Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Finite differences.

Zeitschriftenartikel zum Thema „Finite differences“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Finite differences" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Adam, David. „Finite differences in finite characteristic“. Journal of Algebra 296, Nr. 1 (Februar 2006): 285–300. http://dx.doi.org/10.1016/j.jalgebra.2005.05.036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kumar, Anand. „Isotropic finite-differences“. Journal of Computational Physics 201, Nr. 1 (November 2004): 109–18. http://dx.doi.org/10.1016/j.jcp.2004.05.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Thomée, Vidar. „From finite differences to finite elements“. Journal of Computational and Applied Mathematics 128, Nr. 1-2 (März 2001): 1–54. http://dx.doi.org/10.1016/s0377-0427(00)00507-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jones, Michael A. „A Difference Equation Approach to Finite Differences of Polynomials“. College Mathematics Journal 51, Nr. 5 (12.11.2020): 375–77. http://dx.doi.org/10.1080/07468342.2020.1760065.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wehrse, R. „Radiative Transfer with Finite Differences and Finite Elements“. EAS Publications Series 28 (2008): 129–34. http://dx.doi.org/10.1051/eas:0828018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Carpenter, Mark H., und John Otto. „High-Order "Cyclo-Difference" Techniques: An Alternative to Finite Differences“. Journal of Computational Physics 118, Nr. 2 (Mai 1995): 242–60. http://dx.doi.org/10.1006/jcph.1995.1096.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Stern, M. D., und Gordon Reece. „Microcomputer Modelling by Finite Differences“. Mathematical Gazette 71, Nr. 458 (Dezember 1987): 332. http://dx.doi.org/10.2307/3617088.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Rhoads, Kathryn, und James A. Mendoza Alvarez. „Data Modeling Using Finite Differences“. Mathematics Teacher 110, Nr. 9 (Mai 2017): 709–13. http://dx.doi.org/10.5951/mathteacher.110.9.0709.

Der volle Inhalt der Quelle
Annotation:
The Common Core State Standards for Mathematics (CCSSM) states that high school students should be able to recognize patterns of growth in linear, quadratic, and exponential functions and construct such functions from tables of data (CCSSI 2010). Accordingly, many high school curricula include a method that uses finite differences between data points to generate polynomial functions. That is, students may examine differences between successive output values (called first differences), successive differences of the first differences (second differences), or successive differences of the (n - 1)th differences (nth-order differences), and rely on the following:
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chen, E. Jack. „Derivative Estimation with Finite Differences“. SIMULATION 79, Nr. 10 (Oktober 2003): 598–609. http://dx.doi.org/10.1177/0037549703039951.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wenchang, Chu. „Finite differences and determinant identities“. Linear Algebra and its Applications 430, Nr. 1 (Januar 2009): 215–28. http://dx.doi.org/10.1016/j.laa.2007.08.044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Magnier, Sophie‐Adélade, Peter Mora und Albert Tarantola. „Finite differences on minimal grids“. GEOPHYSICS 59, Nr. 9 (September 1994): 1435–43. http://dx.doi.org/10.1190/1.1443700.

Der volle Inhalt der Quelle
Annotation:
Conventional approximations to space derivatives by finite differences use orthogonal grids. To compute second‐order space derivatives in a given direction, two points are used. Thus, 2N points are required in a space of dimension N; however, a centered finite‐difference approximation to a second‐order derivative may be obtained using only three points in 2-D (the vertices of a triangle), four points in 3-D (the vertices of a tetrahedron), and in general, N + 1 points in a space of dimension N. A grid using N + 1 points to compute derivatives is called minimal. The use of minimal grids does not introduce any complication in programming and suppresses some artifacts of the nonminimal grids. For instance, the well‐known decoupling between different subgrids for isotropic elastic media does not happen when using minimal grids because all the components of a given tensor (e.g., displacement or stress) are known at the same points. Some numerical tests in 2-D show that the propagation of waves is as accurate as when performed with conventional grids. Although this method may have less intrinsic anisotropies than the conventional method, no attempt has yet been made to obtain a quantitative estimation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Spivey, Michael Z. „Combinatorial sums and finite differences“. Discrete Mathematics 307, Nr. 24 (November 2007): 3130–46. http://dx.doi.org/10.1016/j.disc.2007.03.052.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Brighi, Bernard, Michel Chipot und Erich Gut. „Finite differences on triangular grids“. Numerical Methods for Partial Differential Equations 14, Nr. 5 (September 1998): 567–79. http://dx.doi.org/10.1002/(sici)1098-2426(199809)14:5<567::aid-num2>3.0.co;2-g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Jerome, John Soundar. „Identities arising from finite differences“. Resonance 9, Nr. 11 (November 2004): 68–71. http://dx.doi.org/10.1007/bf02834974.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Iserles, A. „Order Stars, Approximations and Finite Differences. III Finite Differences for $u_t = \omega u_{xx} $“. SIAM Journal on Mathematical Analysis 16, Nr. 5 (September 1985): 1020–33. http://dx.doi.org/10.1137/0516076.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

