Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Fixed-matrix.

Zeitschriftenartikel zum Thema „Fixed-matrix“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Fixed-matrix" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Marcos, Fernando, und Edgar Pereira. „A fixed point method to compute solvents of matrix polynomials“. Mathematica Bohemica 135, Nr. 4 (2010): 355–62. http://dx.doi.org/10.21136/mb.2010.140826.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Belton, Alexander, Dominique Guillot, Apoorva Khare und Mihai Putinar. „Matrix positivity preservers in fixed dimension“. Comptes Rendus Mathematique 354, Nr. 2 (Februar 2016): 143–48. http://dx.doi.org/10.1016/j.crma.2015.11.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kang, Ming-chang. „Fixed fields of triangular matrix groups“. Journal of Algebra 302, Nr. 2 (August 2006): 845–47. http://dx.doi.org/10.1016/j.jalgebra.2006.03.037.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Livaditis, Gus J. „The matrix impression system for fixed prosthodontics“. Journal of Prosthetic Dentistry 79, Nr. 2 (Februar 1998): 208–16. http://dx.doi.org/10.1016/s0022-3913(98)70217-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Baragaña, Itziar, und Alicia Roca. „Fixed rank perturbations of regular matrix pencils“. Linear Algebra and its Applications 589 (März 2020): 201–21. http://dx.doi.org/10.1016/j.laa.2019.12.022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Belton, Alexander, Dominique Guillot, Apoorva Khare und Mihai Putinar. „Matrix positivity preservers in fixed dimension. I“. Advances in Mathematics 298 (August 2016): 325–68. http://dx.doi.org/10.1016/j.aim.2016.04.016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dmytryshyn, Andrii, und Froilán M. Dopico. „Generic skew-symmetric matrix polynomials with fixed rank and fixed odd grade“. Linear Algebra and its Applications 536 (Januar 2018): 1–18. http://dx.doi.org/10.1016/j.laa.2017.09.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Shanta, S., S. N. Kaul, V. Jayshree, K. K. Singh und A. Juwarkar. „Studies related to support matrix for the fixed film fixed bed reactor“. Journal of Environmental Science and Health . Part A: Environmental Science and Engineering and Toxicology 29, Nr. 1 (Januar 1994): 149–70. http://dx.doi.org/10.1080/10934529409376027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Filinov, V. S. „Analytical contradictions of the fixed-node density matrix“. High Temperature 52, Nr. 5 (September 2014): 615–20. http://dx.doi.org/10.1134/s0018151x14040105.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Krishnamoorthy, T. M., S. N. Joshi, G. R. Doshi und R. N. Nair. „Desorption Kinetics of Radionuclides Fixed in Cement Matrix“. Nuclear Technology 104, Nr. 3 (Dezember 1993): 351–57. http://dx.doi.org/10.13182/nt93-a34896.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Handelman, David. „Fixed Points of Two-Sided Fractional Matrix Transformations“. Fixed Point Theory and Applications 2007 (2007): 1–70. http://dx.doi.org/10.1155/2007/41930.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Yang, Zuyuan, Yifei Hu, Naiyao Liang und Jun Lv. „Nonnegative Matrix Factorization with Fixed L2-Norm Constraint“. Circuits, Systems, and Signal Processing 38, Nr. 7 (01.01.2019): 3211–26. http://dx.doi.org/10.1007/s00034-018-1012-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Weston, Mark. „A fixed-parameter tractable algorithm for matrix domination“. Information Processing Letters 90, Nr. 5 (Juni 2004): 267–72. http://dx.doi.org/10.1016/j.ipl.2002.12.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Ioannides, A. A., und R. S. Mackintosh. „S-Matrix to potential inversion at fixed energy“. Nuclear Physics A 467, Nr. 3 (Juni 1987): 482–510. http://dx.doi.org/10.1016/0375-9474(87)90541-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Youssef, Pierre. „Extracting a basis with fixed block inside a matrix“. Linear Algebra and its Applications 469 (März 2015): 28–38. http://dx.doi.org/10.1016/j.laa.2014.11.016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Zhang, Rongmao, Liang Peng und Ruodu Wang. „Tests for covariance matrix with fixed or divergent dimension“. Annals of Statistics 41, Nr. 4 (August 2013): 2075–96. http://dx.doi.org/10.1214/13-aos1136.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Maio, M., und A. N. Schellekens. „Formula for fixed point resolution matrix of permutation orbifolds“. Nuclear Physics B 830, Nr. 1-2 (Mai 2010): 116–52. http://dx.doi.org/10.1016/j.nuclphysb.2009.12.022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Beginn, U., G. Zipp und M. Möller. „Functional Membranes Containing Ion-Selective Matrix-Fixed Supramolecular Channels“. Advanced Materials 12, Nr. 7 (April 2000): 510–13. http://dx.doi.org/10.1002/(sici)1521-4095(200004)12:7<510::aid-adma510>3.0.co;2-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Zitelli, G. L. „Random matrix models for datasets with fixed time horizons“. Quantitative Finance 20, Nr. 5 (22.01.2020): 769–81. http://dx.doi.org/10.1080/14697688.2020.1711962.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Mishra, Bamdev, Gilles Meyer, Silvère Bonnabel und Rodolphe Sepulchre. „Fixed-rank matrix factorizations and Riemannian low-rank optimization“. Computational Statistics 29, Nr. 3-4 (12.11.2013): 591–621. http://dx.doi.org/10.1007/s00180-013-0464-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Götze, Friedrich, und Mikhail Gordin. „Limit Correlation Functions for Fixed Trace Random Matrix Ensembles“. Communications in Mathematical Physics 281, Nr. 1 (09.05.2008): 203–29. http://dx.doi.org/10.1007/s00220-008-0484-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Jingjing, Peng, Liao Anping und Peng Zhenyun. „An iterative method to solve a nonlinear matrix equation“. Electronic Journal of Linear Algebra 31 (05.02.2016): 620–32. http://dx.doi.org/10.13001/1081-3810.2951.

