Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Finite-Temperature properties“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Finite-Temperature properties" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Finite-Temperature properties"
Ishii, Noriyoshi, Hideo Suganuma und Hideo Matsufuru. „Glueball properties at finite temperature“. Nuclear Physics B - Proceedings Supplements 106-107 (März 2002): 516–18. http://dx.doi.org/10.1016/s0920-5632(01)01765-0.
Der volle Inhalt der QuelleDrabold, David A., P. A. Fedders, Stefan Klemm und Otto F. Sankey. „Finite-temperature properties of amorphous silicon“. Physical Review Letters 67, Nr. 16 (14.10.1991): 2179–82. http://dx.doi.org/10.1103/physrevlett.67.2179.
Der volle Inhalt der QuelleSeibert, David, und Charles Gale. „Measuring hadron properties at finite temperature“. Physical Review C 52, Nr. 2 (01.08.1995): R490—R494. http://dx.doi.org/10.1103/physrevc.52.r490.
Der volle Inhalt der QuelleJaklič, J., und P. Prelovšek. „Finite-temperature properties of doped antiferromagnets“. Advances in Physics 49, Nr. 1 (Januar 2000): 1–92. http://dx.doi.org/10.1080/000187300243381.
Der volle Inhalt der QuelleLiu, Hanbin, und Kenneth D. Jordan. „Finite Temperature Properties of (CO2)nClusters“. Journal of Physical Chemistry A 107, Nr. 30 (Juli 2003): 5703–9. http://dx.doi.org/10.1021/jp0345295.
Der volle Inhalt der QuelleHAN, FUXIANG, und YONGMEI ZHANG. „FINITE TEMPERATURE PROPERTIES OF OPTICAL LATTICES“. International Journal of Modern Physics B 19, Nr. 31 (20.12.2005): 4567–86. http://dx.doi.org/10.1142/s0217979205032942.
Der volle Inhalt der QuelleJu, Nengjiu, und Aurel Bulgac. „Finite-temperature properties of sodium clusters“. Physical Review B 48, Nr. 4 (15.07.1993): 2721–32. http://dx.doi.org/10.1103/physrevb.48.2721.
Der volle Inhalt der QuelleWu, K. L., S. K. Lai und W. D. Lin. „Finite temperature properties for zinc nanoclusters“. Molecular Simulation 31, Nr. 6-7 (Mai 2005): 399–403. http://dx.doi.org/10.1080/08927020412331332749.
Der volle Inhalt der Quellede Oliveira, N. A., und A. A. Gomes. „Laves phase pseudobinaries: finite temperature properties“. Journal of Magnetism and Magnetic Materials 117, Nr. 1-2 (November 1992): 169–74. http://dx.doi.org/10.1016/0304-8853(92)90307-a.
Der volle Inhalt der QuelleYang, Jie, Jue-lian Shen und Hai-qing Lin. „Finite Temperature Properties of The FrustratedJ1-J2Model“. Journal of the Physical Society of Japan 68, Nr. 7 (15.07.1999): 2384–89. http://dx.doi.org/10.1143/jpsj.68.2384.
Der volle Inhalt der QuelleDissertationen zum Thema "Finite-Temperature properties"
Burnett, Mark Michael Stoddard Elizabeth P. „Single-particle properties of nuclear matter at finite temperature“. Diss., UMK access, 2007.
Den vollen Inhalt der Quelle finden"A thesis in physics." Typescript. Advisor: Elizabeth P. Stoddard. Vita. Title from "catalog record" of the print edition Description based on contents viewed Dec. 18, 2007. Includes bibliographical references (leaf 23). Online version of the print edition.
Moretto, Therese. „Structure and properties of hadrons at zero and finite temperature“. Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335764.
Der volle Inhalt der QuelleRobaina, Fernandez Daniel [Verfasser]. „Static and dynamic properties of QCD at finite temperature / Daniel Robaina Fernandez“. Mainz : Universitätsbibliothek Mainz, 2016. http://d-nb.info/1106573382/34.
