Dissertationen zum Thema „Finite groups“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Finite groups" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Mkiva, Soga Loyiso Tiyo. „The non-cancellation groups of certain groups which are split extensions of a finite abelian group by a finite rank free abelian group“. Thesis, University of the Western Cape, 2008. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_8520_1262644840.
Der volle Inhalt der Quelle 
The groups we consider in this study belong to the class X0 of all finitely generated groups with finite commutator subgroups.
Marion, Claude Miguel Emmanuel. „Triangle groups and finite simple groups“. Thesis, Imperial College London, 2009. http://hdl.handle.net/10044/1/4371.
Der volle Inhalt der QuelleGeorge, Timothy Edward. „Symmetric representation of elements of finite groups“. CSUSB ScholarWorks, 2006. https://scholarworks.lib.csusb.edu/etd-project/3105.
Der volle Inhalt der QuelleWegner, Alexander. „The construction of finite soluble factor groups of finitely presented groups and its application“. Thesis, University of St Andrews, 1992. http://hdl.handle.net/10023/12600.
Der volle Inhalt der QuelleBujard, Cédric. „Finite subgroups of the extended Morava stabilizer groups“. Thesis, Strasbourg, 2012. http://www.theses.fr/2012STRAD010/document.
Der volle Inhalt der QuelleThe problem addressed is the classification up to conjugation of the finite subgroups of the (classical) Morava stabilizer group S_n and the extended Morava stabilizer group G_n(u) associated to a formal group law F of height n over the field F_p of p elements. A complete classification in S_n is provided for any positive integer n and prime p. Furthermore, we show that the classification in the extended group also depends on F and its associated unit u in the ring of p-adic integers. We provide a theoretical framework for the classification in G_n(u), we give necessary and sufficient conditions on n, p and u for the existence in G_n(u) of extensions of maximal finite subgroups of S_n by the Galois group of F_{p^n} over F_p, and whenever such extension exist we enumerate their conjugacy classes. We illustrate our methods by providing a complete and explicit classification in the case n=2
McDougall-Bagnall, Jonathan M. „Generation problems for finite groups“. Thesis, University of St Andrews, 2011. http://hdl.handle.net/10023/2529.
Der volle Inhalt der QuelleMenezes, Nina E. „Random generation and chief length of finite groups“. Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3578.
Der volle Inhalt der QuelleJÃnior, Raimundo de AraÃjo Bastos. „Commutators in finite groups“. Universidade Federal do CearÃ, 2010. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5496.
Der volle Inhalt der QuelleOs problemas que abordaremos estÃo diretamente associados à existÃncia de elementos no subgrupo derivado que nÃo sÃo comutadores. Nosso objetivo serà apresentar os resultados de Tim Bonner, que sÃo estimativas para a razÃo entre o comprimento do derivado e a ordem do grupo (limitaÃÃo superior e determinaÃÃo do "comportamento assintÃtico"), culminando com uma prova da conjectura de Bardakov.
The problems which we address in this work are directly related to the existence of elements in the derived subgroup that are not commutators. Our purpose is to present the results of Tim Bonner [1]. In his paper, one finds estimates for the ratio between the commutator length and the order of group (more precisely, upper limits and the establishment of its asymptotic behavior), leading to the proof of Bardakov's Conjecture.
Stavis, Andreas. „Representations of finite groups“. Thesis, Karlstads universitet, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-69642.
Der volle Inhalt der QuelleTorres, Bisquertt María de la Luz. „Symmetric generation of finite groups“. CSUSB ScholarWorks, 2005. https://scholarworks.lib.csusb.edu/etd-project/2625.
Der volle Inhalt der QuelleKasouha, Abeir Mikhail. „Symmetric representations of elements of finite groups“. CSUSB ScholarWorks, 2004. https://scholarworks.lib.csusb.edu/etd-project/2605.
Der volle Inhalt der QuelleRuengrot, Pornrat. „Perfect isometry groups for blocks of finite groups“. Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/perfect-isometry-groups-for-blocks-of-finite-groups(092f1a9a-1583-4e8e-b285-a77c49e48765).html.
Der volle Inhalt der QuelleMartin, Stuart. „Quivers and the modular representation theory of finite groups“. Thesis, University of Oxford, 1988. http://ora.ox.ac.uk/objects/uuid:59d4dc72-60e5-4424-9e3c-650eb2b1d050.
Der volle Inhalt der QuelleWalton, Jacqueline. „Representing the quotient groups of a finite permutation group“. Thesis, University of Warwick, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340088.
Der volle Inhalt der QuelleWetherell, Chris. „Subnormal structure of finite soluble groups“. View thesis entry in Australian Digital Theses Program, 2001. http://thesis.anu.edu.au/public/adt-ANU20020607.121248/index.html.
Der volle Inhalt der QuelleBrown, Scott. „Finite reducible matrix algebras“. University of Western Australia. School of Mathematics and Statistics, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0079.
Der volle Inhalt der QuelleBadar, Muhammad. „Dynamical Systems Over Finite Groups“. Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-17948.
Der volle Inhalt der QuelleBidwell, Jonni, und n/a. „Computing automorphisms of finite groups“. University of Otago. Department of Mathematics & Statistics, 2007. http://adt.otago.ac.nz./public/adt-NZDU20070320.162909.
Der volle Inhalt der QuelleClark, Jonathan Owen. „Cohomology of some finite groups“. Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240535.
Der volle Inhalt der QuelleFlavell, Paul. „Some topics on finite groups“. Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257944.
Der volle Inhalt der QuelleCraven, David Andrew. „Algebraic modules for finite groups“. Thesis, University of Oxford, 2007. http://ora.ox.ac.uk/objects/uuid:7f641b33-d301-4445-8269-a5a33f4b7e5e.
Der volle Inhalt der QuelleSoicher, L. H. „Presentations of some finite groups“. Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332999.
Der volle Inhalt der QuelleKing, Carlisle. „Generation of finite simple groups“. Thesis, Imperial College London, 2018. http://hdl.handle.net/10044/1/63863.
Der volle Inhalt der QuelleMohammed, Salih Haval M. „Finite groups of small genus“. Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5574/.
Der volle Inhalt der QuelleSannella, Stefano. „Broué's conjecture for finite groups“. Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8462/.
Der volle Inhalt der QuelleMorris, Thomas Bembridge Slater. „Nilpotent injectors in finite groups“. Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/3066/.
Der volle Inhalt der QuelleLevy, Matthew. „Word values in finite groups“. Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/23929.
Der volle Inhalt der QuelleBradford, Henry. „Spectral properties of finite groups“. Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:10babab2-8d11-4d53-aea8-7479b868a57d.
Der volle Inhalt der QuelleMcHugh, John. „Monomial Characters of Finite Groups“. ScholarWorks @ UVM, 2016. http://scholarworks.uvm.edu/graddis/572.
Der volle Inhalt der QuelleTaylor, Paul Anthony. „Computational investigation into finite groups“. Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/computational-investigation-into-finite-groups(8fe69098-a2d0-4717-b8d3-c91785add68c).html.
Der volle Inhalt der QuelleNenciu, Adriana. „Character tables of finite groups“. [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0014824.
Der volle Inhalt der QuelleJackson, Jack Lee. „Splitting in finite metacyclic groups“. Diss., The University of Arizona, 1999. http://hdl.handle.net/10150/289018.
Der volle Inhalt der QuelleErsoy, Kivanc. „Centralizers Of Finite Subgroups In Simple Locally Finite Groups“. Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610850/index.pdf.
Der volle Inhalt der QuelleMajid, Shahn, und Andreas Cap@esi ac at. „Riemannian Geometry of Quantum Groups and Finite Groups with“. ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi902.ps.
Der volle Inhalt der QuelleHowden, David J. A. „Computing automorphism groups and isomorphism testing in finite groups“. Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/50060/.
Der volle Inhalt der QuelleHelleloid, Geir T. „Automorphism groups of finite p-groups : structure and applications /“. May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Der volle Inhalt der QuelleXu, Jing. „On closures of finite permutation groups /“. Connect to this title, 2005. http://theses.library.uwa.edu.au/adt-WU2006.0023.
Der volle Inhalt der QuelleSemikina, Iuliia [Verfasser]. „G-theory of group rings for finite groups / Iuliia Semikina“. Bonn : Universitäts- und Landesbibliothek Bonn, 2018. http://d-nb.info/1173789642/34.
Der volle Inhalt der QuelleCrawley-Boevey, W. W. „Polycyclic-by-finite affine group schemes and infinite soluble groups“. Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372868.
Der volle Inhalt der QuellePeterson, Aaron. „Pipe diagrams for Thompson's Group F /“. Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1959.pdf.
Der volle Inhalt der QuelleSanders, Paul Anthony. „Some 2-groups and their automorphism groups“. Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329987.
Der volle Inhalt der QuelleXu, Jing. „On closures of finite permutation groups“. University of Western Australia. School of Mathematics and Statistics, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0023.
Der volle Inhalt der QuelleIniguez-Goizueta, Ainhoa. „Word fibres in finite p-groups and pro-p groups“. Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:3a9cfc11-d171-4876-82b3-7dff012c3a70.
Der volle Inhalt der QuelleWetherell, Chris, und chrisw@wintermute anu edu au. „Subnormal Structure of Finite Soluble Groups“. The Australian National University. Faculty of Science, 2001. http://thesis.anu.edu.au./public/adt-ANU20020607.121248.
Der volle Inhalt der QuelleSzechtman, Fernando. „Weil representations of finite symplectic groups“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0006/NQ39598.pdf.
Der volle Inhalt der QuelleQuinlan, Rachel. „Irreducible projective representations of finite groups“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ59658.pdf.
Der volle Inhalt der QuelleDuncan, Alexander Rhys. „Finite groups of low essential dimension“. Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/35116.
Der volle Inhalt der QuelleMartino, Ivan. „The Ekedahl Invariants for finite groups“. Licentiate thesis, Stockholms universitet, Matematiska institutionen, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-94950.
Der volle Inhalt der QuelleBamblett, Jane Carswell. „Algorithms for computing in finite groups“. Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240616.
Der volle Inhalt der QuelleSinanan, Shavak. „Algorithms for polycyclic-by-finite groups“. Thesis, University of Warwick, 2011. http://wrap.warwick.ac.uk/49186/.
Der volle Inhalt der Quelle