Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Fire resistance of concrete“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fire resistance of concrete" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Fire resistance of concrete"
Balázs, György L., und Olivér Czoboly. „Fibre Cocktail to Improve Fire Resistance“. Key Engineering Materials 711 (September 2016): 480–87. http://dx.doi.org/10.4028/www.scientific.net/kem.711.480.
Der volle Inhalt der QuelleLie, T. T., und V. K. R. Kodur. „Thermal and mechanical properties of steel-fibre-reinforced concrete at elevated temperatures“. Canadian Journal of Civil Engineering 23, Nr. 2 (01.04.1996): 511–17. http://dx.doi.org/10.1139/l96-055.
Der volle Inhalt der QuelleHubáček, Adam, und Veronika Ondryášová. „Research of Fire Resistance of Tunnel Lining Concrete“. Solid State Phenomena 249 (April 2016): 14–20. http://dx.doi.org/10.4028/www.scientific.net/ssp.249.14.
Der volle Inhalt der QuelleChang, Chuan Peng, Shi Wu Huang, Xue Feng Li, Bo Tian und Zi Yi Hou. „A Study of the Capability for Fire Resistance of Polypropylene Fibre Concrete“. Advanced Materials Research 857 (Dezember 2013): 116–23. http://dx.doi.org/10.4028/www.scientific.net/amr.857.116.
Der volle Inhalt der QuelleKodur, VKR. „Performance of high strength concrete-filled steel columns exposed to fire“. Canadian Journal of Civil Engineering 25, Nr. 6 (01.12.1998): 975–81. http://dx.doi.org/10.1139/l98-023.
Der volle Inhalt der QuelleLuhar, Salmabanu, Demetris Nicolaides und Ismail Luhar. „Fire Resistance Behaviour of Geopolymer Concrete: An Overview“. Buildings 11, Nr. 3 (25.02.2021): 82. http://dx.doi.org/10.3390/buildings11030082.
Der volle Inhalt der QuelleKim, Yun Yong. „Fire Resistance Performance of Precast Segmental Concrete Lining for Shield Tunnel“. Journal of the Korean Society of Civil Engineers 34, Nr. 1 (2014): 95. http://dx.doi.org/10.12652/ksce.2014.34.1.0095.
Der volle Inhalt der QuelleBelov, Vyacheslav, und Valery Morozov. „Fire Resistance of Non-Crack Resistant Flexural Reinforced Concrete Elements“. Applied Mechanics and Materials 725-726 (Januar 2015): 15–20. http://dx.doi.org/10.4028/www.scientific.net/amm.725-726.15.
Der volle Inhalt der QuelleLublóy, Éva. „The Influence of Concrete Strength on the Effect of Synthetic Fibres on Fire Resistance“. Periodica Polytechnica Civil Engineering 62, Nr. 1 (23.06.2017): 136–42. http://dx.doi.org/10.3311/ppci.10775.
Der volle Inhalt der QuelleChoi. „Fire resistance assessment of high strength segment concrete depending on PET fiber amount under fire curves“. Journal of Korean Tunnelling and Underground Space Association 16, Nr. 3 (2014): 311. http://dx.doi.org/10.9711/ktaj.2014.16.3.311.
Der volle Inhalt der QuelleDissertationen zum Thema "Fire resistance of concrete"
Ab, Kadir Mariyana Aida. „Fire resistance of earthquake damaged reinforced concrete frames“. Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/7969.
Der volle Inhalt der QuelleEzekiel, Samson. „Fire resistance simulation for high strength reinforced concrete“. Thesis, London South Bank University, 2015. http://researchopen.lsbu.ac.uk/2084/.
Der volle Inhalt der QuelleGEREN, REBECCA. „CALCULATING FIRE-RESISTANCE RATINGS OF CONCRETE MASONRY UNIT (CMU) WALLS“. Thesis, The University of Arizona, 2016. http://hdl.handle.net/10150/618764.
Der volle Inhalt der QuelleFox, David Christopher Alexander. „The fire performance of restrained polymer-fibre-reinforced concrete composite slabs“. Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/17998.
Der volle Inhalt der QuelleO'Neill, James William. „The Fire Performance of Timber-Concrete Composite Floors“. Thesis, University of Canterbury. Civil and Natural Resources, 2009. http://hdl.handle.net/10092/3912.
Der volle Inhalt der QuelleAl-Mansouri, Omar. „Behavior of bonded anchors in concrete under fire“. Thesis, Ecole nationale supérieure Mines-Télécom Lille Douai, 2020. http://www.theses.fr/2020MTLD0011.
