Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Flammes turbulentes en expansion“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Flammes turbulentes en expansion" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Flammes turbulentes en expansion"
CRETA, F., und M. MATALON. „Propagation of wrinkled turbulent flames in the context of hydrodynamic theory“. Journal of Fluid Mechanics 680 (01.06.2011): 225–64. http://dx.doi.org/10.1017/jfm.2011.157.
Der volle Inhalt der QuelleRobin, Vincent, Arnaud Mura und Michel Champion. „Direct and indirect thermal expansion effects in turbulent premixed flames“. Journal of Fluid Mechanics 689 (03.11.2011): 149–82. http://dx.doi.org/10.1017/jfm.2011.409.
Der volle Inhalt der QuelleChakraborty, Nilanjan. „Influence of Thermal Expansion on Fluid Dynamics of Turbulent Premixed Combustion and Its Modelling Implications“. Flow, Turbulence and Combustion 106, Nr. 3 (März 2021): 753–848. http://dx.doi.org/10.1007/s10494-020-00237-8.
Der volle Inhalt der QuelleMassey, James C., Ivan Langella und Nedunchezhian Swaminathan. „A scaling law for the recirculation zone length behind a bluff body in reacting flows“. Journal of Fluid Mechanics 875 (22.07.2019): 699–724. http://dx.doi.org/10.1017/jfm.2019.475.
Der volle Inhalt der QuelleZurbach, Stephan, Danièle Garreton, Mohamed Kanniche und Sébastien Candel. „Calcul de flammes turbulentes non prémélangées à l'aide d'une approche probabiliste et d'une cinétique chimique réduite“. Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy 327, Nr. 10 (September 1999): 997–1004. http://dx.doi.org/10.1016/s1287-4620(00)87010-6.
Der volle Inhalt der QuelleSchmidt-Laine, C., und A. Ben Taïb. „Sur un algorithme en volumes finis non structurés pour la simulation des flammes turbulentes en chimie infiniment rapide“. ESAIM: Mathematical Modelling and Numerical Analysis 32, Nr. 6 (1998): 681–97. http://dx.doi.org/10.1051/m2an/1998320606811.
Der volle Inhalt der QuelleSabelnikov, V. A., A. N. Lipatnikov, S. Nishiki und T. Hasegawa. „Investigation of the influence of combustion-induced thermal expansion on two-point turbulence statistics using conditioned structure functions“. Journal of Fluid Mechanics 867 (20.03.2019): 45–76. http://dx.doi.org/10.1017/jfm.2019.128.
Der volle Inhalt der QuelleChakraborty, Nilanjan, Sanjeev Kumar Ghai und Hong G. Im. „Anisotropy of Reynolds Stresses and Their Dissipation Rates in Lean H2-Air Premixed Flames in Different Combustion Regimes“. Energies 17, Nr. 21 (25.10.2024): 5325. http://dx.doi.org/10.3390/en17215325.
Der volle Inhalt der QuelleJaseliūnaitė, Justina, Mantas Povilaitis und Ieva Stučinskaitė. „RANS- and TFC-Based Simulation of Turbulent Combustion in a Small-Scale Venting Chamber“. Energies 14, Nr. 18 (10.09.2021): 5710. http://dx.doi.org/10.3390/en14185710.
Der volle Inhalt der QuelleRobin, Vincent, Arnaud Mura, Michel Champion und Tatsuya Hasegawa. „Modeling the Effects of Thermal Expansion on Scalar Turbulent Fluxes in Turbulent Premixed Flames“. Combustion Science and Technology 182, Nr. 4-6 (10.06.2010): 449–64. http://dx.doi.org/10.1080/00102200903462896.
Der volle Inhalt der QuelleDissertationen zum Thema "Flammes turbulentes en expansion"
Galmiche, Bénédicte. „Caractérisation expérimentale des flammes laminaires et turbulentes en expansion“. Phd thesis, Université d'Orléans, 2014. http://tel.archives-ouvertes.fr/tel-01069403.
Der volle Inhalt der QuelleAlbin, Eric. „Contribution à la modélisation numérique des flammes turbulentes : comparaison DNS-EEM-Expériences“. Phd thesis, INSA de Rouen, 2010. http://tel.archives-ouvertes.fr/tel-00557908.