Der volle Inhalt der Quelle
Annotation:
n this paper, an iterative method to solve one kind of nonlinear matrix equation is discussed. For each initial matrix with some conditions, the matrix sequences generated by the iterative method are shown to lie in a fixed open ball. The matrix sequences generated by the iterative method are shown to converge to the only solution of the nonlinear matrix equation in the fixed closed ball. In addition, the error estimate of the approximate solution in the fixed closed ball, and a numerical example to illustrate the convergence results are given.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Chacha, Chacha S. „Elegant Iterative Methods for Solving a Nonlinear Matrix Equation X-A* eX A=I“. Tanzania Journal of Science 47, Nr. 3 (14.08.2021): 1033–40. http://dx.doi.org/10.4314/tjs.v47i3.14.

Der volle Inhalt der Quelle
Annotation:
The nonlinear matrix equation was solved by Gao (2016) via standard fixed point method. In this paper, three more elegant iterative methods are proposed to find the approximate solution of the nonlinear matrix equation namely: Newton’s method; modified fixed point method and a combination of Newton’s method and fixed point method. The convergence of Newton’s method and modified fixed point method are derived. Comparative numerical experimental results indicate that the new developed algorithms have both less computational time and good convergence properties when compared to their respective standard algorithms. Keywords: Hermitian positive definite solution; nonlinear matrix equation; modified fixed point method; iterative method
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Ding, J., und N. H. Rhee. „A Nontrivial Solution to a Stochastic Matrix Equation“. East Asian Journal on Applied Mathematics 2, Nr. 4 (November 2012): 277–84. http://dx.doi.org/10.4208/eajam.150512.231012a.

Der volle Inhalt der Quelle
Annotation:
Abstract.If A is a nonsingular matrix such that its inverse is a stochastic matrix, the classic Brouwer fixed point theorem implies that the matrix equation AXA = XAX has a nontrivial solution. An explicit expression of this nontrivial solution is found via the mean ergodic theorem, and fixed point iteration is considered to find a nontrivial solution.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Beltaos, Elaine. „Fixed points and D-branes“. Publications de l'Institut Math?matique (Belgrade) 94, Nr. 108 (2013): 169–80. http://dx.doi.org/10.2298/pim1308169b.

