Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Fire wall“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fire wall" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Fire wall"
Wang, Lian Tie, und Qing Shan Meng. „Wall Socket Fire Analysis“. Advanced Materials Research 591-593 (November 2012): 2414–17. http://dx.doi.org/10.4028/www.scientific.net/amr.591-593.2414.
Der volle Inhalt der QuelleJin, Zhao-Fen, Yutaka Asako, Yoshiyuki Yamaguchi und Minoru Harada. „Numerical Modeling of Fire Walls to Simulate Fire Resistance Test“. Journal of Heat Transfer 120, Nr. 3 (01.08.1998): 661–66. http://dx.doi.org/10.1115/1.2824334.
Der volle Inhalt der QuelleSuntharalingam, Thadshajini, Irindu Upasiri, Perampalam Gatheeshgar, Keerthan Poologanathan, Brabha Nagaratnam, Heshachanaa Rajanayagam und Satheeskumar Navaratnam. „Fire resistance of 3D printed concrete composite wall panels exposed to various fire scenarios“. Journal of Structural Fire Engineering 12, Nr. 3 (15.07.2021): 377–409. http://dx.doi.org/10.1108/jsfe-10-2020-0029.
Der volle Inhalt der QuelleYao, Hong Bo, Da Zhang und Wei Zhu. „Discussion of the Fireproof Wall Insulation Materials“. Applied Mechanics and Materials 193-194 (August 2012): 360–62. http://dx.doi.org/10.4028/www.scientific.net/amm.193-194.360.
Der volle Inhalt der QuelleMitchell, Nicole, und Lisa A. Ennis. „Scaling the (Fire)Wall“. Journal of Hospital Librarianship 10, Nr. 2 (21.04.2010): 190–96. http://dx.doi.org/10.1080/15323261003681588.
Der volle Inhalt der QuelleBellová, Maria. „Fire Walls Made from Concrete and Masonry - Barriers against a Fire Spreading“. Key Engineering Materials 691 (Mai 2016): 408–19. http://dx.doi.org/10.4028/www.scientific.net/kem.691.408.
Der volle Inhalt der QuelleSuherman, Aan. „Fire Search and Obstcale Avoidance Robot“. Telekontran : Jurnal Ilmiah Telekomunikasi, Kendali dan Elektronika Terapan 3, Nr. 2 (22.07.2015): 37–46. http://dx.doi.org/10.34010/telekontran.v3i2.1881.
Der volle Inhalt der QuelleCohen, Jack D. „Relating flame radiation to home ignition using modeling and experimental crown fires“. Canadian Journal of Forest Research 34, Nr. 8 (01.08.2004): 1616–26. http://dx.doi.org/10.1139/x04-049.
Der volle Inhalt der QuelleKeerthan, Poologanathan, und Mahen Mahendran. „Thermal Performance of Load Bearing Cold-formed Steel Walls under Fire Conditions using Numerical Studies“. Journal of Structural Fire Engineering 5, Nr. 3 (19.08.2014): 261–90. http://dx.doi.org/10.1260/2040-2317.5.3.261.
Der volle Inhalt der QuelleYuen, A. C. Y., G. H. Yeoh, R. K. K. Yuen, S. M. Lo und T. Chen. „Development of Wall-Adapting Local Eddy Viscosity Model for Study of Fire Dynamics in a Large Compartment“. Applied Mechanics and Materials 444-445 (Oktober 2013): 1579–91. http://dx.doi.org/10.4028/www.scientific.net/amm.444-445.1579.
Der volle Inhalt der QuelleDissertationen zum Thema "Fire wall"
Monson, Elizabeth Ida. „Simulations of Controlled Fires Using the One-Dimensional Turbulence Model with Application to Fire Spread in Wildland Fires“. BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3163.
Der volle Inhalt der QuelleShahbazian, Ashkan. „Simplified thermal and structural analysis methods for cold-formed thin-walled steel studs in wall panels exposed to fire from one side“. Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/simplified-thermal-and-structural-analysis-methods-for-coldformed-thinwalled-steel-studs-in-wall-panels-exposed-to-fire-from-one-side(6aec12ea-0d18-43a6-b594-0f7bc4adca1c).html.
Der volle Inhalt der QuelleFurniss, Brandon F. „Transformation of Form“. Kent State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=kent1240088310.
Der volle Inhalt der QuelleLehoťák, Roman. „Návrh betonové konstrukce s ohledem na požární odolnost“. Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2021. http://www.nusl.cz/ntk/nusl-444631.
