Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Flow of immiscible fluids“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Flow of immiscible fluids" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Flow of immiscible fluids"
Mateen, Abdul. „Transient Magnetohydrodynamic flow of two immiscible Fluids through a horizontal channel“. International Journal of Engineering Research 3, Nr. 1 (01.01.2014): 13–17. http://dx.doi.org/10.17950/ijer/v3s1/104.
Der volle Inhalt der QuelleDeng, Yongbo, Zhenyu Liu und Yihui Wu. „Topology Optimization of Capillary, Two-Phase Flow Problems“. Communications in Computational Physics 22, Nr. 5 (31.10.2017): 1413–38. http://dx.doi.org/10.4208/cicp.oa-2017-0003.
Der volle Inhalt der QuelleHasnain, A., E. Segura und K. Alba. „Buoyant displacement flow of immiscible fluids in inclined pipes“. Journal of Fluid Mechanics 824 (10.07.2017): 661–87. http://dx.doi.org/10.1017/jfm.2017.367.
Der volle Inhalt der QuelleYadav, Pramod Kumar, und Sneha Jaiswal. „Influence of an inclined magnetic field on the Poiseuille flow of immiscible micropolar–Newtonian fluids in a porous medium“. Canadian Journal of Physics 96, Nr. 9 (September 2018): 1016–28. http://dx.doi.org/10.1139/cjp-2017-0998.
Der volle Inhalt der QuelleSalin, D., und L. Talon. „Revisiting the linear stability analysis and absolute–convective transition of two fluid core annular flow“. Journal of Fluid Mechanics 865 (26.02.2019): 743–61. http://dx.doi.org/10.1017/jfm.2019.71.
Der volle Inhalt der QuelleAbd Elmaboud, Y., Sara I. Abdelsalam, Kh S. Mekheimer und Kambiz Vafai. „Electromagnetic flow for two-layer immiscible fluids“. Engineering Science and Technology, an International Journal 22, Nr. 1 (Februar 2019): 237–48. http://dx.doi.org/10.1016/j.jestch.2018.07.018.
Der volle Inhalt der QuelleSahu, Kirti Chandra, und Rama Govindarajan. „Linear stability analysis and direct numerical simulation of two-layer channel flow“. Journal of Fluid Mechanics 798 (13.06.2016): 889–909. http://dx.doi.org/10.1017/jfm.2016.346.
Der volle Inhalt der QuelleKozubková, Milada, Jana Jablonská, Marian Bojko, František Pochylý und Simona Fialová. „Multiphase Flow in the Gap Between Two Rotating Cylinders“. MATEC Web of Conferences 328 (2020): 02017. http://dx.doi.org/10.1051/matecconf/202032802017.
Der volle Inhalt der QuelleLemenand, Thierry, Pascal Dupont, Dominique Della Valle und Hassan Peerhossaini. „Turbulent Mixing of Two Immiscible Fluids“. Journal of Fluids Engineering 127, Nr. 6 (10.06.2005): 1132–39. http://dx.doi.org/10.1115/1.2073247.
Der volle Inhalt der QuelleIWATSUKI, HIROKI, NAOTO GOHKO, HIROSHI KIMURA, YUICHI MASUBUCHI, JUN-ICHI TAKIMOTO und KIYOHITO KOYAMA. „MOLECULAR ORIENTATION AND ELECTROHYDRODYNAMIC FLOW IN HOMOGENEOUS ER FLUIDS“. International Journal of Modern Physics B 15, Nr. 06n07 (20.03.2001): 973–79. http://dx.doi.org/10.1142/s0217979201005490.
Der volle Inhalt der QuelleDissertationen zum Thema "Flow of immiscible fluids"
Kalejaiye, Bolarinwa Olumuyiwa. „The flow of miscible and immiscible fluids in the Earth's subsurface“. Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619654.
Der volle Inhalt der QuelleEastwood, Craig D. „The break-up of immiscible fluids in turbulent flows /“. Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2002. http://wwwlib.umi.com/cr/ucsd/fullcit?p3044776.
Der volle Inhalt der QuelleFisher, Charles Edward. „The Effects of a Navier-Slip Boundary Condition on the Flow of Two Immiscible Fluids in a Microchannel“. Digital WPI, 2013. https://digitalcommons.wpi.edu/etd-theses/294.
Der volle Inhalt der QuelleKiriakidis, Dionissios Georgios. „Computer simulations of two-fluid immiscible displacement flow in porous media“. Thesis, University of Ottawa (Canada), 1991. http://hdl.handle.net/10393/7914.
Der volle Inhalt der QuellePIMENTEL, ISMAEL ANDRADE. „AN ADAPTIVE MESHFREE ADVECTION METHOD FOR TWO-PHASE FLOW PROBLEMS OF INCOMPRESSIBLE AND IMMISCIBLE FLUIDS THROUGH THREEDIMENSIONAL HETEROGENEOUS POROUS MEDIA“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33594@1.
Der volle Inhalt der QuelleCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Esta tese propõe um método meshfree adaptativo de advecção para problemas de fluxo bifásico de fluidos incompressíveis e imiscíveis em meios porosos heterogêneos tridimensionais. Este método se baseia principalmente na combinação do método Semi-Lagrangeano adaptativo com interpolação local meshfree usando splines poliharmônicas como funções de base radial. O método proposto é uma melhoria e uma extensão do método adaptativo meshfree AMMoC proposto por Iske e Kaser (2005) para modelagem 2D de reservatórios de petróleo. Inicialmente este trabalho propõe um modelo em duas dimensões, contribuindo com uma melhoria significativa no cálculo do Laplaciano, utilizando os métodos meshfree de Hermite e Kansa. Depois, o método é ampliado para três dimensões (3D) e para um meio poroso heterogêneo. O método proposto é testado com o problema de five spot e os resultados são comparados com os obtidos por sistemas bem conhecidos na indústria de petróleo.
This thesis proposes an adaptive meshfree advection method for two-phase flow problems of incompressible and immiscible fluids through three-dimensional heterogeneous porous media. This method is based mainly on a combination of adaptive semi-Lagrangian method with local meshfree interpolation using polyharmonic splines as radial basis functions. The proposed method is an improvement and extension of the adaptive meshfree advection scheme AMMoC proposed by Iske and Kaser (2005) for 2D oil reservoir modeling. Initially this work proposes a model in two dimensions, contributing to a significant improvement in the calculation of the Laplacian, using the meshfree methods of Hermite and Kansa. Then, the method is extended to three dimensions (3D) and a heterogeneous porous medium. The proposed method is tested with the five spot problem and the results are compared with those obtained by well-known systems in the oil industry.
Mayur, Manik. „Study of interface evolution between two immiscible fluids due to a time periodic electric field in a microfluidic channel“. Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00983473.
Der volle Inhalt der QuelleLunda, Filip. „Studium proudění na rozhraní nemísitelných kapalin“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444285.
Der volle Inhalt der QuelleYang, Zhibing. „Multiphase Contamination in Rock Fractures : Fluid Displacement and Interphase Mass Transfer“. Doctoral thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-183720.