Der volle Inhalt der QuelleWilliams, Michael Eric. „Ab-initio elastic and thermodynamic properties of high-temperature cubic intermetallics at finite temperatures“. [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2779.
Der volle Inhalt der QuelleZhong, Anruo. „Machine learning and adaptive sampling to predict finite-temperature properties in metallic materials at the atomic scale“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP107.
Der volle Inhalt der QuelleThe properties and behaviors of materials under extreme conditions are essential for energy systems such as fission and fusion reactors. However, accurately predicting the properties of materials at high temperatures remains challenging. Direct measurements of these properties are constrained by experimental instrument limitations, and atomic-scale simulations based on empirical force fields are often unreliable due to a lack of accuracy. This problem can be addressed using machine learning techniques, which have recently become widely used in materials research. Machine learning force fields achieve the accuracy of ab initio calculations; however, their implementation in sampling methods is limited by high computational costs, typically several orders of magnitude greater than those of traditional force fields. To overcome this limitation, this thesis has two objectives: (i) developing machine learning force fields with a better accuracy-efficiency trade-off, and (ii) creating accelerated sampling methods to facilitate the use of computationally expensive machine learning force fields and accurately estimate free energy. For the first objective, we enhance the construction of machine learning force fields by focusing on three key factors: the database, the descriptor of local atomic environments, and the regression model. Within the framework of Gaussian process regression, we propose and optimize descriptors based on Fourier-sampled kernels and novel sparse points selection methods for kernel regression. For the second objective, we develop a fast and robust Bayesian sampling scheme for estimating the fully anharmonic free energy, which is crucial for understanding temperature effects in crystalline solids, utilizing an improved adaptive biasing force method. This method performs a thermodynamic integration from a harmonic reference system, where numerical instabilities associated with zero frequencies are screened off. The proposed sampling method significantly improves convergence speed and overall accuracy. We demonstrate the efficiency of the improved method by calculating the second-order derivatives of the free energy, such as the elastic constants, which are computed several hundred times faster than with standard methods. This approach enables the prediction of the thermodynamic properties of tungsten and Ta-Ti-V-W high-entropy alloys at temperatures that cannot be investigated experimentally, up to their melting point, with ab initio accuracy by employing accurate machine learning force fields. An extension of this method allows for the sampling of a specified metastable state without transitions between different energy basins, thereby providing the formation and binding free energies of defective configurations. This development helps to explain the mechanism behind the observation of voids in tungsten, which cannot be explained by existing ab initio calculations. The free energy profile of vacancies in the Ta-Ti-V-W system is also computed for the first time. Finally, we validate the application of this free energy sampling method to liquids. The accuracy and numerical efficiency of the proposed computational framework, which combines machine learning force fields and enhanced sampling methods, opens up numerous possibilities for the reliable prediction of finite-temperature material properties
Moomaw, Peter. „Drooped Strings and Dressed Mesons: Implications of Gauge-Gravity Duality for the Properties of Heavy-Light Mesons at Finite Temperature“. University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1250538856.
Der volle Inhalt der QuelleWalander, Tomas. „Influences of temperature, fatigue and mixed mode loading on the cohesive properties of adhesive layers“. Doctoral thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-10972.
Der volle Inhalt der QuelleSeru, Vikas Vineeth, und Venkata Ramana Murthy Polinati. „Modelling and Simulation of Hydrogen Diffusion in High Strength Steel“. Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21128.
Der volle Inhalt der QuelleCaraballo, Simon. „Thermo-Mechanical Beam Element for Analyzing Stresses in Functionally Graded Materials“. Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3024.
Der volle Inhalt der QuelleRahmanian, Ima. „Thermal and mechanical properties of gypsum boards and their influences on fire resistance of gypsum board based systems“. Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/thermal-and-mechanical-properties-of-gypsum-boards-and-their-influences-on-fire-resistance-of-gypsum-board-based-systems(d8eb4bf5-706a-4264-911f-9584ebfbbc83).html.
Der volle Inhalt der QuelleBücher zum Thema "Finite-Temperature properties"
C, Robinson James, und Langley Research Center, Hrsg. Procedure for imolementation of temperature-dependent mechanical property capability in the Engineering Analysis Language (EAL) system. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Den vollen Inhalt der Quelle findenCenter, Langley Research, Hrsg. Micromechanics analysis of space simulated thermal deformations and stresses in continuous fiber reinforced composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Den vollen Inhalt der Quelle findenA, Miller Robert, und Lewis Research Center, Hrsg. Determination of creep behavior of thermal barrier coatings under laser imposed temperature and stress gradients. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1997.
Den vollen Inhalt der Quelle findenEckle, Hans-Peter. Models of Quantum Matter. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199678839.001.0001.
Der volle Inhalt der QuelleEriksson, Olle, Anders Bergman, Lars Bergqvist und Johan Hellsvik. Atomistic Spin Dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788669.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Finite-Temperature properties"
Calles, A., und A. Cabrera. „Finite Temperature Properties for the Electron Gas with Localization up to 3 Dimensions“. In Condensed Matter Theories, 37–46. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0605-4_5.
Der volle Inhalt der QuelleFang, Miaomiao, Yuqi Wang, Jiaxin Liu und Fan Sun. „Research on Support Damage of Highway Bridge Based on Midas“. In Lecture Notes in Civil Engineering, 330–37. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1260-3_30.
Der volle Inhalt der QuelleRabhi, F., G. Cheng und T. Barriere. „Modeling of Viscoelasticity of Thermoplastic Polymers Employed in the Hot Embossing Process“. In Lecture Notes in Mechanical Engineering, 251–60. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-58006-2_19.
Der volle Inhalt der QuelleLi, Xu, Weiqin Liu, Jinxi Qin, Xiuxing Zhao und Jie Chen. „Study on Strain Characteristics of Long Longitudinal Slope Asphalt Pavement Surface“. In Lecture Notes in Civil Engineering, 421–30. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4355-1_39.
Der volle Inhalt der QuelleNayak, Soumyaranjan, Abhishek Kumar Singh, Hina Gokhale, M. J. N. V. Prasad und K. Narasimhan. „A Numerical Study to Analyze the Effect of Process Parameters on Ring Rolling of Ti-6Al-4V Alloy by Response Surface Methodology“. In Lecture Notes in Mechanical Engineering, 315–35. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-58006-2_25.
Der volle Inhalt der QuelleYang, Zhaochun. „Influence of Temperature on Material Properties“. In Material Modeling in Finite Element Analysis, 35–42. 2. Aufl. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003436317-6.
Der volle Inhalt der QuelleXu, Yangjian, Daihui Tu und Chunping Xiao. „Nonlinear Finite Element Analysis of Convective Heat Transfer Steady Thermal Stresses in a ZrO2 /FGM/Ti-6Al-4V Composite EFBF Plate with Temperature-Dependent Material Properties“. In Ceramic Transactions Series, 265–71. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470640845.ch37.
Der volle Inhalt der QuelleBetts, D. D., S. Masui und N. Vats. „Enhancement of the Finite Lattice Method for Estimating the Zero Temperature Properties of Quantum Spin Systems in Two Dimensions with Application to the S = 1/2 XY Ferromagnet on the Square Lattice“. In Recent Progress in Many-Body Theories, 255–61. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1937-9_23.
Der volle Inhalt der QuelleWerzner, Eric, Miguel A. A. Mendes, Cornelius Demuth, Dimosthenis Trimis und Subhashis Ray. „Simulation of Fluid Flow, Heat Transfer and Particle Transport Inside Open-Cell Foam Filters for Metal Melt Filtration“. In Multifunctional Ceramic Filter Systems for Metal Melt Filtration, 301–33. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-40930-1_13.
Der volle Inhalt der QuelleZinn-Justin, Jean. „Quantum field theory (QFT) at finite temperature: Equilibrium properties“. In Quantum Field Theory and Critical Phenomena, 786–830. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198834625.003.0033.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Finite-Temperature properties"
Ryan, Thomas P., Robert C. Platt, Jeffery S. Dadd und Stanley Humphries. „Tissue Electrical Properties As a Function of Thermal Dose for Use in a Finite Element Model“. In ASME 1997 International Mechanical Engineering Congress and Exposition, 167–71. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1330.
Der volle Inhalt der QuelleHumphries, Stanley, Robert C. Platt und Thomas P. Ryan. „Finite-Element Codes to Model Electrical Heating and Non-Linear Thermal Transport in Biological Media“. In ASME 1997 International Mechanical Engineering Congress and Exposition, 131–34. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1324.
Der volle Inhalt der QuelleTorres-Rincon, Juan, Glòria Montaña, Angels Ramos und Laura Tolos. „Finite-temperature effects on D-meson properties“. In 10th International Workshop on Charm Physics. Trieste, Italy: Sissa Medialab, 2021. http://dx.doi.org/10.22323/1.385.0040.
Der volle Inhalt der QuelleAprilia, A., und A. Sulaksono. „Properties of fermionic dark stars at finite temperature“. In PROCEEDINGS OF THE 5TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES (ISCPMS2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0007856.
Der volle Inhalt der QuelleColò, Gianluca, Pier Francesco Bortignon, Nguyen Van Giai, Angela Bracco und Ricardo A. Broglia. „Properties of giant resonances at zero and finite temperature“. In Future Directions in Nuclear Physics with 4π Gamma Detection Systems of the New Generation. AIP, 1992. http://dx.doi.org/10.1063/1.42584.
Der volle Inhalt der QuelleOhno, Hiroshi, Heng-Tong Ding und Olaf Kaczmarek. „Quark mass dependence of quarkonium properties at finite temperature“. In The 32nd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.214.0219.
Der volle Inhalt der QuelleSator, Ladislav, und Miroslav Repka. „Analysis of Temperature Fields in FGM Micro/Nano Solids by Moving Finite Element Method“. In 2023 IEEE 13th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2023. http://dx.doi.org/10.1109/nap59739.2023.10310824.
Der volle Inhalt der QuelleLee, Geoff M., Ashton S. Bradley und Matthew J. Davis. „Coherence Properties of a Continuously Pumped Atom Laser at Finite Temperature“. In Quantum-Atom Optics Downunder. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/qao.2007.qwe26.
Der volle Inhalt der QuellePapa, Alessandro, Oleg Borisenko, Vladimir Chelnokov, Gennaro Cortese, Mario Gravina und Ivan Surzhikov. „Critical properties of 3D Z(N) lattice gauge theories at finite temperature“. In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0463.
Der volle Inhalt der QuelleManjang, Salama, und Bidayatul Armynah. „The Radial Distribution of Temperature in XLPE Cable an Analysis The Finite Element Numerical Method“. In 2006 IEEE 8th International Conference on Properties and applications of Dielectric Materials. IEEE, 2006. http://dx.doi.org/10.1109/icpadm.2006.284209.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Finite-Temperature properties"
Lui, Rui, Cheng Zhu, John Schmalzel, Daniel Offenbacker, Yusuf Mehta, Benjamin Barrowes, Danney Glaser und Wade Lein. Experimental and numerical analyses of soil electrical resistivity under subfreezing conditions. Engineer Research and Development Center (U.S.), April 2024. http://dx.doi.org/10.21079/11681/48430.
Der volle Inhalt der QuelleJung. L52232 Weld Metal Cooling Rate Prediction of Narrow Groove Pipeline Girth Welds FEA Modeling. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Januar 2008. http://dx.doi.org/10.55274/r0011321.
Der volle Inhalt der QuelleKamai, Tamir, Gerard Kluitenberg und Alon Ben-Gal. Development of heat-pulse sensors for measuring fluxes of water and solutes under the root zone. United States Department of Agriculture, Januar 2016. http://dx.doi.org/10.32747/2016.7604288.bard.
Der volle Inhalt der QuelleLOW-TEMPERATURE COMPRESSION BEHAVIOUR OF CIRCULAR STUB STAINLESS-STEEL TUBULAR COLUMNS. The Hong Kong Institute of Steel Construction, September 2022. http://dx.doi.org/10.18057/ijasc.2022.18.3.4.
Der volle Inhalt der Quelle