O'Leary, D. P. „Finite Differences and Finite Elements: Getting to Know You“. Computing in Science and Engineering 7, Nr. 3 (Mai 2005): 72–79. http://dx.doi.org/10.1109/mcse.2005.49.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Yano, H., A. Kieda und K. Nishioka. „A combined scheme of finite elements and finite differences“. Journal of the Franklin Institute 326, Nr. 1 (Januar 1989): 131–37. http://dx.doi.org/10.1016/0016-0032(89)90065-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Kawada, Naoki, Takeshi Yoda, Norio Tagawa, Takao Tsuchiya und Kan Okubo. „Evaluation of Acoustic Simulation Using Wave Equation Finite Difference Time Domain Method with Compact Finite Differences“. Japanese Journal of Applied Physics 51, Nr. 7S (01.07.2012): 07GG06. http://dx.doi.org/10.7567/jjap.51.07gg06.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Kawada, Naoki, Takeshi Yoda, Norio Tagawa, Takao Tsuchiya und Kan Okubo. „Evaluation of Acoustic Simulation Using Wave Equation Finite Difference Time Domain Method with Compact Finite Differences“. Japanese Journal of Applied Physics 51 (20.07.2012): 07GG06. http://dx.doi.org/10.1143/jjap.51.07gg06.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Selmin, V. „The node-centred finite volume approach: Bridge between finite differences and finite elements“. Computer Methods in Applied Mechanics and Engineering 102, Nr. 1 (Januar 1993): 107–38. http://dx.doi.org/10.1016/0045-7825(93)90143-l.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Bossavit, A. „'Generalized Finite Differences' in Computational Electromagnetics“. Progress In Electromagnetics Research 32 (2001): 45–64. http://dx.doi.org/10.2528/pier00080102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Chu, W. „Finite Differences and Terminating Hypergeometric Series“. Irish Mathematical Society Bulletin 0078 (2016): 31–45. http://dx.doi.org/10.33232/bims.0078.31.45.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Levant, Arie. „Finite Differences in Homogeneous Discontinuous Control“. IEEE Transactions on Automatic Control 52, Nr. 7 (Juli 2007): 1208–17. http://dx.doi.org/10.1109/tac.2007.900825.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Seaton, K. A., und J. Armstrong. „Polynomial cancellation coding and finite differences“. IEEE Transactions on Information Theory 46, Nr. 1 (2000): 311–13. http://dx.doi.org/10.1109/18.817533.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Gyarmati, Katalin, François Hennecart und Imre Z. Ruzsa. „Sums and differences of finite sets“. Functiones et Approximatio Commentarii Mathematici 37, Nr. 1 (Januar 2007): 175–86. http://dx.doi.org/10.7169/facm/1229618749.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Monserrat, Bartomeu. „Electron–phonon coupling from finite differences“. Journal of Physics: Condensed Matter 30, Nr. 8 (01.02.2018): 083001. http://dx.doi.org/10.1088/1361-648x/aaa737.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Brezzi, Franco, Annalisa Buffa und Konstantin Lipnikov. „Mimetic finite differences for elliptic problems“. ESAIM: Mathematical Modelling and Numerical Analysis 43, Nr. 2 (05.12.2008): 277–95. http://dx.doi.org/10.1051/m2an:2008046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Marcone, Alberto, Franco Parlamento und Alberto Policriti. „Finite families with few symmetric differences“. Proceedings of the American Mathematical Society 127, Nr. 3 (1999): 835–45. http://dx.doi.org/10.1090/s0002-9939-99-04751-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Adam, David, und Youssef Fares. „Integer-valued Euler–Jackson’s finite differences“. Monatshefte für Mathematik 161, Nr. 1 (02.04.2009): 15–32. http://dx.doi.org/10.1007/s00605-009-0111-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Ballantine, Cristina, und Mircea Merca. „Finite differences of Euler's zeta function“. Miskolc Mathematical Notes 18, Nr. 2 (2017): 639. http://dx.doi.org/10.18514/mmn.2017.2256.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Allen, Paul T. „Boundary Value Problems and Finite Differences“. College Mathematics Journal 47, Nr. 1 (Januar 2016): 34–41. http://dx.doi.org/10.4169/college.math.j.47.1.34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Leitão, V. M. A. „Generalized finite differences using fundamental solutions“. International Journal for Numerical Methods in Engineering 81, Nr. 5 (24.07.2009): 564–83. http://dx.doi.org/10.1002/nme.2697.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Li, Brandon. „2D Microwave Simulation Using Finite Differences“. Cornell Undergraduate Research Journal 1, Nr. 1 (28.04.2022): 74–83. http://dx.doi.org/10.37513/curj.v1i1.659.