Der volle Inhalt der QuelleMenegon, Julia. „Avaliação da suscetibilidade da alvenaria estrutural a danos por exposição a altas temperaturas com medidas de controle da dilatação“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/172027.
Der volle Inhalt der QuelleStructural masonry is one of the oldest existing building systems. Nowadays, masonry structures find a wide application in residential constructions, mainly in those with social interest. However, unlike concrete structures, whose behavior during fire exposure and its residual resistance have widely disseminated studies and results, there is a lack of knowledge about the behavior of masonry structures submitted to fire. Because of the spread of concerns about the safety of buildings and their users in fire situations, it becomes essential to know the behavior of the systems currently used in civil construction when exposed to high temperatures. With this in view, the present study intended to analyze the damage and the behavior of structural masonry samples exposed to heating. This study evaluated clay hollow-bricks small walls, and, in order to simulate real conditions, the boundaries of the samples were restrained, with the aid of hydraulic jacks, aiming to restrain the deformation. In order to verify different types of masonry, three different blocks were used: 14 cm wide, with nominal strength of 7 and 10 MPa, and 19 cm wide, with 7 MPa of compressive strength. The thicknesses of the joints and the mortar were also varied, in order to understand the importance of these factors in the behavior of the samples, and, finally, samples were tested with a mono-layer coating at the exposed face. The small walls were coupled to an electrical furnace and subjected to a heating approximately equal to the standard curve, up to the maximum temperature of 950ºC, which was maintained for 4 hours The deflections of the samples during the test were measured, beyond the temperature inside the furnace, in the center of wall and at the non-exposed surface. Clip gages were also used to verify the expansion of the blocks and the crushing or opening of the mortar joints. Thermographic images of the opposite face were captured during the testing. At the end of this research, it was possible to affirm that the walls had good behavior against the high temperatures, maintaining their integrity, thermal insulation and load-bearing capacity. The restriction of the boundaries did not cause the spalling of the blocks, however, it was possible to observe the stress transfer to them in samples with rigid joint mortar. The deflection of the samples increases towards the furnace during the heating, and, then, they show the phenomenon of “reverse bowing”, changing the direction of the displacements. Reducing the thickness and increasing the stiffness of the joint mortars, as well as the increase in block strength and width attenuated such deflection. The masonry 19 cm width and, specially, the ones with coating shows better thermal performance, comparing to the others.
Piskláková, Petra. „Požární stanice typu C1 ve Valašském Meziříčí“. Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-372150.
Der volle Inhalt der QuelleSchwarzová, Veronika. „Požární stanice“. Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-265460.
Der volle Inhalt der QuelleWojcik, Jindřich. „Hasičská stanice typu C2“. Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-265507.
Der volle Inhalt der QuelleBong, Felix Nyuk Poh. „Fire Spread on Exterior Walls“. Thesis, University of Canterbury. Civil Engineering, 2000. http://hdl.handle.net/10092/8252.
Der volle Inhalt der QuelleBrož, Matěj. „Požární stanice“. Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-265667.
Der volle Inhalt der QuelleBücher zum Thema "Fire wall"
Copyright Paperback Collection (Library of Congress), Hrsg. Fire wall. New York: Jove Books, 2000.
Den vollen Inhalt der Quelle findenWall of Fire: The Appomattox Saga #7. Wheaton, Ill: Tyndale House, 1995.
Den vollen Inhalt der Quelle findenKulkarni, A. K. Vertical wall fire in a stratified atmosphere. University Park, PA: Pennsylvania State University, Department of Mechanical Engineering, 1987.
Den vollen Inhalt der Quelle findenThe battle of Vimy Ridge: Wall of fire. Calgary: Detselig Enterprises, 2009.
Den vollen Inhalt der Quelle findenKrawchuk, Michael J. The battle of Vimy Ridge: Wall of fire. Calgary: Detselig Enterprises, 2009.
Den vollen Inhalt der Quelle findenWhite, Nathan, und Michael Delichatsios. Fire Hazards of Exterior Wall Assemblies Containing Combustible Components. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2898-9.
Der volle Inhalt der QuelleMBA, Brown Steven A., Hrsg. Check Point FireWall-1: Administration guide. New York: McGraw-Hill, 2000.
Den vollen Inhalt der Quelle findenCooper, Leonard Y. Ceiling jet-driven wall flows in compartment fires. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1987.
