Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Fluid Dynamics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fluid Dynamics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Fluid Dynamics"
Yamagami, Shigemasa, Tetta Hashimoto und Koichi Inoue. „OS23-6 Thermo-Fluid Dynamics of Pulsating Heat Pipes for LED Lightings(Thermo-fluid dynamics(2),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)“. Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 283. http://dx.doi.org/10.1299/jsmeatem.2015.14.283.
Der volle Inhalt der QuelleTushar Shimpi, Palash. „Palash's Law of Fluid Dynamics“. International Journal of Science and Research (IJSR) 12, Nr. 9 (05.09.2023): 1097–103. http://dx.doi.org/10.21275/sr23910212852.
Der volle Inhalt der QuelleRaza, Md Shamim, Nitesh Kumar und Sourav Poddar. „Combustor Characteristics under Dynamic Condition during Fuel – Air Mixingusing Computational Fluid Dynamics“. Journal of Advances in Mechanical Engineering and Science 1, Nr. 1 (08.08.2015): 20–33. http://dx.doi.org/10.18831/james.in/2015011003.
Der volle Inhalt der QuelleKhare, Prashant. „Fluid Dynamics: Part 1: Classical Fluid Dynamics“. Contemporary Physics 56, Nr. 3 (02.06.2015): 385–87. http://dx.doi.org/10.1080/00107514.2015.1048303.
Der volle Inhalt der QuelleHarlander, Uwe, Andreas Hense, Andreas Will und Michael Kurgansky. „New aspects of geophysical fluid dynamics“. Meteorologische Zeitschrift 15, Nr. 4 (23.08.2006): 387–88. http://dx.doi.org/10.1127/0941-2948/2006/0144.
Der volle Inhalt der QuelleUshida, Akiomi, Shuichi Ogawa, Tomiichi Hasegawa und Takatsune Narumi. „OS23-1 Pseudo-Laminarization of Dilute Polymer Solutions in Capillary Flows(Thermo-fluid dynamics(1),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)“. Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 278. http://dx.doi.org/10.1299/jsmeatem.2015.14.278.
Der volle Inhalt der QuelleKim, Youngho, und Sangho Yun. „Fluid Dynamics in an Anatomically Correct Total Cavopulmonary Connection : Flow Visualizations and Computational Fluid Dynamics(Cardiovascular Mechanics)“. Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 57–58. http://dx.doi.org/10.1299/jsmeapbio.2004.1.57.
Der volle Inhalt der QuelleSreenivasan, Katepalli R. „Chandrasekhar's Fluid Dynamics“. Annual Review of Fluid Mechanics 51, Nr. 1 (05.01.2019): 1–24. http://dx.doi.org/10.1146/annurev-fluid-010518-040537.
Der volle Inhalt der QuelleWood, Heather. „Fluid dynamics“. Nature Reviews Neuroscience 6, Nr. 2 (14.01.2005): 92. http://dx.doi.org/10.1038/nrn1613.
Der volle Inhalt der QuelleREISCH, MARC S. „FLUID DYNAMICS“. Chemical & Engineering News 83, Nr. 8 (21.02.2005): 16–18. http://dx.doi.org/10.1021/cen-v083n008.p016.
Der volle Inhalt der QuelleDissertationen zum Thema "Fluid Dynamics"
Hsia, Chun-Hsiung. „Bifurcation and stability in fluid dynamics and geophysical fluid dynamics“. [Bloomington, Ind.] : Indiana University, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3223038.
Der volle Inhalt der Quelle"Title from dissertation home page (viewed June 28, 2007)." Source: Dissertation Abstracts International, Volume: 67-06, Section: B, page: 3165. Adviser: Shouhong Wang.
Hussain, Muhammad Imtiaz. „Computational fluid dynamics“. Thesis, Aberystwyth University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257607.
Der volle Inhalt der QuelleBarran, Brian Arthur. „View dependent fluid dynamics“. Texas A&M University, 2006. http://hdl.handle.net/1969.1/3827.
Der volle Inhalt der QuelleAcharya, Rutvika. „Fluid Dynamics of Phonation“. Thesis, KTH, Mekanik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-149250.
Der volle Inhalt der QuelleGlorioso, Paolo. „Fluid dynamics in action“. Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107318.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 207-213).