Der volle Inhalt der Quelle
Annotation:
We derive a finite difference scheme to numerically simulate the propagation of microwaves in a 2D domain with reflective obstacles. An analysis of the consistency and stability of this method is performed, leading to a rigorous justification of its convergence. Following this, we discuss the boundary conditions and derive the mathematical form for energy flux. Finally, the numerical approximation is compared against prior experimental results. The simulation was found to have been able to predict the distribution of interference maxima and minima with some accuracy, but it was seen to be less effective in predicting average intensities. The advantages and disadvantages of these techniques are then discussed along with possible avenues for improvement.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Song, Xiaolei, Sergey Fomel und Lexing Ying. „Lowrank finite-differences and lowrank Fourier finite-differences for seismic wave extrapolation in the acoustic approximation“. Geophysical Journal International 193, Nr. 2 (28.02.2013): 960–69. http://dx.doi.org/10.1093/gji/ggt017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Ochilov, Sherali Baratovich, Gulrukh Djumanazarovna Khasanova und Oisha Kurbanovna Khudayberdieva. „Method For Constructing Correlation Dependences For Functions Of Many Variables Used Finite Differences“. American Journal of Management and Economics Innovations 03, Nr. 05 (31.05.2021): 46–52. http://dx.doi.org/10.37547/tajmei/volume03issue05-08.

Der volle Inhalt der Quelle
Annotation:
The article considers a method for constructing correlation models for finite-type functions using a set of variables. The use of the method of unknown squares in the construction of correlation models and the construction of higher-quality models is also justified. The proposed correlation models are considered on the example of statistical data of the Bukhara region of the Republic of Uzbekistan.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Boyd, John P. „Sum-accelerated pseudospectral methods: Finite differences and sech-weighted differences“. Computer Methods in Applied Mechanics and Engineering 116, Nr. 1-4 (Januar 1994): 1–11. http://dx.doi.org/10.1016/s0045-7825(94)80003-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Kratz, Werner. „An inequality for finite differences via asymptotics of Riccati matrix difference equations“. Journal of Difference Equations and Applications 4, Nr. 3 (Januar 1998): 229–46. http://dx.doi.org/10.1080/10236199808808140.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Loula, Abimael F. D., Daniel T. Fernandes und Rubem A. Silva. „Generalized finite element and finite differences methods for the Helmholtz problem“. IOP Conference Series: Materials Science and Engineering 10 (01.06.2010): 012157. http://dx.doi.org/10.1088/1757-899x/10/1/012157.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Zegeling, Paul A. „r-refinement for evolutionary PDEs with finite elements or finite differences“. Applied Numerical Mathematics 26, Nr. 1-2 (Januar 1998): 97–104. http://dx.doi.org/10.1016/s0168-9274(97)00086-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Neta, Beny, und Jerome O. Igwe. „Finite differences versus finite elements for solving nonlinear integro-differential equations“. Journal of Mathematical Analysis and Applications 112, Nr. 2 (Dezember 1985): 607–18. http://dx.doi.org/10.1016/0022-247x(85)90266-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Flores, B. E., J. P. Hennart und E. del Valle. „Mesh-centered finite differences from unconventional mixed-hybrid nodal finite elements“. Numerical Methods for Partial Differential Equations 22, Nr. 6 (2006): 1348–60. http://dx.doi.org/10.1002/num.20157.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Hennart, J. P., und E. del Valle. „Mesh-centered finite differences from nodal finite elements for elliptic problems“. Numerical Methods for Partial Differential Equations 14, Nr. 4 (Juli 1998): 439–65. http://dx.doi.org/10.1002/(sici)1098-2426(199807)14:4<439::aid-num2>3.0.co;2-l.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Shestakov, A. I. „Comparison of finite differences and finite elements on a parabolic problem“. Journal of Computational Physics 79, Nr. 1 (November 1988): 231–43. http://dx.doi.org/10.1016/0021-9991(88)90014-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Lugo Jiménez, Abdul Abner, Guelvis Enrique Mata Díaz und Bladismir Ruiz. „A comparative analysis of methods: mimetics, finite differences and finite elements for 1-dimensional stationary problems“. Selecciones Matemáticas 8, Nr. 1 (30.06.2021): 1–11. http://dx.doi.org/10.17268/sel.mat.2021.01.01.

Der volle Inhalt der Quelle
Annotation:
Numerical methods are useful for solving differential equations that model physical problems, for example, heat transfer, fluid dynamics, wave propagation, among others; especially when these cannot be solved by means of exact analysis techniques, since such problems present complex geometries, boundary or initial conditions, or involve non-linear differential equations. Currently, the number of problems that are modeled with partial differential equations are diverse and these must be addressed numerically, so that the results obtained are more in line with reality. In this work, a comparison of the classical numerical methods such as: the finite difference method (FDM) and the finite element method (FEM), with a modern technique of discretization called the mimetic method (MIM), or mimetic finite difference method or compatible method, is approached. With this comparison we try to conclude about the efficiency, order of convergence of these methods. Our analysis is based on a model problem with a one-dimensional boundary value, that is, we will study convection-diffusion equations in a stationary regime, with different variations in the gradient, diffusive coefficient and convective velocity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Stanisławski, Rafał, und Krzysztof J. Latawiec. „Normalized finite fractional differences: Computational and accuracy breakthroughs“. International Journal of Applied Mathematics and Computer Science 22, Nr. 4 (28.12.2012): 907–19. http://dx.doi.org/10.2478/v10006-012-0067-9.

Der volle Inhalt der Quelle
Annotation:
This paper presents a series of new results in finite and infinite-memory modeling of discrete-time fractional differences. The introduced normalized finite fractional difference is shown to properly approximate its fractional difference original, in particular in terms of the steady-state properties. A stability analysis is also presented and a recursive computation algorithm is offered for finite fractional differences. A thorough analysis of computational and accuracy aspects is culminated with the introduction of a perfect finite fractional difference and, in particular, a powerful adaptive finite fractional difference, whose excellent performance is illustrated in simulation examples.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Omkar, R., M. Lalu und K. Phaneendra. „Numerical solution of differential-difference equations having an interior layer using nonstandard finite differences“. BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 110, Nr. 2 (30.06.2023): 104–15. http://dx.doi.org/10.31489/2023m2/104-115.

Der volle Inhalt der Quelle
Annotation:
This paper addresses the solution of a differential-difference type equation having an interior layer behaviour. A difference scheme is suggested to solve this equation using a non-standard finite difference method. Finite differences are derived from the first and second order derivatives. Using these approximations, the given equation is discretized. The discretized equation is solved using the algorithm for the tridiagonal system. The method is examined for convergence. Numerical examples are illustrated to validate the method. Maximum errors in the solution, in contrast to the other methods are organized to justify the method. The layer behaviour in the solution of the examples is depicted in graphs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Sirotina, Natalia, Anna Kopoteva und Andrey Zatonskiy. „FINITE DIFFERENCES METHOD FOR SOCIO-ECONOMIC MODELING“. Applied Mathematics and Control Sciences, Nr. 1 (14.04.2021): 174–89. http://dx.doi.org/10.15593/2499-9873/2021.1.10.

Der volle Inhalt der Quelle
Annotation:
In the issue we consider socio-economic processes modeling based on first and second order finite differences models. Since commonly used modeling methods have drawbacks and thus are not universal it was necessary to develop alternative methods which are better in some aspects. Specifically multiple linear regression models have limited prediction abilities, and differential regression coefficient evaluation method is quite complex and have some economically uninterpreted excess tunings. In our research we replaced first and second order derivatives in differential regression models with their finite differences equivalents and thus gained a multiple linear regression model modification which includes first and second order auto regression items. Estimation of their parameters can be done using a modification of least-squares method in which we demand that factor coefficients signs for models with and without auto regression items are the same. Due to additional items in the modified linear regression models their approximation capacity is greater than of a common model. However for application purposes model forecasting capacity is more important, i.e. the forecasting efficiency criterion is the most significant for a decision making. In order to estimate forecasting potential of modified multiple linear regression models we performed coefficient estimation of unmodified and modified equations for 59 various socio-economic data sets. We used shortened time series, so we could calculate model values and compare them to actual data. It was determined that modified multiple linear regression models allowed to make better predictions in 49 (76.3 %) cases. We can now assume that addition of auto regression items into multiple linear regression model can increase short-term forecasting efficiency.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

ERZAN, Ayşe. „Finite q-differences and the Renormalization Group“. Turkish Journal of Physics 21, Nr. 1 (01.01.1997): 179. http://dx.doi.org/10.55730/1300-0101.2477.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Guillotte, Henry P. „The Method of Finite Differences: Some Applications“. Mathematics Teacher 79, Nr. 6 (September 1986): 466–70. http://dx.doi.org/10.5951/mt.79.6.0466.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Mango. „ON FINITE DIFFERENCES ON A STRING PROBLEM“. Journal of Mathematics and Statistics 10, Nr. 2 (01.02.2014): 139–47. http://dx.doi.org/10.3844/jmssp.2014.139.147.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie