Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Flood Storage Capacity“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Flood Storage Capacity" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Flood Storage Capacity"
Gruberts, Dāvis, und Kristīne Vilcāne. „Floodwater storage capacity of the Middle Daugava floodplain“. Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 2 (17.06.2015): 112. http://dx.doi.org/10.17770/etr2015vol2.251.
Der volle Inhalt der QuelleIdowu und Zhou. „Performance Evaluation of a Potential Component of an Early Flood Warning System—A Case Study of the 2012 Flood, Lower Niger River Basin, Nigeria“. Remote Sensing 11, Nr. 17 (21.08.2019): 1970. http://dx.doi.org/10.3390/rs11171970.
Der volle Inhalt der QuelleLiu, Yizhuang, Shu-Qing Yang, Changbo Jiang, Muttucumaru Sivakumar, Keith Enever, Yuannan Long, Bin Deng, Usman Khalil und Lingshi Yin. „Flood Mitigation Using an Innovative Flood Control Scheme in a Large Lake: Dongting Lake, China“. Applied Sciences 9, Nr. 12 (17.06.2019): 2465. http://dx.doi.org/10.3390/app9122465.
Der volle Inhalt der QuelleTong, Bingxing, Zhijia Li, Cheng Yao, Jingfeng Wang und Yingchun Huang. „Derivation of the Spatial Distribution of Free Water Storage Capacity Based on Topographic Index“. Water 10, Nr. 10 (10.10.2018): 1407. http://dx.doi.org/10.3390/w10101407.
Der volle Inhalt der QuelleStruthers, I., und M. Sivapalan. „A conceptual investigation of process controls upon flood frequency: role of thresholds“. Hydrology and Earth System Sciences 11, Nr. 4 (06.07.2007): 1405–16. http://dx.doi.org/10.5194/hess-11-1405-2007.
Der volle Inhalt der QuelleStruthers, I., und M. Sivapalan. „Theoretical investigation of process controls upon flood frequency: role of thresholds“. Hydrology and Earth System Sciences Discussions 3, Nr. 5 (26.10.2006): 3279–319. http://dx.doi.org/10.5194/hessd-3-3279-2006.
Der volle Inhalt der QuelleMaxwell, Connie M., Saeed P. Langarudi und Alexander G. Fernald. „Simulating a Watershed-Scale Strategy to Mitigate Drought, Flooding, and Sediment Transport in Drylands“. Systems 7, Nr. 4 (28.11.2019): 53. http://dx.doi.org/10.3390/systems7040053.
Der volle Inhalt der QuelleGioia, A., V. Iacobellis, S. Manfreda und M. Fiorentino. „Influence of infiltration and soil storage capacity on the skewness of the annual maximum flood peaks in a theoretically derived distribution“. Hydrology and Earth System Sciences 16, Nr. 3 (22.03.2012): 937–51. http://dx.doi.org/10.5194/hess-16-937-2012.
Der volle Inhalt der QuelleLusinia, Shary, und Nugraha Rahmansyah. „Analysis of the Level of Vulnerability to Floods using the Method of Simple Moving Average (A Case Study of the City of Padang)“. Jurnal KomtekInfo 7, Nr. 3 (01.09.2020): 242–46. http://dx.doi.org/10.35134/komtekinfo.v7i3.84.
Der volle Inhalt der QuelleLiang, Yulian, Yongli Wang, Yinjun Zhao, Yuan Lu und Xiaoying Liu. „Analysis and Projection of Flood Hazards over China“. Water 11, Nr. 5 (16.05.2019): 1022. http://dx.doi.org/10.3390/w11051022.
Der volle Inhalt der QuelleDissertationen zum Thema "Flood Storage Capacity"
Rivera, Ramirez Hector David. „Flood control reservoir operations for conditions of limited storage capacity“. Texas A&M University, 2004. http://hdl.handle.net/1969.1/1464.
Der volle Inhalt der QuelleAsp, Karl. „Water Storage Capacity and Flow Dynamics in a Papyrus Wetland, Uganda : Implications for Studies of Water Treatment Effects“. Thesis, University of Kalmar, School of Pure and Applied Natural Sciences, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:hik:diva-1857.
Der volle Inhalt der QuelleHydrological investigations were performed in the Lubigi papyrus wetland in suburban Kampala, Uganda, impacted by human encroachment for settlement and agriculture. The first aim was to investigate the water flow variations and the dampening effect of the wetland. A second aim was to estimate the effective wetland volume and area, and relate this to the wetland function for treatment of the suburban runoff. A study site with well defined inflows and outflows was chosen, and three transects were cut through the papyrus to be able to study the water movement beneath the floating papyrus mat. Water flow measurements showed a flow dampening effect of the wetland on peak flows after rains, and the water balance revealed that the precipitation on the wetland was only 4 % of the inflow during the study. The tracer added at the inlet was rapidly detected downstream in the canal in the middle of the wetland, indicating a strong short-circuiting effect of the human made canal. At the outlet the tracer concentration was lower than the detection limit, suggesting a good mixing in the downstream part of the wetland, which was also supported by other water quality measurements in the transects. Ammonium-N concentrations at the inflow and outflow indicated a net export of ammonium-N, but the observed flow variations suggest that intensive water sampling campaigns are necessary for a proper evaluation of the water treatment function. The calculated effective volume and area amounted to 74 and 46 %, respectively, of the theoretically estimated, with a corresponding loss in the flow dampening and water treatment function of the wetland.
Rapporten är ett resultat av ett Minor Field Study stipendium finansierad av Sida.
Kim, Tae Jin. „Modeling Reallocation of Reservoir Storage Capacity Between Flood Control and Conservation Purposes“. 2009. http://hdl.handle.net/1969.1/ETD-TAMU-2009-05-398.
Der volle Inhalt der QuelleBuchteile zum Thema "Flood Storage Capacity"
„flood storage capacity“. In Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik, 541. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41714-6_61784.
Der volle Inhalt der Quelle„2147 flood storage capacity [n]“. In Encyclopedic Dictionary of Landscape and Urban Planning, 348. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-76435-9_4836.
Der volle Inhalt der QuelleBACHU, S., und J. SHAW. „CO2 storage in oil and gas reservoirs in western CanadaEffect of aquifers, potential for CO2-flood enhanced oil recovery and practical capacity“. In Greenhouse Gas Control Technologies 7, 361–69. Elsevier, 2005. http://dx.doi.org/10.1016/b978-008044704-9/50037-9.
Der volle Inhalt der QuelleMurtaza, Ghulam, Muhammad Saqib, Saifullah, Muhammad Zia-ur-Rehman, Muhammad Naveed und Abdul Ghafoor. „Mitigation of Climate Change Impacts Through Treatment and Management of Low Quality Water for Irrigation in Pakistan“. In Environmental and Agricultural Informatics, 1181–98. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-5225-9621-9.ch053.
Der volle Inhalt der QuelleMurtaza, Ghulam, Muhammad Saqib, Saifullah, Muhammad Zia-ur Rehman, Muhammad Naveed und Abdul Ghafoor. „Mitigation of Climate Change Impacts through Treatment and Management of Low Quality Water for Irrigation in Pakistan“. In Reconsidering the Impact of Climate Change on Global Water Supply, Use, and Management, 84–101. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1046-8.ch006.
Der volle Inhalt der QuelleGraf, William L. „Engineering Works“. In Plutonium and the Rio Grande. Oxford University Press, 1995. http://dx.doi.org/10.1093/oso/9780195089332.003.0010.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Flood Storage Capacity"
Paseka, Stanislav. „ASSESSING THE IMPACT OF FLOOD WAVE UNCERTAINTY TO RESERVOIR FLOOD STORAGE CAPACITY“. In 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. STEF92 Technology, 2019. http://dx.doi.org/10.5593/sgem2019/3.1/s12.007.
Der volle Inhalt der QuelleZheng Xiaoyan, Wang WenKe, Duan Lei, Yang Feng und Zhang Jing. „Application of GMS in numerical simulation of valley flood storage capacity“. In 2011 International Symposium on Water Resource and Environmental Protection (ISWREP). IEEE, 2011. http://dx.doi.org/10.1109/iswrep.2011.5893176.
Der volle Inhalt der QuelleTamura, Masaaki, Takuji Nozawa und Kaoru Kariya. „Study on Evaluation of Necessary Increase in Pump and Runoff Storage Capacity in the Existing Pipe Network for Flood Control Using Runoff Simulation“. In Ninth International Conference on Urban Drainage (9ICUD). Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40644(2002)283.
Der volle Inhalt der QuelleSpringer, Zachary, und M. Keith Sharp. „The Potential of Night Sky Radiation for Humidity Control“. In ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/es2015-49138.
Der volle Inhalt der QuelleAdegun, Adedamola, und Femi Rufai. „The Commercial Potentials of Underground Natural Gas Storage in Nigeria“. In SPE Nigeria Annual International Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/207149-ms.
Der volle Inhalt der QuelleAbdo, Peter, B. Phuoc Huynh, Ali Braytee und Rahil Taghipour. „Effect of Phase Change Material on Temperature in a Room Fitted With a Windcatcher“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10553.
Der volle Inhalt der QuelleBarbour, Jason P., und Douglas C. Hittle. „Modeling Phase Change Materials With Conduction Transfer Functions for Passive Solar Applications“. In ASME 2003 International Solar Energy Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/isec2003-44073.
Der volle Inhalt der QuelleAlissa, Husam A., Kourosh Nemati, Bahgat Sammakia, Alfonso Ortega, David King, Mark Seymour und Russell Tipton. „Steady State and Transient Comparison of Perimeter and Row-Based Cooling Employing Controlled Cooling Curves“. In ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ipack2015-48237.
Der volle Inhalt der Quelle