Der volle Inhalt der QuelleThe technique of bonded anchors consists of fastening a threaded rod in a drilled hole in hardened concrete by polymer adhesives. The main advantages of this technique are ease of installation and the high mechanical properties of the adhesive at ambient temperature. Due to the adherence of the adhesive resin, this type of anchors can be designed to ensure similar or even higher performances compared to other anchor systems (mechanical and cast-in). However, at high temperatures, e.g. fire situation, the adherence of the adhesive degrades rapidly. Fire decreases the adherence of the adhesive and leads to the inability of the anchor to support the fixed objects. This creates a risk on the lives and goods inside the building. Several accidents occurred like the collapse of the Big Dig Tunnel in the USA (2006) and the Sasago tunnel in Japan (2012) and highlighted the importance of having reliable evalutation methods of this type of anchors. The objective of this thesis is to establish an assessment and a design method to ensure the structural resistance of bonded anchors in fire situations. This project is structured into four main parts:i. Experimental protocols for fire tests on bonded anchors. Pull-out fire tests were conducted on bonded anchors (epoxy adhesive). Temperature profiles along the embedment depth of anchors were determined experimentally for different test configurations. Then, these temperature profiles were used as entry data to calculate the fire resistance of anchors using Pinoteau’s method (Resistance Integration Method). This study allowed to precise the experimental conditions to be adopted for fire evaluation of bonded anchors. ii. Proposition of a design model based on transient thermal calculations using finite element method in 3D. Temperature profiles were calculated using the thermophysical material properties of concrete and steel in the Eurocode. 3D modelling was compared to 2D modelling commonly used in the literature. Both approaches were compared to measurements during fire tests and coupled with Pinoteau’s method to assess their impact on the calculation of fire resistance of anchors. Following the validation of the 3D model, thermal investigations were conducted on other parameters that could influence fire tests of bonded anchors. This study allowed to validate the 3D modelling approach as the most representative of the problem of bonded anchors exposed to fire.iii. Validation of Pinoteau’s method for the design of bonded anchors under fire by using the previously proposed design model. Calculations of fire resistance of three different bonded anchor products were compared to pull-out tests. This study conducted on a wide range of anchor sizes lead to the validation of the Pinoteau’s Method for the design of bonded anchors.iv. Study of the behavior of bonded anchors in cracked concrete at high temperatures. An assessment method was developed to determine the reduction of bond strength due to cracked concrete, at high temperatures (electrical heating). Tests were conducted on bonded anchors (epoxy adhesive) in cracked and uncracked concrete, at ambient and high temperatures. The evolution of the reduction with temperature increase was investigated. This study ensured a good repeatability of test results due to the increased testing potential and the good control of the applied heating scenario
Chan, Wai Wing. „New concept in fire resistant concrete /“. access full-text access abstract and table of contents, 2005. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-ap-b19887486a.pdf.
Der volle Inhalt der Quelle"Submitted to Department of Physics and Materials Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references (leaves 181-188).
Chang, Lei. „Experimental Data on Fire-Resistance Behavior of Reinforced Concrete Structures with Example Calculations“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/3003/.
Der volle Inhalt der QuelleMin, Jeong-Ki. „Numerical prediction of structural fire performance for precast prestressed concrete flooring systems“. Thesis, University of Canterbury. Department of Civil and Natural Resources Engineering, 2012. http://hdl.handle.net/10092/6678.
Der volle Inhalt der QuelleVassou, Vassoulla. „Abrasion resistance of fibre reinforced concrete floors“. Thesis, Aston University, 2003. http://publications.aston.ac.uk/14147/.
Der volle Inhalt der QuelleBücher zum Thema "Fire resistance of concrete"
Lawson, R. M. Fire resistance of ribbed concrete floors. London: CIRIA, 1985.
Den vollen Inhalt der Quelle findenBoth, Cornelis. The fire resistance of composite steel-concrete slabs. Delft: Delft Univ. Press, 1998.
Den vollen Inhalt der Quelle findenGustaferro, A. H. Design for fire resistance of precast prestressed concrete. 2. Aufl. Chicago, Ill: Prestressed Concrete Institute, 1989.
Den vollen Inhalt der Quelle findenEuropean Convention for Constructional Steelwork. Technical Committee 3 - Fire Safety of Steel Structures. Calculation of the fire resistance of centrally loaded composite steel-concrete columns exposed to the standard fire. Brussels: European Convention for Structural Steelwork, 1988.
Den vollen Inhalt der Quelle findenJoint ACI/TMS Committee 216. Code requirements for determining fire resistance of concrete and masonry construction assemblies (ACI 216.1-07, TMS-216-07): An ACI/TMS Standard. Farmington Hills, MI: American Concrete Institute, 2007.
Den vollen Inhalt der Quelle findenJoint ACI/TMS Committee 216. Code requirements for determining fire resistance of concrete and masonry construction assemblies (ACI 216.1-07, TMS-216-07): An ACI/TMS Standard. Farmington Hills, MI: American Concrete Institute, 2007.
Den vollen Inhalt der Quelle findenSchleich, J. B. Computer assisted analysis of the fire resistance of steel and composite concrete-steel structures (REFAO-CAFIR). Luxembourg: Commission of the European Communities, 1987.
Den vollen Inhalt der Quelle findenKajaste-Rudnitski, Juri. Numerical model of thermoelastic-plastic concrete material. Espoo: Technical Research Centre of Finland, 1993.
Den vollen Inhalt der Quelle findenSadegzadeh, Massud. Abrasion resistance of concrete. Birmingham: University of Aston. Department of Civil Engineering and Construction, 1985.
Den vollen Inhalt der Quelle findenLaboratories, Underwriters. Fire resistance directory. Northbrook, Ill: Underwriters Laboratories, Inc., 2003.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Fire resistance of concrete"
Gustaferro, Armand H. „Fire Resistance“. In Handbook of Concrete Engineering, 252–67. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4757-0857-8_7.
Der volle Inhalt der QuelleWang, Yong C. „Fire Resistance“. In Composite Structures of Steel and Concrete, 223–45. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119401353.ch6.
Der volle Inhalt der QuelleHan, Lin-Hai, Dennis Lam und David A. Nethercot. „Fire-Resistance Design“. In Design Guide for Concrete-Filled Double Skin Steel Tubular Structures, 67–72. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, [2019]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429440410-5.
Der volle Inhalt der QuelleLi, Guoqiang, und Peijun Wang. „Fire-Resistance of Composite Concrete Slabs“. In Advanced Topics in Science and Technology in China, 245–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34393-3_9.
Der volle Inhalt der QuelleBalázs, György L., Katalin Kopecskó, Naser Alimrani, Nabil Abdelmelek und Éva Lublóy. „Fire Resistance of Concretes with Blended Cements“. In High Tech Concrete: Where Technology and Engineering Meet, 1420–27. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59471-2_163.
Der volle Inhalt der QuelleFleischmann, Charles, Andy Buchanan und Anthony Abu. „Analytical Methods for Determining Fire Resistance of Concrete Members“. In SFPE Handbook of Fire Protection Engineering, 1949–78. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2565-0_54.
Der volle Inhalt der QuelleDestrée, Xavier, Andrejs Krasnikovs und Sébastien Wolf. „Fire Resistance of Steel Fibre Reinforced Concrete Elevated Suspended Slabs: ISO Fire Tests and Conclusions for Design“. In RILEM Bookseries, 841–51. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58482-5_74.
Der volle Inhalt der QuelleSaurav, Anjani Kumar Shukla und Pratyush Malaviya. „A Comparative Study of Fire Resistance of Concrete Incorporating Ultrafine Slag“. In Advances in Industrial Safety, 291–304. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6852-7_26.
Der volle Inhalt der QuelleNedviga, Ekaterina, Natalia Beresneva, Marina Gravit und Angelina Blagodatskaya. „Fire Resistance of Prefabricated Monolithic Reinforced Concrete Slabs of “Marko” Technology“. In International Scientific Conference Energy Management of Municipal Transportation Facilities and Transport EMMFT 2017, 739–49. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70987-1_78.
Der volle Inhalt der QuelleKasperkiewicz, Janusz, und Åke Skarendahl. „Fracture Resistance Evaluation of Steel Fibre Concrete“. In Brittle Matrix Composites 2, 619–28. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2544-1_65.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Fire resistance of concrete"
Fellinger, Joris H. H., und C. (Kees) Both. „Fire Resistance: Reliability Vs. Time Analyses“. In Composite Construction in Steel and Concrete IV Conference 2000. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40616(281)71.
Der volle Inhalt der QuelleKien, Dao Duy, Do Van Trinh, Khong Trong Toan und Le Ba Danh. „Fire Resistance Evaluation of Reinforced Concrete Structures“. In 2020 5th International Conference on Green Technology and Sustainable Development (GTSD). IEEE, 2020. http://dx.doi.org/10.1109/gtsd50082.2020.9303102.
Der volle Inhalt der QuelleKodur, V. K. R. „Achieving Fire Resistance Through Steel Concrete Composite Construction“. In Structures Congress 2005. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40753(171)53.
Der volle Inhalt der QuelleMostafaei, H., Frank J. Vecchio und N. Bénichou. „Seismic Resistance of Fire-Damaged Reinforced Concrete Columns“. In ATC and SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41084(364)128.
Der volle Inhalt der QuelleZhao, Bin, und Christophe Fraud. „Fire Resistance Analysis of Open Car Parks with Composite Structures Under Real Car Fire“. In Fifth International Conference on Composite Construction in Steel and Concrete. Reston, VA: American Society of Civil Engineers, 2006. http://dx.doi.org/10.1061/40826(186)56.
Der volle Inhalt der QuelleBHATT, P., V. KODUR, A. SHAKYA und T. ALKHRDAJI. „Fire resistance of insulated FRP-strengthened concrete flexural members“. In 9th International Conference On Concrete Under Severe Conditions - Environment and Loading. MENVIA, 2019. http://dx.doi.org/10.31808/5ca6e03f5ca4f0d406ac88ba.
Der volle Inhalt der QuelleThienpont, Thomas, Ruben Van Coile, Balsa Jovanovic, Wouter De Corte und Robby Caspeele. „Global resistance factor for the burnout resistance of concrete slabs exposed to parametric fires“. In 11th International Conference on Structures in Fire (SiF2020). Brisbane, Australia: The University of Queensland, 2020. http://dx.doi.org/10.14264/c106f43.
Der volle Inhalt der QuelleGhannam, Mohamed, Zhong Tao und Tian Yi Song. „Fire Resistance Tests of Concrete-Filled Stainless Steel Tubular Columns“. In International Conference on Composite Construction in Steel and Concrete 2013. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784479735.036.
Der volle Inhalt der QuelleTian, Jingbo, und Wenjun Qu. „Judgement methods of fire resistance time of hybrid reinforced concrete beams“. In IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.0955.
Der volle Inhalt der QuelleZHANG, Xuan, Qing-Qing SHEN, Zhong-Yi LI, Song-Hua TANG und Ying-She LUO. „Experimental Study on Fire Resistance of Reinforced Concrete Frame Structure“. In 2014 International Conference on Mechanics and Civil Engineering (icmce-14). Paris, France: Atlantis Press, 2014. http://dx.doi.org/10.2991/icmce-14.2014.186.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Fire resistance of concrete"
Bisby, Luke, Hossein Mostafaei und Pierre Pimienta. White paper on fire resistance of concrete structures. Gaithersburg, MD: National Institute of Standards and Technology, September 2014. http://dx.doi.org/10.6028/nist.gcr.15-983.
Der volle Inhalt der QuelleYang, Hua, Faqi Liu, Yuyin Wang und Sumei Zhang. FIRE RESISTANCE DESIGN OF CIRCULAR STEEL TUBE CONFINED REINFORCED CONCRETE COLUMNS. The Hong Kong Institute of Steel Construction, Dezember 2018. http://dx.doi.org/10.18057/icass2018.p.094.
Der volle Inhalt der QuellePhan, Long T., Therese P. McAllister, John L. Gross und Morgan J. Hurley, Hrsg. Best practice guidelines for structural fire resistance design of concrete and steel buildings. National Institute of Standards and Technology, November 2010. http://dx.doi.org/10.6028/nist.tn.1681.
Der volle Inhalt der QuelleMao, Xiao-Yong, Li-Ren Zhou und Zhen Zhang. EXPERIMENTAL STUDY AND THEORETIC ANALYSIS ON FIRE RESISTANCE OF ANGLE STEEL STRENGTHENED REINFORCED CONCRETE COLUMNS. The Hong Kong Institute of Steel Construction, Dezember 2018. http://dx.doi.org/10.18057/icass2018.p.099.
Der volle Inhalt der QuelleEbeling, Robert, und Barry White. Load and resistance factors for earth retaining, reinforced concrete hydraulic structures based on a reliability index (β) derived from the Probability of Unsatisfactory Performance (PUP) : phase 2 study. Engineer Research and Development Center (U.S.), März 2021. http://dx.doi.org/10.21079/11681/39881.
Der volle Inhalt der QuelleClifton, James R. The frost-resistance of concrete. Gaithersburg, MD: National Institute of Standards and Technology, 1990. http://dx.doi.org/10.6028/nist.ir.90-4229.
Der volle Inhalt der QuelleGold, Vladimir M. Analysis of the Penetration Resistance of Concrete. Fort Belvoir, VA: Defense Technical Information Center, August 1997. http://dx.doi.org/10.21236/ada329140.
Der volle Inhalt der QuellePhan, L. T. Fire performance of high-strength concrete:. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.ir.5934.
Der volle Inhalt der QuelleGross, John, Frederick Hervey, Mark Izydorek, John Mammoser und Joseph Treadway. Fire resistance tests of floor truss systems. Gaithersburg, MD: National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.ncstar.1-6b.
Der volle Inhalt der QuelleWhite, Robert H. Fire resistance of structural composite lumber products. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2006. http://dx.doi.org/10.2737/fpl-rp-633.
Der volle Inhalt der Quelle