Der volle Inhalt der QuelleDetomaso, Nicola. „Simulation aux grandes échelles de la combustion à volume constant : modélisation numérique des flammes turbulentes en expansion dans les mélanges non homogènes“. Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP034.
Der volle Inhalt der QuelleClassical gas turbine thermodynamic cycle has undergone no major changes over the last decades and the most important efficiency improvements have been obtained reducing thermal losses and raising the overall pressure ratio and peak temperature. Despite the efforts in research and development aiming at enhancing especially combustion chambers performances, current technologies may fall short of complying the increasingly stringent environmental constraints. Consequently, a technological breakthrough is essential to shape the future of thermal engines. Pressure Gain Combustion (PGC) emerges as one of the most promising solutions, introducing new thermodynamic cycles where, unlike the Brayton cycle, pressure increases across the combustion process. This can lead to a lower entropy raise, benefiting the overall cycle efficiency.Several PGC concepts are currently studied by the combustion community, ranging from deflagration, such as constant volume combustion (CVC), to detonation, including Rotating Detonation Combustion (RDC) and Pulse Detonation Engine (PDE). Numerical simulation is used to assess the performance of these systems as well as better understand their behavior for improvements before performing experimental tests. Large Eddy Simulation (LES) has assumed an increasingly significant role in combustion science thanks to its high capability in capturing reacting flows. However, with the increasing complexity of combustion systems, advanced physical models are crucial to ensure predictive simulations.In this work, constant volume combustion technology is assessed and the main numerical challenges posed by these combustion systems are scrutinized. Ignition, high pressure combustion, dilution, flame-turbulence interaction, flame-stretch effects, heat fluxes are just part of the physics that CVC systems encompass and their interplay leads to complex physical phenomena that have to be modeled. The numerical models developed in this work are primarily scrutinized in simple test cases and then applied in complete 3D LES framework to compute the constant volume combustion chamber CV2, operated at Pprime laboratory (Poitiers, France).First, novel boundary conditions, based on NSCBC formalism, are derived from nozzle theory to mimic intake and exhaust valve effects. With this strategy no moving part is introduced in the LES and the flow properties are imposed both at the inlet and the outlet of these valves-controlled systems.Second, a two-step chemistry for propane/air mixtures is derived for multiple pressure, temperature and composition of fresh gases. The chemical kinetics is optimized for different concentration of dilutants, composed by burnt products such as carbon dioxide and water vapor. Like piston engines, constant volume chambers operate cyclically and each combustion event is affected by the residual burnt gases coming from previous cycles. For this reason, a numerical model to detail the local composition of diluted flammable mixtures is proposed to provide all the fresh gas information required by the kinetics and the combustion model. Based on a generalization of the classical Thickened Flame (TF) model, a new combustion model, the Stretched-Thickened Flame (S-TF) model, is developed to overcome the TF model limitations in predicting stretch effects on the laminar flame burning velocity. This is crucial to well capture transient events of propagating flames, which are fundamental in CVCs.Eventually, the ignition modeling is assessed and the Energy Deposition model is coupled with the S-TF model by tracking the kernel size in time.The models developed in this thesis are then applied to the CV2 chamber, highlighting their positive impact in capturing the unsteady physics involved in such systems
Samson, Erwann. „Etude expérimentale de la propagation de flammes en expansion dans un milieu à richesse stratifiée“. Rouen, INSA, 2002. http://www.theses.fr/2002ISAM0008.
Der volle Inhalt der QuelleVillenave, Nicolas. „Étude expérimentale des propriétés fondamentales de la combustion de l'hydrogène pour des applications de propulsion“. Electronic Thesis or Diss., Orléans, 2025. http://www.theses.fr/2025ORLE1001.
Der volle Inhalt der QuelleIn order to reach carbon neutrality by 2050, the European Union is considering hydrogen as a promising energy carrier to reduce reliance on fossil fuels. While fuel cells and electric vehicles already play an important role in decarbonizing the transport sector, hydrogen is also seen as an alternative to conventional fuels for heavy-duty vehicles. Yet, a number of challenges linked to the physico-chemical properties of lean hydrogen combustion are still under investigation: abnormal combustion phenomena, production of nitrogen oxides,instabilities due to thermodiffusive effects, to state a few. This thesis contributes to the understanding of the auto-ignition process in lean hydrogen/air mixtures, as well as the propagation of laminar and turbulent premixed flames. First, measurements of hydrogen/air and hydrogen/air/nitrogen oxides ignition delay times are carried out using a rapid compression machine, to update and validate a kinetic mechanism under spark ignition engine-like conditions. Second, outwardly propagating spherical premixed laminar flames were studiedin a constant-volume combustion chamber, varying the initial temperature and steam dilution, and considering the intrinsic instabilities linked to the physico-chemical properties of hydrogen namely thermodiffusive,hydrodynamic and gravity-related instabilities. Then, expanding premixed turbulent flames are characterized by the generation of a homogeneous and isotropic turbulence zone within a spherical chamber. A parametric study is conducted by varying turbulent intensity, initial pressure and equivalence ratio. Finally, a turbulent correlation is proposed to describe the turbulent propagation of such flames, for use in numerical models
Endouard, Charles. „Etude expérimentale de la dynamique des flammes de prémélange isooctane/air en expansion laminaire et turbulente fortement diluées“. Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2043/document.
Der volle Inhalt der QuelleFor several years, “downsizing” is used by car manufacturers to develop new spark ignition engines. This method based on the reduction of engine size combined with an increase of intake pressure (turbocharger) is well known to reduce pollutant emissions and increase efficiency. New thermodynamic, turbulent and dilution conditions could be used with these new engines but they can bring new issues like unusual combustion or cyclic variability. This thesis took place to improve the understanding of premixed expanding isooctane/air flames behavior under downsized engine-like conditions. As a first step, this work is conducted under laminar conditions to extract laminar burning velocities and Markstein lengths of the different mixtures, especially under high dilution. New correlations are then developed to answer the needs of numerical models. A new optical dispositive is then used to improve the visualization of turbulent expanding flames. A corrective coefficient correlation is proposed to avoid the overestimated values of turbulent burning speed generated by Schlieren visualization with such turbulent flames. A deep survey of starting conditions (temperature, pressure, turbulence, dissipative characteristics of air/fuel mixtures) influence is done to investigate the effect of each parameters on the development and the propagation of the turbulent flame. Finally, the effect of a coupled rise of initial temperature and pressure, similar to an engine compression, is studied to better understand the changes of flame behavior under more realistic spark-ignition engine conditions
Larabi, Hakim. „Vers la modélisation multi-composants des flammes de spray Formalism for spatially averaged consumption speed considering spherically expanding flame configuration“. Thesis, Normandie, 2019. http://www.theses.fr/2019NORMIR20.
Der volle Inhalt der QuelleUntil recently, automotive and aeronautical engines were designed to operate with fossil fuels. To better meet the economic and environmental challenges of the modern world and of the energy transition, alternative fuels are developed and tested. They are used to replaceconventional fuels or as a blend to achieve the desired thermo-chemical properties. However, the impact of these new fuels on the performance of combustion chambers remains partially known. From this perspective, high-fidelity simulations of turbulent combustion of alternative fuels can be reached only if a detailed multi-component description of the liquid and gas mixtures is considered. The objective of this thesis is to contribute to the unsteady modeling of spray flames where complex multi-component phenomena occur : differential evaporation, multi-species mixing, gas phase chemical reactions. To this aim, the fuel is treated as a set of multi-component mixtures, which may be different in the liquid and gas phases depending on the required accuracy. Different models for the aforementioned phenomena are available in the literature, and the main challenge is the coupling of these different approaches and their validation in realistic and complex conditions. First, the chosen multi-component approach for the gas phase, based on the transport of a large number of species and on finite-rate chemistry, is validated for premixed flames. The expanding spherical flame configuration was chosen to study the flame consumption speed, which is an important parameter in combustion. In collaboration with the experimental team at the CORIA laboratory, a flame consumption speed formalism is established for non-confined and confined spherical expanding flames. This formalism enables to have a precise comparison of experimental and numerical results for methane/air and iso-octane/air flames and to validate the gas phase models. Second, we focused on the physical process of evaporation. The multi-component evaporation model of Abramzon-Sirignano is implemented in the YALES2 flow solver based on a point-particle approach for the fuel droplets. This model is adapted to enable the description of single- or multi-component evaporation with or without differential evaporation. As such, the model is capable of dealing with various fuel surrogates. The evaporation model is compared to the Spalding model and validated on experimental results of Chauveau et al. [33], Nomura et al. [158], Ghassemi et al. [82] and Daïf et al. [47] for a single component droplet and then two-component isolated droplet with and without convection. Finally, the 3D Large-Eddy Simulation (LES) of a complex n-heptane/air spray flame is conducted with analytical reduced chemistry (ARC, [169, 205]). This flame was experimentally studied at the CORIA laboratory with high fidelity diagnostics to characterize the flame structure and provide quantitative data such as gas-phase velocity and temperature as well as local droplet size and velocity distributions. Comparison with the experimental data [225] and with the simulations carried out within the framework of the 6th Workshop on Turbulent Combustion of Spray, shows that the current LES accurately reproduce the gas flow and properties of the dispersed phase. This configuration paves the way for the simulation of even more complex spray flames with multi-component fuels
Belliard, Angélique. „Etude expérimentale de l'émission sonore des flammes turbulentes“. Aix-Marseille 1, 1997. http://www.theses.fr/1997AIX11009.
Der volle Inhalt der QuelleGa, Bui Van. „Contribution à l'étude des flammes pariétales turbulentes de diffusion“. Ecully, Ecole centrale de Lyon, 1989. http://www.theses.fr/1989ECDL0011.
Der volle Inhalt der QuelleDelhaye, Benoït. „Etude des flammes de diffusion turbulentes : simulations directes et modélisation“. Châtenay-Malabry, Ecole centrale de Paris, 1994. http://www.theses.fr/1994ECAP0396.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Flammes turbulentes en expansion"
Reddy, Mannedhar, und Ashoke De. „Numerical Investigation of Soot Formation in Turbulent Diffusion Flames Using Moss-Brookes Model“. In ASME 2014 Gas Turbine India Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gtindia2014-8233.
Der volle Inhalt der QuelleBoschek, E., P. Griebel und P. Jansohn. „Fuel Variability Effects on Turbulent, Lean Premixed Flames at High Pressures“. In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27496.
Der volle Inhalt der QuelleOhta, Takashi, Yuta Onishi und Yasuyuki Sakai. „Mechanism of Wall Turbulence Modulation With Premixed Hydrogen Combustion“. In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-5075.
Der volle Inhalt der QuelleDinesh, Ranga, Karl Jenkins und Michael Kirkpatrick. „Simulations of Unsteady Oscillations in Turbulent Non-Premixed Swirling Flames“. In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59387.
Der volle Inhalt der QuelleKing, Phil T., Gordon E. Andrews, Myeong N. Kim, Mohamed Pourkashanian und Andy C. McIntosh. „CFD Prediction and Design of Low NOx Radial Swirler Systems“. In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-60107.
Der volle Inhalt der QuelleKing, Phil T., Nick H. Escott, Gordon E. Andrews, Mohammed M. Pourkashanian und Andrew C. McIntosh. „CFD Predictions of Low NOx Radial Swirlers With Vane Passage Fuel Injection With Comparison With Internal Gas Analysis Flame Composition“. In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51138.
Der volle Inhalt der QuelleCordier, M., A. Vandel, B. Renou, G. Cabot, M. A. Boukhalfa und M. Cazalens. „Spark Ignition of Confined Swirled Flames: Experimental and Numerical Investigation“. In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-94384.
Der volle Inhalt der QuelleSattelmayer, T., W. Polifke, D. Winkler und K. Döbbeling. „NOx-Abatement Potential of Lean-Premixed GT-Combustors“. In ASME 1996 Turbo Asia Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-ta-021.
Der volle Inhalt der QuelleKamal, M. Mustafa, Christophe Duwig, Saravanan Balusamy, Ruigang Zhou und Simone Hochgreb. „Proper Orthogonal Decomposition Analysis of Non-Swirling Turbulent Stratified and Premixed Methane/Air Flames“. In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-26222.
Der volle Inhalt der QuelleBriones, Alejandro M., Balu Sekar und Timothy Erdmann. „Effect of Centrifugal Force on Conventional and Alternative Fuel Surrogate Turbulent Premixed Flames“. In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-27327.
Der volle Inhalt der Quelle