Der volle Inhalt der QuelleFlerfasflöde och ämnestransport i sprickigt berg är av betydelse för många praktiska och tekniska problem. Tunga, svårlösliga organiska vätskor (engelska: dense non-aqueous phase liquids: DNAPLs; t.ex. klorerade lösningsmedel) kan orsaka långvarig förorening av vattenresurser, inklusive akviferer i sprickigt berg, och utgör ett viktigt miljöproblem inom grundvattenhydrologin. Denna studie behandlar två fundamentala processer för spridning av flerfasföroreningar i sprickiga medier – utbredning av den organiska vätskan och massöverföring mellan organisk vätska och vatten. Arbetet har fokuserat på att förbättra nuvarande kunskap om de fysikaliska processerna på liten skala (enskilda sprickor) genom en kombination av numerisk modellering, laboratorieexperiment och modellutveckling. Avhandlingen har bidragit till utökad processförståelse i flera avseenden. För det första har arbetet belyst effekterna av sprickaperturens variabilitet, uttryckt med geostatistiska parametrar som standardavvikelse och rumslig korrelationslängd, på fastläggning och lösning av organiska vätskor i enskilda sprickor, samt utmattningsbeteendet hos dessa källor till grundvattenförorening. För det andra har en ny, generell metod (adaptiva cirkelpassningsmetoden) för att ta hänsyn till effekten av krökningen av gränsytan mellan organisk vätska och vatten i sprickplanet utvecklats; denna metod har visats fungera väl i simuleringar av tidigare publicerade experimentella data. För det tredje, har en jämförelse gjorts mellan en kontinuumbaserad tvåfasflödesmodell och en invasions-perkolationsmodell med avseende på hur väl de kan simulera tvåfasflöde i en spricka med varierande apertur. Här studerades även hur relationen mellan kapillärtryck och mättnadsgrad på sprickplansskala beror av variabiliteten i sprickapertur. Till sist undersöktes lösning av den organiska vätskan i grundvatten för två fastläggningsscenarier (fastläggning i immobila droppar och ansamling i fällor – ”återvändssprickor”) både genom experiment och mekanistisk numerisk modellering. Kunskapen som tagits fram i denna avhandling bedöms vara användbar även för att modellera spridningen av flerfasföroreningar på större (spricknätverks-) skalor.
Xi, Shi Tong. „Transient turbulent jets of miscible and immiscible fluids“. Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38198.
Der volle Inhalt der QuelleSchechter, David S. „Immiscible flow behaviour in porous media“. Thesis, University of Bristol, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234777.
Der volle Inhalt der QuelleBücher zum Thema "Flow of immiscible fluids"
Corey, A. T. Mechanics of immiscible fluids in porous media. 3. Aufl. Highlands Ranch, Colo: Water Resources Publications, 1994.
Den vollen Inhalt der Quelle findenCorey, A. T. Mechanics of immiscible fluids in porous media. 2. Aufl. Littleton, Colo., U.S.A: Water Resources Publications, 1986.
Den vollen Inhalt der Quelle findenG, Chen. An overview of instability and fingering during immiscible fluid flow in porous and fractured media. Washington, DC: Division of Regulatory Applications, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1995.
Den vollen Inhalt der Quelle findenInternational, Conference on Subsurface Contamination by Immiscible Fluids (1990 Calgary Alta ). Subsurface contamination by immiscible fluids: Proceedings of the International Conference on Subsurfacae Contamination by Immiscible Fluids, Calgary, Canada, 18-20 April 1990. Rotterdam, Netherlands: A.A. Balkema, 1992.
Den vollen Inhalt der Quelle findenMeier, G. E. A., und F. Obermeier, Hrsg. Flow of Real Fluids. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/3-540-15989-4.
Der volle Inhalt der QuelleSuo-Anttila, Ahti J. The mixing of immiscible liquid layers by gas bubbling. Washington, DC: Division of Reactor System Safety, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1988.
Den vollen Inhalt der Quelle findenKing, Michael J. Stability of two dimensional immiscible flow to viscous fingering. New York: Courant Institute of Mathematical Sciences, New York University, 1985.
Den vollen Inhalt der Quelle findenJou, David. Thermodynamics of Fluids Under Flow. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001.
Den vollen Inhalt der Quelle findenJou, David, José Casas-Vázquez und Manuel Criado-Sancho. Thermodynamics of Fluids Under Flow. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04414-8.
Der volle Inhalt der QuelleJou, David, José Casas-Vázquez und Manuel Criado-Sancho. Thermodynamics of Fluids Under Flow. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0199-1.
Der volle Inhalt der QuelleBuchteile zum Thema "Flow of immiscible fluids"
Spanos, T. J. T., und Norman Udey. „Immiscible Fluid Flow in Porous Media“. In The Physics of Composite and Porous Media, 93–132. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781351228329-5.
Der volle Inhalt der QuelleRaje, Ankush, und M. Devakar. „MHD Flow and Heat Transfer of Immiscible Micropolar and Newtonian Fluids Through a Pipe: A Numerical Approach“. In Numerical Heat Transfer and Fluid Flow, 55–64. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1903-7_8.
Der volle Inhalt der QuelleDiBenedetto, E. „The Flow of Two Immiscible Fluids through a Porous Medium Regularity of the Saturation“. In Theory and Applications of Liquid Crystals, 123–41. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4613-8743-5_7.
Der volle Inhalt der QuelleNatsui, Shungo, Ryota Nashimoto, Tatsuya Kikuchi und Ryosuke O. Suzuki. „SPH Analysis of Interfacial Flow of the two Immiscible Melts“. In Advances in Molten Slags, Fluxes, and Salts, 589–96. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119333197.ch63.
Der volle Inhalt der QuelleRaje, Ankush, und M. Devakar. „Unsteady Magnetohydrodynamic Flow of Two Immiscible Fluids Through a Pipe in Presence of Heat Transfer“. In Advances in Intelligent Systems and Computing, 287–97. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9953-8_25.
Der volle Inhalt der QuelleNatsui, Shungo, Ryota Nashimoto, Tatsuya Kikuchi und Ryosuke O. Suzuki. „SPH Analysis of Interfacial Flow of the Two Immiscible Melts“. In Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016, 589–96. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48769-4_63.
Der volle Inhalt der QuelleScholle, Markus, Marcel Mellmann, Philip H. Gaskell, Lena Westerkamp und Florian Marner. „Multilayer Modelling of Lubricated Contacts: A New Approach Based on a Potential Field Description“. In Springer Tracts in Mechanical Engineering, 359–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60124-9_16.
Der volle Inhalt der QuelleAzuma, H., S. Yoshihara, M. Ohnishi und T. Doi. „Upper Layer Flow Phenomena in Two Immiscible Liquid Layers Subject to a Horizontal Temperature Gradient“. In Microgravity Fluid Mechanics, 205–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-50091-6_22.
Der volle Inhalt der QuelleLaziz, Afiq Mohd, und Ku Zilati Ku Shaari. „Effect of Flow Regime on Total Interfacial Area of Two Immiscible Fluids in Microchannel Reactor Using VOF Model“. In Advances in Material Sciences and Engineering, 585–97. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8297-0_61.
Der volle Inhalt der QuelleSethi, Rajandrea, und Antonio Di Molfetta. „Transport of Immiscible Fluids“. In Groundwater Engineering, 249–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20516-4_14.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Flow of immiscible fluids"
Lee, Y.-H., J. Azaiez und I. D. Gates. „Dynamics of Immiscible Radial Flow Displacements of Dilatant Fluids in Porous Media“. In The 4th World Congress on Momentum, Heat and Mass Transfer. Avestia Publishing, 2019. http://dx.doi.org/10.11159/enfht19.136.
Der volle Inhalt der QuelleJibben, Z., J. Velechovsky, T. Masser und M. Francois. „Surface Tension Capability Within an Adaptively Refined Compressible Flow Code“. In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69451.
Der volle Inhalt der QuelleSherlock, Donald H., Jason McKenna und Brian J. Evans. „Seismic physical modelling of immiscible fluid flow“. In SEG Technical Program Expanded Abstracts 2000. Society of Exploration Geophysicists, 2000. http://dx.doi.org/10.1190/1.1815717.
Der volle Inhalt der QuelleBakhtiyarov, Sayavur I., und Dennis A. Siginer. „A NOTE ON THE LAMINAR CORE-ANNULAR FLOW OF TWO IMMISCIBLE FLUIDS IN A HORIZONTAL TUBE“. In International Symposium on Liquid-Liquid Two Phase Flow and Transport Phenomena. Connecticut: Begellhouse, 1997. http://dx.doi.org/10.1615/ichmt.1997.intsymliqtwophaseflowtranspphen.110.
Der volle Inhalt der QuelleCrandall, Dustin, Goodarz Ahmadi und Duane H. Smith. „Modeling of Immiscible, Two-Phase Flows in a Natural Rock Fracture“. In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78138.
Der volle Inhalt der QuelleHANYGA, A. „DYNAMICS OF IMMISCIBLE TWO-PHASE FLUID RESERVOIR FLOW“. In Theoretical and Computational Acoustics 2003 - The Sixth International Conference (ICTCA). WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702609_0014.
Der volle Inhalt der QuelleSivakami, L., und A. Govindarajan. „Unsteady MHD flow of two immiscible fluids under chemical reaction in a horizontal channel“. In THE 11TH NATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND APPLICATIONS. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5112342.
Der volle Inhalt der QuelleDankovic, Tatjana, Gareth Hatch und Alan Feinerman. „Fabrication of Plastic Micro-Channels for Microfluidics Solvent Extraction“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53526.
Der volle Inhalt der QuelleSmith, Duane, Goodarz Ahmadi, Chuang Ji, Grant Bromhal und Martin V. Ferer. „Experimental and Numerical Study of Gas-Liquid Displacements in Flow Cells, With Application to Carbon Dioxide Sequestration in Brine Fields“. In ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31296.
Der volle Inhalt der QuelleTanaka, M., T. Ohta und Y. Hagiwara. „Motion of a Thrombus in Blood Flow Through a Stenosed Vessel“. In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37391.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Flow of immiscible fluids"
Ottino, J. M. Mixing of immiscible fluids in chaotic flows and related issues. Office of Scientific and Technical Information (OSTI), März 1993. http://dx.doi.org/10.2172/6782764.
Der volle Inhalt der QuelleChen, G., S. P. Neuman und M. Taniguchi. An overview of instability and fingering during immiscible fluid flow in porous and fractured media. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/93758.
Der volle Inhalt der QuelleOttino, J. M. Mixing of immiscible fluids in chaotic flows and related issues. Progress report, June 1, 1992--May 31, 1993. Office of Scientific and Technical Information (OSTI), März 1993. http://dx.doi.org/10.2172/10146070.
Der volle Inhalt der QuelleTao, Rongjia. Electro-Rheology Fluids and Liquid Fuel Flow. Fort Belvoir, VA: Defense Technical Information Center, Juni 1992. http://dx.doi.org/10.21236/ada252950.
Der volle Inhalt der QuelleTao, Rongjia, Narendra K. Jaggi und Robert N. Zitter. Electro-Rheology Fluids and Liquid Fuel Flow. Fort Belvoir, VA: Defense Technical Information Center, Juni 1991. http://dx.doi.org/10.21236/ada238600.
Der volle Inhalt der QuelleTorczynski, J. R., T. J. O`Hern, D. R. Adkins, N. B. Jackson und K. A. Shollenberger. Advanced tomographic flow diagnostics for opaque multiphase fluids. Office of Scientific and Technical Information (OSTI), Mai 1997. http://dx.doi.org/10.2172/481578.
Der volle Inhalt der QuelleCampbell, Bryan T., und Roger L. Davis. Quasi-2D Unsteady Flow Procedure for Real Fluids (PREPRINT). Fort Belvoir, VA: Defense Technical Information Center, Mai 2006. http://dx.doi.org/10.21236/ada450906.
Der volle Inhalt der QuelleKraynik, A., A. Geller und J. Glick. Gelled propellant flow: Boundary layer theory for power-law fluids in a converging planar channel. Office of Scientific and Technical Information (OSTI), Oktober 1989. http://dx.doi.org/10.2172/5647885.
Der volle Inhalt der QuelleKadioglu, Samet Y., Ray Berry und Richard Martineau. A Well-Posed Two Phase Flow Model and its Numerical Solutions for Reactor Thermal-Fluids Analysis. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1313939.
Der volle Inhalt der QuelleHickmott, Donald Degarmo. SIMULTANEOUS REAL-TIME MEASUREMENT OF COMPOSITION, FLOW, ATTENUATION, DENSITY, AND PIPE-WALL THICKNESS IN MULTIPHASE FLUIDS. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1569567.
Der volle Inhalt der Quelle