Der volle Inhalt der Quelle
Annotation:
The affine Kac-Moody algebras give rise to rational conformal field theories (RCFTs) called the Wess-Zumino-Witten (WZW) models. An important component of an RCFT is its fusion ring, whose structure constants are given by the associated S-matrix. We apply a fixed point property possessed by the WZW models ("fixed point factorization") to calculate nonnegative integer matrix representations of the fusion ring, allowing for the calculation of D-brane charges in string theory.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Dan, Nian Hua, Shi Wei Xiao, Yang Hu und Wei Hua Dan. „Crosslinking Characteristics of an Genipin-Fixed Porcine Acellular Dermal Matrix“. Applied Mechanics and Materials 217-219 (November 2012): 969–74. http://dx.doi.org/10.4028/www.scientific.net/amm.217-219.969.

Der volle Inhalt der Quelle
Annotation:
The determination of aldehyde in genipin(GP) was carried out through solution silver mirror reaction and curpous oxide reaction. Influence of various dosage, pH, temperature and reaction time on shrinkage temperature of GP-crosslinked porcine acellular dermal matrix (GP-pADM) were investigated. The cytotoxicity and cell morphology of GP-pADM were observed. The results reveal that the existence of aldehyde is proved by silver mirror reaction and curpous oxide reaction. With increasing dosage of GP, shrinkage temperature of pADM increase. And with increasing pH, temperature and time, shrinkage temperature exhibit an early ascending trend and then decline slightly. Cytotoxicity of GP-pADM is 0 grade with great morphology, cell L929 could adhesive grow on the surface and in the pore of this material. The implications of all this are that GP is an ideal biological crosslinking agent for biomaterials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Chen, Wei, Yanfang Mo, Li Qiu und Pravin Varaiya. „Constrained (0,1)-matrix completion with a staircase of fixed zeros“. Linear Algebra and its Applications 510 (Dezember 2016): 171–85. http://dx.doi.org/10.1016/j.laa.2016.08.020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Ho, Ngoc-Diep, und Paul Van Dooren. „Non-negative matrix factorization with fixed row and column sums“. Linear Algebra and its Applications 429, Nr. 5-6 (September 2008): 1020–25. http://dx.doi.org/10.1016/j.laa.2007.02.026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Milovanović, E. I., M. K. Stojc̆ev, N. M. Novaković, I. Z̆ Milovanović und T. I. Tokić. „Matrix-vector multiplication on a fixed-size linear systolic array“. Computers & Mathematics with Applications 40, Nr. 10-11 (November 2000): 1189–203. http://dx.doi.org/10.1016/s0898-1221(00)00231-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Susilowati, Susilowati, Mansjur Nasir, Imam Mudjari und Thalca Hamid. „Expression of matrix metalloproteinase-8 gene in fixed orthodontic patients“. Dental Journal (Majalah Kedokteran Gigi) 44, Nr. 1 (01.03.2011): 54. http://dx.doi.org/10.20473/j.djmkg.v44.i1.p54-58.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Liu, Y. „Fixed rank solutions of the matrix equation with statistical applications“. International Journal of Computer Mathematics 86, Nr. 4 (April 2009): 684–92. http://dx.doi.org/10.1080/00207160701690268.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Cilingiroglu, U. „A purely capacitive synaptic matrix for fixed-weight neural networks“. IEEE Transactions on Circuits and Systems 38, Nr. 2 (1991): 210–17. http://dx.doi.org/10.1109/31.68299.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

APPLEBOIM, ELI. „FINITE TYPE INVARIANTS OF LINKS WITH A FIXED LINKING MATRIX“. Journal of Knot Theory and Its Ramifications 11, Nr. 07 (November 2002): 1017–41. http://dx.doi.org/10.1142/s0218216502002116.