Den vollen Inhalt der Quelle findenCooper, Leonard Y. Ceiling jet-driven wall flows in compartment fires. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1987.
Den vollen Inhalt der Quelle findenCooper, Leonard Y. Ceiling jet-driven wall flows in compartment fires. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1987.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Fire wall"
White, Nathan, und Michael Delichatsios. „Fire Statistics“. In Fire Hazards of Exterior Wall Assemblies Containing Combustible Components, 17–24. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2898-9_4.
Der volle Inhalt der QuelleBala, Anu, Ashish Kumar Dash, Supratic Gupta und Vasant Matsagar. „Behavior of Bamboo Wall Panel at Elevated Temperature“. In Wood & Fire Safety, 281–87. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41235-7_42.
Der volle Inhalt der QuelleWhite, Nathan, und Michael Delichatsios. „Fire Incident Case-Studies“. In Fire Hazards of Exterior Wall Assemblies Containing Combustible Components, 25–48. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2898-9_5.
Der volle Inhalt der QuelleRusthi, Mohamed, Poologanathan Keerthan, Mahen Mahendran und Anthony Deloge Ariyanayagam. „Thermal Performance of Magnesium Oxide Wall Board Using Numerical Modelling“. In Fire Science and Technology 2015, 667–76. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0376-9_68.
Der volle Inhalt der QuelleWhite, Nathan, und Michael Delichatsios. „Existing Research and Mechanisms of Fire Spread“. In Fire Hazards of Exterior Wall Assemblies Containing Combustible Components, 11–16. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2898-9_3.
Der volle Inhalt der QuelleWhite, Nathan, und Michael Delichatsios. „Combustible Exterior Wall Systems in Common Use“. In Fire Hazards of Exterior Wall Assemblies Containing Combustible Components, 3–10. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2898-9_2.
Der volle Inhalt der QuelleJochim, Stanislav, Linda Makovicka Osvaldova und Martin Zachar. „Traditional Log Cabin – Exterior Log Wall – Fire Characteristics and Prediction Using Analysis of Thermos-Technical Properties“. In Wood & Fire Safety, 295–302. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41235-7_44.
Der volle Inhalt der QuelleYoshioka, Hideki, Ko Muraoka, Masatoshi Nakamura, Yoshikazu Deguchi, Takeshi Morita, Kouta Nishimura, Masaki Noaki, Yoshifumi Ohmiya und Tomohiro Naruse. „Verification Methodology of Vertical Fire Spread to the Upstairs Room via Openings and Facade Wall“. In Fire Science and Technology 2015, 205–15. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0376-9_20.
Der volle Inhalt der QuelleWhite, Nathan, und Michael Delichatsios. „Recommended Fire Scenarios and Testing Approach for Phase II“. In Fire Hazards of Exterior Wall Assemblies Containing Combustible Components, 89–94. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2898-9_8.
Der volle Inhalt der QuelleShintani, Yusuke, Tsutomu Nagaoka, Yoshikazu Deguchi und Kazunori Harada. „An Experimental Study on the Mass Flow Rate from a Line Fire Source Along a Vertical Wall“. In Fire Science and Technology 2015, 437–44. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0376-9_44.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Fire wall"
Alkurt, Fatih Özkan, Mehmet Bağmancı, Muharrem Karaaslan, Mehmet Bakır, Olcay Altıntaş, Faruk Karadağ, Oğuzhan Akgöl und Emin Ünal. „Fire detection behind a wall by using microwave techniques“. In TURKISH PHYSICAL SOCIETY 33RD INTERNATIONAL PHYSICS CONGRESS (TPS33). Author(s), 2018. http://dx.doi.org/10.1063/1.5025980.
Der volle Inhalt der QuelleYou, Shuhang, Cong Zuo, Yuanyuan Xiong, Yu Zhao, Yang Liu und Peng Lin. „An Experimental Study on Self-extinction of Methanol Fire in Tunnels with Different Wall Surfaces“. In 2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE). IEEE, 2019. http://dx.doi.org/10.1109/icfsfpe48751.2019.9055762.
Der volle Inhalt der QuelleShihn, Harmanjeet, und Paul E. DesJardin. „Near-Wall Modeling for Vertical Wall Fires Using One-Dimensional Turbulence“. In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59861.
Der volle Inhalt der QuelleAlimenti, F., G. Tasselli, S. Bonafoni, D. Zito und L. Roselli. „Inter-Wall Fire Detection by Low-Cost Microwave Radiometric Sensors“. In 2008 38th European Microwave Conference (EuMC). IEEE, 2008. http://dx.doi.org/10.1109/eumc.2008.4751387.
Der volle Inhalt der QuelleWang, D., M. C. Liu und B. Li. „The study on wall-climbing fire fighting robot and simulation“. In International Conference on Automation, Mechanical and Electrical Engineering. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/amee140031.
Der volle Inhalt der QuelleSmith, Hunter. „Protective Barrier Wall Response to Sequential Blast and Fire Events“. In Offshore Technology Conference. OTC, 2021. http://dx.doi.org/10.4043/31115-ms.
Der volle Inhalt der QuelleXiao, Xiao, und Qiang Wang. „Study on Wall Fire Spread Characteristics of Polystyrene External Insulation Materials under Different Window Fire Sources“. In 2014 7th International Conference on Intelligent Computation Technology and Automation (ICICTA). IEEE, 2014. http://dx.doi.org/10.1109/icicta.2014.182.
Der volle Inhalt der QuelleRen, N., Y. Wang, S. Vilfayeau und A. Trouvé. „Large Eddy Simulation of Propylene Turbulent Vertical Wall Fires“. In Proceedings of the Seventh International Seminar Fire and Explosion Hazards. Singapore: Research Publishing Services, 2013. http://dx.doi.org/10.3850/978-981-07-5936-0_04-04.
Der volle Inhalt der QuelleLei Hu und Tanshu Yang. „Studies of fire prevention issues in exterior wall thermal insulation system“. In 2011 Second International Conference on Mechanic Automation and Control Engineering (MACE). IEEE, 2011. http://dx.doi.org/10.1109/mace.2011.5988430.
Der volle Inhalt der QuelleKesawan, S., und M. Mahendran. „Experimental Study on the Fire Performance of Superior LSF Wall Systems“. In 10th Pacific Structural Steel Conference (PSSC 2013). Singapore: Research Publishing Services, 2013. http://dx.doi.org/10.3850/978-981-07-7137-9_251.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Fire wall"
Harkleroad, Margaret F. Fire properties database for textile wall coverings. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.89-4065.
Der volle Inhalt der QuelleCooper, Leonard Y. The thermal response of gypsum-panelsteel-stud wall systems exposed to fire environments - a simulation for use in zone-type fire models. Gaithersburg, MD: National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.6027.
Der volle Inhalt der QuelleCooper, Leonard Y. Fire-plume-generated ceiling jet characteristics and convective heat transfer to ceiling and wall surfaces in a two-layer zone-type fire environment:. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.4705.
Der volle Inhalt der QuelleJohnson, B. H. Fire barrier evaluation of the wall between spent nuclear fuel storage basins and reactor areas, 105KE and 105KW. Office of Scientific and Technical Information (OSTI), Oktober 1994. http://dx.doi.org/10.2172/10194962.
Der volle Inhalt der QuelleLee, B. T. Effect of wall and room surfaces on the rates of heat, smoke, and carbon monoxide production in a park lodging bedroom fire. Gaithersburg, MD: National Bureau of Standards, 1985. http://dx.doi.org/10.6028/nbs.ir.85-2998.
Der volle Inhalt der QuelleCooper, Leonard Y. Ceiling jet-driven wall flows in compartment fires. Gaithersburg, MD: National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.ir.87-3535.
Der volle Inhalt der QuelleCooper, Leonard Y. Ceiling jet properties and wall heat transfer in compartment fires near regions of ceiling jet-wall impingement. Gaithersburg, MD: National Bureau of Standards, 1986. http://dx.doi.org/10.6028/nbs.ir.86-3307.
Der volle Inhalt der QuelleMcGrattan, Kevin, Michael Selepak und Edward Hnetkovsky. The influence of walls, corners and enclosures on fire plumes. Gaithersburg, MD: National Institute of Standards and Technology, März 2018. http://dx.doi.org/10.6028/nist.tn.1984.
Der volle Inhalt der QuelleHamid Sarv. Advanced In-Furnace NOx Control for Wall and Cyclone-Fired Boilers. Office of Scientific and Technical Information (OSTI), Februar 2009. http://dx.doi.org/10.2172/1037870.
Der volle Inhalt der QuelleSorge, J. N., und S. M. Wilson. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers. Office of Scientific and Technical Information (OSTI), November 1994. http://dx.doi.org/10.2172/10192340.
Der volle Inhalt der Quelle