In this thesis we formulate an effective field theory for nonlinear dissipative fluid dynamics. The formalism incorporates an action principle for the classical equations of motion as well as a systematic approach to thermal and quantum fluctuations around the classical motion of fluids. The dynamical degrees of freedom are Stuckelberg-like fields associated with diffeomorphisms and gauge transformations, and are related to the conservation of the stress tensor and a U(1) current if the fluid possesses a charge. This inherently geometric construction gives rise to an emergent "fluid space-time", similar to the Lagrangian description of fluids. We develop the variational formulation based on symmetry principles defined on such fluid space-time. Through a prescribed correspondence, the dynamical fields are mapped to the standard fluid variables, such as temperature, chemical potential and velocity. This allows to recover the standard equations of fluid dynamics in the limit where fluctuations are negligible. Demanding the action to be invariant under a discrete transformation, which we call local KMS, guarantees that the correlators of the stress tensor and the current satisfy the fluctuation-dissipation theorem. Local KMS invariance also automatically ensures that the constitutive relations of the conserved quantities satisfy the standard constraints implied e.g. by the second law of thermodynamics, and leads to a new set of constraints which we call generalized Onsager relations. Requiring the above properties to hold beyond tree-level leads to introducing fermionic partners of the original degrees of freedom, and to an emergent supersymmetry. We also outline a procedure for obtaining the effective field theory for fluid dynamics by applying the holographic Wilsonian renormalization group to systems with a gravity dual.
by Paolo Glorioso.
Ph. D.
Timmermans, Mary-Louise Elizabeth. „Studies in fluid dynamics“. Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621995.
Der volle Inhalt der QuelleMokhtarian, Farzad. „Fluid dynamics of airfoils with moving surface boundary-layer control“. Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/29026.
Der volle Inhalt der QuelleApplied Science, Faculty of
Mechanical Engineering, Department of
Graduate
Ellam, Darren John. „Modelling smart fluid devices using computational fluid dynamics“. Thesis, University of Sheffield, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398597.
Der volle Inhalt der QuelleDurazzo, Gerardo. „Simulation of supply chains dynamics using fluid-dynamic models“. Doctoral thesis, Universita degli studi di Salerno, 2013. http://hdl.handle.net/10556/887.
Der volle Inhalt der QuelleThe aim of thesis is to present some macroscopic models for supply chains and networks able to reproduce the goods dynamics, successively to show, via simulations, some phenomena appearing in planning and managing such systems and, finally, to dead with optimization problems... [edited by author]
XI n.s.
Thillaisundaram, Ashok. „Aspects of fluid dynamics and the fluid/gravity correspondence“. Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267097.
Der volle Inhalt der QuelleBücher zum Thema "Fluid Dynamics"
Pozrikidis, Constantine. Fluid Dynamics. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-95871-2.
Der volle Inhalt der QuelleRieutord, Michel. Fluid Dynamics. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09351-2.
Der volle Inhalt der QuelleVisconti, Guido, und Paolo Ruggieri. Fluid Dynamics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49562-6.
Der volle Inhalt der QuellePozrikidis, C. Fluid Dynamics. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3323-5.
Der volle Inhalt der QuellePozrikidis, C. Fluid Dynamics. Boston, MA: Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7991-9.
Der volle Inhalt der QuelleShivamoggi, Bhimsen K. Theoretical fluid dynamics. Dordrecht: M. Nijhoff, 1985.
Den vollen Inhalt der Quelle findenChung, T. J. Computational fluid dynamics. 2. Aufl. Cambridge: Cambridge University Press, 2010.
Den vollen Inhalt der Quelle findenZeidan, Dia, Jochen Merker, Eric Goncalves Da Silva und Lucy T. Zhang, Hrsg. Numerical Fluid Dynamics. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9665-7.
Der volle Inhalt der QuelleWendt, John F., Hrsg. Computational Fluid Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-11350-9.
Der volle Inhalt der QuellePedlosky, Joseph. Geophysical Fluid Dynamics. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4650-3.
Der volle Inhalt der QuelleBuchteile zum Thema "Fluid Dynamics"
Kamal, Ahmad A. „Fluid Dynamics“. In 1000 Solved Problems in Classical Physics, 391–408. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11943-9_9.
Der volle Inhalt der QuelleParthasarathy, Harish. „Fluid Dynamics“. In Developments in Mathematical and Conceptual Physics, 7–13. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5058-4_2.
Der volle Inhalt der QuelleKimmich, Rainer. „Fluid Dynamics“. In Principles of Soft-Matter Dynamics, 305–71. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5536-9_4.
Der volle Inhalt der QuelleSong, Hongqing. „Fluid Dynamics“. In Engineering Fluid Mechanics, 49–99. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0173-5_3.
Der volle Inhalt der QuelleDavis, Julian L. „Fluid Dynamics“. In Wave Propagation in Solids and Fluids, 192–273. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3886-7_7.
Der volle Inhalt der QuelleBettini, Alessandro. „Fluid Dynamics“. In Undergraduate Lecture Notes in Physics, 1–48. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30686-5_1.
Der volle Inhalt der QuelleKythe, Prem K. „Fluid Dynamics“. In Fundamental Solutions for Differential Operators and Applications, 180–206. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-1-4612-4106-5_9.
Der volle Inhalt der QuelleTavoularis, Stavros. „Fluid Dynamics“. In AIP Physics Desk Reference, 425–43. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4757-3805-6_13.
Der volle Inhalt der QuelleBungartz, Hans-Joachim, Stefan Zimmer, Martin Buchholz und Dirk Pflüger. „Fluid Dynamics“. In Springer Undergraduate Texts in Mathematics and Technology, 355–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39524-6_15.
Der volle Inhalt der QuelleGustafsson, Bertil. „Fluid Dynamics“. In Fundamentals of Scientific Computing, 263–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19495-5_17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Fluid Dynamics"
„The numerical simulation of viscous transonic flows using unstructured grids“. In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2346.
Der volle Inhalt der QuelleChan, William, und Pieter Buning. „A hyperbolic surface grid generation scheme and its applications“. In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2208.
Der volle Inhalt der QuelleWeiss, Jonathan, und Wayne Smith. „Preconditioning applied to variable and constant density time-accurate flows on unstructured meshes“. In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2209.
Der volle Inhalt der QuelleSmith, Merritt, und Rob Van der Wijngaart. „Circularity and the parallel efficiency of flow solution on distributed computer systems“. In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2260.
Der volle Inhalt der QuelleWeed, R., und L. Sankar. „Computational strategies for three-dimensional flow simulations on distributed computer systems“. In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2261.
Der volle Inhalt der QuelleTourbier, D., und H. Fasel. „Numerical investigation of transitional axisymmetric wakes at supersonic speeds“. In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2286.
Der volle Inhalt der QuelleYoon, K., und T. Chung. „Compressible turbulent reacting flows with boundary layer interactions“. In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2312.
Der volle Inhalt der QuelleLau, Hin-Fan, und Doyle Knight. „A 2-D compressible Navier-Stokes algorithm using an adaptive unstructured grid“. In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2329.
Der volle Inhalt der QuelleAndersson, H., und B. Pettersson. „Modelling plane turbulent Couette flow“. In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2342.
Der volle Inhalt der QuelleMenter, Florian, und Christopher Rumsey. „Assessment of two-equation turbulence models for transonic flows“. In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2343.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Fluid Dynamics"
Hall, Charles A. Computational Fluid Dynamics. Fort Belvoir, VA: Defense Technical Information Center, Juni 1986. http://dx.doi.org/10.21236/ada177171.
Der volle Inhalt der QuelleLevermore, C. D., und Moysey Brio. Hypersonic Fluid Dynamics. Fort Belvoir, VA: Defense Technical Information Center, November 1994. http://dx.doi.org/10.21236/ada295493.
Der volle Inhalt der QuelleHall, Charles A., und Thomas A. Porsching. Computational Fluid Dynamics. Fort Belvoir, VA: Defense Technical Information Center, Januar 1990. http://dx.doi.org/10.21236/ada219557.
Der volle Inhalt der QuelleHaworth, D. C., P. J. O'Rourke und R. Ranganathan. Three-Dimensional Computational Fluid Dynamics. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/1186.
Der volle Inhalt der QuelleCalahan, D. A. Massively-Parallel Computational Fluid Dynamics. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1989. http://dx.doi.org/10.21236/ada217732.
Der volle Inhalt der QuelleVan Sciver, S. Liquid helium fluid dynamics studies. Office of Scientific and Technical Information (OSTI), Januar 1989. http://dx.doi.org/10.2172/6253166.
Der volle Inhalt der QuellePhelps, M. R., W. A. Willcox, L. J. Silva und R. S. Butner. Effects of fluid dynamics on cleaning efficacy of supercritical fluids. Office of Scientific and Technical Information (OSTI), März 1993. http://dx.doi.org/10.2172/10136973.
Der volle Inhalt der QuellePhelps, M. R., W. A. Willcox, L. J. Silva und R. S. Butner. Effects of fluid dynamics on cleaning efficacy of supercritical fluids. Office of Scientific and Technical Information (OSTI), März 1993. http://dx.doi.org/10.2172/6665473.
Der volle Inhalt der QuelleGibson, J. S. Joint Research on Computational Fluid Dynamics and Fluid Flow Control. Fort Belvoir, VA: Defense Technical Information Center, November 1995. http://dx.doi.org/10.21236/ada308103.
Der volle Inhalt der QuelleKoseff, J. R. Fluid dynamics of double diffusive systems. Office of Scientific and Technical Information (OSTI), Mai 1988. http://dx.doi.org/10.2172/5988093.
Der volle Inhalt der Quelle