Der volle Inhalt der Quelle
Annotation:
In this paper we introduce two theories of finite type invariants for framed links with a fixed linking matrix. We show that these theories are different from, but related to, the theory of Vassiliev invariants of knots and links. We will take special note of the case of zero linking matrix. i.e., zero-framed algebraically split links. We also study the corresponding spaces of "chord diagrams".
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Li, Chi-Kwong, Lucijan Plevnik und Peter Šemrl. „Preservers of matrix pairs with a fixed inner product value“. Operators and Matrices, Nr. 3 (2012): 433–64. http://dx.doi.org/10.7153/oam-06-29.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Cirac, J. I., D. Pérez-García, N. Schuch und F. Verstraete. „Matrix product density operators: Renormalization fixed points and boundary theories“. Annals of Physics 378 (März 2017): 100–149. http://dx.doi.org/10.1016/j.aop.2016.12.030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Ko, Lok Shun, und Thomas M. Quinn. „Matrix Fixed Charge Density Modulates Exudate Concentration during Cartilage Compression“. Biophysical Journal 104, Nr. 4 (Februar 2013): 943–50. http://dx.doi.org/10.1016/j.bpj.2012.12.036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Ma, Shiqian, Donald Goldfarb und Lifeng Chen. „Fixed point and Bregman iterative methods for matrix rank minimization“. Mathematical Programming 128, Nr. 1-2 (23.09.2009): 321–53. http://dx.doi.org/10.1007/s10107-009-0306-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Goldfarb, Donald, und Shiqian Ma. „Convergence of Fixed-Point Continuation Algorithms for Matrix Rank Minimization“. Foundations of Computational Mathematics 11, Nr. 2 (01.02.2011): 183–210. http://dx.doi.org/10.1007/s10208-011-9084-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Bernal, A., J. Avendaño, R. Valencia-Torres und J. García-Ravelo. „Adaptable transfer-matrix method for fixed-energy finite-width beams“. Physica Scripta 96, Nr. 3 (22.01.2021): 035220. http://dx.doi.org/10.1088/1402-4896/abdb55.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Rawat, Kuldeep, Avinash Singh, Krishna Sati, Manish Kumar, Ashish Negi und Kuldeep Panwar. „CFD analysis of fixed matrix with glass refractory particle regenerator“. Materials Today: Proceedings 46 (2021): 6871–75. http://dx.doi.org/10.1016/j.matpr.2021.04.450.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Fang, Xi-Ming. „General fixed-point method for solving the linear complementarity problem“. AIMS Mathematics 6, Nr. 11 (2021): 11904–20. http://dx.doi.org/10.3934/math.2021691.

Der volle Inhalt der Quelle
Annotation:
<abstract><p>In this paper, we consider numerical methods for the linear complementarity problem (LCP). By introducing a positive diagonal parameter matrix, the LCP is transformed into an equivalent fixed-point equation and the equivalence is proved. Based on such equation, the general fixed-point (GFP) method with two cases are proposed and analyzed when the system matrix is a $ P $-matrix. In addition, we provide several concrete sufficient conditions for the proposed method when the system matrix is a symmetric positive definite matrix or an $ H_{+} $-matrix. Meanwhile, we discuss the optimal case for the proposed method. The numerical experiments show that the GFP method is effective and practical.</p></abstract>
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Wang, Feng, Liren Liu und Yaozu Yin. „Optical matrix-matrix multiplication by the use of fixed holographic multi-gratings in a photorefractive crystal“. Optics Communications 125, Nr. 1-3 (April 1996): 21–26. http://dx.doi.org/10.1016/0030-4018(96)00747-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Akyar, Handan, und Emrah Akyar. „A Graphical Method for Solving Interval Matrix Games“. Abstract and Applied Analysis 2011 (2011): 1–17. http://dx.doi.org/10.1155/2011/260490.

Der volle Inhalt der Quelle
Annotation:
or interval matrix games are considered, and a graphical method for solving such games is given. Interval matrix game is the interval generation of classical matrix games. Because of uncertainty in real-world applications, payoffs of a matrix game may not be a fixed number. Since the payoffs may vary within a range for fixed strategies, an interval-valued matrix can be used to model such uncertainties. In the literature, there are different approaches for the comparison of fuzzy numbers and interval numbers. In this work, the idea of acceptability index is used which is suggested by Sengupta et al. (2001) and Sengupta and Pal (2009), and in view of acceptability index, well-known graphical method for matrix games is adapted to interval matrix games.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

SHAPIRO, B. „THREE GENERALIZED MATRIX ENSEMBLES: A REVIEW“. International Journal of Modern Physics B 10, Nr. 26 (30.11.1996): 3539–47. http://dx.doi.org/10.1142/s0217979296001896.

Der volle Inhalt der Quelle
Annotation:
The standard Gaussian matrix ensembles are known for their robustness, in the sense that their level statistics is representative of a large class of matrix models. It is possible, however, to define generalized ensembles which are able to “escape” the Gaussian fixed point and to exhibit statistics radically different from the Wigner-Dyson statistics of the standard ensembles. Such generalized ensembles contain a parameter which is allowed to change with the matrix size N. Depending on the rate of change, one obtains three distinct limiting statistics: the Wigner-Dyson statistics, the Poisson statistics of uncorrelated levels or a new intermediate statistics (the “non-trivial” fixed point). The present review discusses three examples of such generalized ensembles.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Ydri, Badis, Rachid Ahmim und Adel Bouchareb. „Wilson RG of noncommutative Φ44“. International Journal of Modern Physics A 30, Nr. 33 (26.11.2015): 1550195. http://dx.doi.org/10.1142/s0217751x1550195x.

Der volle Inhalt der Quelle
Annotation:
We present a study of phi-four theory on noncommutative spaces using a combination of the Wilson renormalization group recursion formula and the solution to the zero dimensional vector/matrix models at large N. Three fixed points are identified. The matrix model [Formula: see text] fixed point which describes the disordered-to-nonuniform-ordered transition. The Wilson–Fisher fixed point at [Formula: see text] which describes the disordered-to-uniform-ordered transition, and a noncommutative Wilson–Fisher fixed point at a maximum value of [Formula: see text] which is associated with the transition between nonuniform-order and uniform-order phases.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Gao, Dongjie. „Existence and Uniqueness of the Positive Definite Solution for the Matrix EquationX=Q+A∗(X^−C)−1A“. Abstract and Applied Analysis 2013 (2013): 1–4. http://dx.doi.org/10.1155/2013/216035.

Der volle Inhalt der Quelle
Annotation:
We consider the nonlinear matrix equationX=Q+A∗(X^−C)−1A, whereQis positive definite,Cis positive semidefinite, andX^is the block diagonal matrix defined byX^=diag(X,X,…,X). We prove that the equation has a unique positive definite solution via variable replacement and fixed point theorem. The basic fixed point iteration for the equation is given.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Li Suozhu, 李锁柱, 朱永伟 Zhu Yongwei, 李军 Li Jun, 樊吉龙 Fan Jilong und 叶剑锋 Ye Jianfeng. „Study on Matrix Properties and Machining Performance of Fixed-Abrasive Pad“. Laser & Optoelectronics Progress 48, Nr. 1 (2011): 012201. http://dx.doi.org/10.3788/lop48.012201.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Remillard, Gilbert, und James M. Clark. „Generating fixed-length sequences satisfying any givennth-order transition probability matrix“. Behavior Research Methods, Instruments, & Computers 31, Nr. 2 (Juni 1999): 235–43. http://dx.doi.org/10.3758/bf03207715.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Martínez-Frutos, Jesús, und David Herrero-Pérez. „Efficient matrix-free GPU implementation of Fixed Grid Finite Element Analysis“. Finite Elements in Analysis and Design 104 (Oktober 2015): 61–71. http://dx.doi.org/10.1016/j.finel.2015.06.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Bester, C. Alan, Timothy G. Conley, Christian B. Hansen und Timothy J. Vogelsang. „FIXED-b ASYMPTOTICS FOR SPATIALLY DEPENDENT ROBUST NONPARAMETRIC COVARIANCE MATRIX ESTIMATORS“. Econometric Theory 32, Nr. 1 (19.11.2014): 154–86. http://dx.doi.org/10.1017/s0266466614000814.

Der volle Inhalt der Quelle
Annotation:
This paper develops a method for performing inference using spatially dependent data. We consider test statistics formed using nonparametric covariance matrix estimators that account for heteroskedasticity and spatial correlation (spatial HAC). We provide distributions of commonly used test statistics under “fixed-b” asymptotics, in which HAC smoothing parameters are proportional to the sample size. Under this sequence, spatial HAC estimators are not consistent but converge to nondegenerate limiting random variables that depend on the HAC smoothing parameters, the HAC kernel, and the shape of the spatial region in which the data are located. We illustrate the performance of the “fixed-b” approximation in the spatial context through a simulation example.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie