2514/2.2497.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Jones, AM, MJ Moseley, SJ Halfmann, AH Heath, WJ Henkelman, J. Ciaccio und BS Bolcar. „Fluid volume dynamics“. Critical Care Nurse 11, Nr. 4 (01.04.1991): 74–76. http://dx.doi.org/10.4037/ccn1991.11.4.74.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Czosnyka, Marek, Zofia Czosnyka, Shahan Momjian und John D. Pickard. „Cerebrospinal fluid dynamics“. Physiological Measurement 25, Nr. 5 (07.08.2004): R51—R76. http://dx.doi.org/10.1088/0967-3334/25/5/r01.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Hibberd, S., und Bhinsen K. Shivamoggi. „Theoretical Fluid Dynamics“. Mathematical Gazette 70, Nr. 454 (Dezember 1986): 329. http://dx.doi.org/10.2307/3616227.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

MIZOTA, Taketo. „Sports Fluid Dynamics“. Wind Engineers, JAWE 2001, Nr. 87 (2001): 37–41. http://dx.doi.org/10.5359/jawe.2001.87_37.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Acheson, D. J. „Elementary Fluid Dynamics“. Journal of the Acoustical Society of America 89, Nr. 6 (Juni 1991): 3020. http://dx.doi.org/10.1121/1.400751.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Birchall, D. „Computational fluid dynamics“. British Journal of Radiology 82, special_issue_1 (Januar 2009): S1—S2. http://dx.doi.org/10.1259/bjr/26554028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Busse, F. H. „Geophysical Fluid Dynamics“. Eos, Transactions American Geophysical Union 68, Nr. 50 (1987): 1666. http://dx.doi.org/10.1029/eo068i050p01666-02.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Neilsen, David W., und Matthew W. Choptuik. „Ultrarelativistic fluid dynamics“. Classical and Quantum Gravity 17, Nr. 4 (25.01.2000): 733–59. http://dx.doi.org/10.1088/0264-9381/17/4/302.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Emanuel, George, und Daniel Bershader. „Analytical Fluid Dynamics“. Physics Today 47, Nr. 11 (November 1994): 92–94. http://dx.doi.org/10.1063/1.2808705.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Hughes, Dez. „Transvascular fluid dynamics“. Veterinary Anaesthesia and Analgesia 27, Nr. 1 (Januar 2000): 63–69. http://dx.doi.org/10.1046/j.1467-2995.2000.00006.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Lin, Ching-long, Merryn H. Tawhai, Geoffrey Mclennan und Eric A. Hoffman. „Computational fluid dynamics“. IEEE Engineering in Medicine and Biology Magazine 28, Nr. 3 (Mai 2009): 25–33. http://dx.doi.org/10.1109/memb.2009.932480.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Lavinio, A., Z. Czosnyka und M. Czosnyka. „Cerebrospinal fluid dynamics“. European Journal of Anaesthesiology 25 (Februar 2008): 137–41. http://dx.doi.org/10.1017/s0265021507003298.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Jarvis, P. D., und J. W. van Holten. „Conformal fluid dynamics“. Nuclear Physics B 734, Nr. 3 (Februar 2006): 272–86. http://dx.doi.org/10.1016/j.nuclphysb.2005.11.021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Wrobel, L. C. „Computational fluid dynamics“. Engineering Analysis with Boundary Elements 9, Nr. 2 (Januar 1992): 192. http://dx.doi.org/10.1016/0955-7997(92)90070-n.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Pericleous, K. A. „Computational fluid dynamics“. International Journal of Heat and Mass Transfer 32, Nr. 1 (Januar 1989): 197–98. http://dx.doi.org/10.1016/0017-9310(89)90105-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Von Wendt, J. „Computational fluid dynamics“. Journal of Wind Engineering and Industrial Aerodynamics 40, Nr. 2 (Juni 1992): 223. http://dx.doi.org/10.1016/0167-6105(92)90368-k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Maxworthy, Tony. „Geophysical fluid dynamics“. Tectonophysics 111, Nr. 1-2 (Januar 1985): 165–66. http://dx.doi.org/10.1016/0040-1951(85)90076-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Skrbek, L., J. J. Niemela und R. J. Donnelly. „Cryogenic fluid dynamics“. Physica B: Condensed Matter 280, Nr. 1-4 (Mai 2000): 41–42. http://dx.doi.org/10.1016/s0921-4526(99)01438-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Hamill, Nathalie. „Streamlining Fluid Dynamics“. Mechanical Engineering 120, Nr. 03 (01.03.1998): 76–78. http://dx.doi.org/10.1115/1.1998-mar-1.

Der volle Inhalt der Quelle
Annotation:
More-intuitive pre-processors and advanced solvers are making computational fluid dynamics (CFD) software easier to use, more accurate, and faster. CFD techniques involve the solution of the Navier-Stokes equations that describe fluid-flow processes. Using MSC/ PATRAN as a starting point, AEA Technology plc, Harwell, Oxfordshire, England, has developed a pre-processor for its software that is fully computer-aided design (CAD)-compatible and works with native CAD databases such as CADDS 5, CATIA, Euclid3, Pro /ENG INEER, and Unigraphics. The simplicity of modeling complex geometries in CFX allows more details to be included in models, such as gangways between coaches, bogies, and even some parts of the pantograph. CFX 5's coupled solver offers a radically different approach that solves all the hydrodynamic equations as a single system. CFX 5 has demonstrated its ability to deliver much faster pre-processing and shorter run times, thus increasing productivity for its users. CFX 5.2 should be a further step forward in commercial CFD, with its mixed element types combining the accuracy of prismatic meshes adjacent to surfaces with the speed and geometric flexibility of tetrahedral elements in the remainder of the grid.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Lax, Peter D. „Computational Fluid Dynamics“. Journal of Scientific Computing 31, Nr. 1-2 (25.10.2006): 185–93. http://dx.doi.org/10.1007/s10915-006-9104-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Pitarma, R. A., J. E. Ramos, M. E. Ferreira und M. G. Carvalho. „Computational fluid dynamics“. Management of Environmental Quality: An International Journal 15, Nr. 2 (April 2004): 102–10. http://dx.doi.org/10.1108/14777830410523053.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Fox, Robert. „Information fluid dynamics“. OCLC Systems & Services: International digital library perspectives 27, Nr. 2 (30.05.2011): 87–94. http://dx.doi.org/10.1108/10650751111135382.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Smalley, Larry L., und Jean P. Krisch. „String fluid dynamics“. Classical and Quantum Gravity 13, Nr. 2 (01.02.1996): L19—L22. http://dx.doi.org/10.1088/0264-9381/13/2/002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Smalley, L. L., und J. P. Krisch. „String fluid dynamics“. Classical and Quantum Gravity 13, Nr. 5 (01.05.1996): 1277. http://dx.doi.org/10.1088/0264-9381/13/5/037.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Shivamoggi, Bhimsen K., und Stanley A. Berger. „Theoretical Fluid Dynamics“. Physics Today 51, Nr. 11 (November 1998): 69–70. http://dx.doi.org/10.1063/1.882072.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Portnoy, H. D., und M. Chopp. „Intracranial Fluid Dynamics“. Pediatric Neurosurgery 20, Nr. 1 (1994): 92–98. http://dx.doi.org/10.1159/000120771.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Donnelly, Russell J. „Cryogenic fluid dynamics“. Journal of Physics: Condensed Matter 11, Nr. 40 (24.09.1999): 7783–834. http://dx.doi.org/10.1088/0953-8984/11/40/309.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Ajakaiye, D. E. „Geophysical fluid dynamics“. Earth-Science Reviews 22, Nr. 3 (November 1985): 245. http://dx.doi.org/10.1016/0012-8252(85)90068-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie