Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Field effect emission“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Field effect emission" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Field effect emission"
Sapkota, Anish, Amir Haghverdi, Claudia C. E. Avila und Samantha C. Ying. „Irrigation and Greenhouse Gas Emissions: A Review of Field-Based Studies“. Soil Systems 4, Nr. 2 (13.04.2020): 20. http://dx.doi.org/10.3390/soilsystems4020020.
Der volle Inhalt der QuellePalma, John, und Samson Mil’shtein. „Field effect controlled lateral field emission triode“. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 29, Nr. 2 (März 2011): 02B111. http://dx.doi.org/10.1116/1.3554216.
Der volle Inhalt der QuelleDencső, Márton, Ágota Horel, Igor Bogunovic und Eszter Tóth. „Effects of Environmental Drivers and Agricultural Management on Soil CO2 and N2O Emissions“. Agronomy 11, Nr. 1 (29.12.2020): 54. http://dx.doi.org/10.3390/agronomy11010054.
Der volle Inhalt der QuelleVarela, J., V. Réville, A. S. Brun, P. Zarka und F. Pantellini. „Effect of the exoplanet magnetic field topology on its magnetospheric radio emission“. Astronomy & Astrophysics 616 (August 2018): A182. http://dx.doi.org/10.1051/0004-6361/201732091.
Der volle Inhalt der QuelleLitovchenko, V., A. Evtukh, O. Yilmazoglu, K. Mutamba, H. L. Hartnagel und D. Pavlidis. „Gunn effect in field-emission phenomena“. Journal of Applied Physics 97, Nr. 4 (15.02.2005): 044911. http://dx.doi.org/10.1063/1.1847724.
Der volle Inhalt der QuelleSrisonphan, Siwapon, Weerawoot Kanokbannakorn und Nithiphat Teerakawanich. „Field emission graphene-oxide-silicon field effect based photodetector“. physica status solidi (RRL) - Rapid Research Letters 9, Nr. 11 (30.09.2015): 656–62. http://dx.doi.org/10.1002/pssr.201510199.
Der volle Inhalt der QuelleZhuang, Gen Huang, Ling Yun Wang und Dao Heng Sun. „The Effect of Temperature on Field Emission Current“. Advanced Materials Research 60-61 (Januar 2009): 461–64. http://dx.doi.org/10.4028/www.scientific.net/amr.60-61.461.
Der volle Inhalt der QuelleHuang, Hongxun, Chunhui Zhou, Changshi Xiao, Liang Huang, Yuanqiao Wen, Jianxin Wang und Xin Peng. „Effect of Seasonal Flow Field on Inland Ship Emission Assessment: A Case Study of Ferry“. Sustainability 12, Nr. 18 (11.09.2020): 7484. http://dx.doi.org/10.3390/su12187484.
Der volle Inhalt der QuelleLobanov, V. M., und E. P. Sheshin. „Effect of interference on field electron emission“. Technical Physics 56, Nr. 2 (Februar 2011): 282–90. http://dx.doi.org/10.1134/s1063784211020204.
Der volle Inhalt der QuellePaulini, J., T. Klein und G. Simon. „Thermo-field emission and the Nottingham effect“. Journal of Physics D: Applied Physics 26, Nr. 8 (14.08.1993): 1310–15. http://dx.doi.org/10.1088/0022-3727/26/8/024.
Der volle Inhalt der QuelleDissertationen zum Thema "Field effect emission"
Sanborn, Graham Patrick. „A thin film triode type carbon nanotube field electron emission cathode“. Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50302.
Der volle Inhalt der QuelleLudwick, Jonathan. „Physics of High-Power Vacuum Electronic Systems Based on Carbon Nanotube Fiber Field Emitters“. University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613745398331048.
Der volle Inhalt der QuelleKong, Xiangliang, Fan Guo, Joe Giacalone, Hui Li und Yao Chen. „The Acceleration of High-energy Protons at Coronal Shocks: The Effect of Large-scale Streamer-like Magnetic Field Structures“. IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/626416.
Der volle Inhalt der QuelleWest, Ryan Matthew. „Work function fluctuation analysis of polyaniline films“. Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47586.
Der volle Inhalt der QuelleSeidemann, Johanna. „Iontronic - Étude de dispositifs à effet de champ à base des techniques de grilles liquides ioniques“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY075/document.
Der volle Inhalt der QuelleIonic liquids are non-volatile fluids, consisting of cations and anions, which are ionically conducting and electrically insulating and hold very high capacitances. These liquids have the ability to not only to replace solid electrolytes, but to create strongly increased electric fields (>SI{10}{megavoltpercentimetre}) in the so-called electric double layer (EDL) on the electrolyte/channel interface, which leads to the injection of 2D charge carrier densities up to SI{e15}{cm^{-2}}. The remarkably strong gate effect of ionic liquids is diminished in the presence of trapped states and roughness-induced surface disorder, which points out that atomically flat transition metal dichalcogenides of high crystal quality are some of the semiconductors best suited for EDL-gating.We realised EDL-gated field-effect transistors based on multi-walled ce{WS2} nanotubes with operation performance comparable to that of EDL-gated thin flakes of the same material and superior to the performance of backgated ce{WS2} nanotubes. For instance, we observed mobilities of up to SI{80}{squarecentimetrepervoltpersecond} for both p- and n-type charge carriers and our current on-off ratios exceed SI{e5}{} for both polarities. At high electron doping levels, the nanotubes show metallic behaviour down to low temperatures. The use of an electrolyte as topgate dielectric allows the purely electrostatic formation of a pn-junction. We successfully fabricated a light-emitting transistor taking advantage of this utility.The ability of high charge carrier doping suggests an electrostatically induced metal phase or superconductivity in large gap semiconductors. We successfully induced low temperature metallic conduction into intrinsic diamond with hydrogen-terminated surface via field-effect and we observed a gate effect in doped, metallic silicon.Ionic liquids have many advantageous properties, but their applicability suffers from the instability of their liquid body, gate leakage currents and absorption of impurities. An effective way to bypass most of these problems, while keeping the ability of ultra-high charge carrier injection, is the gelation of ionic liquids. We even went one step further and fabricated modified ion gel films with the cations fixed on one surface and the anions able to move freely through the film. With this tool, we realised a novel low-power field-effect diode
Quentin-Schindler, Marie. „Étude et développement d’une source d’ions équipée d’une cathode à nanotubes de carbone, émettrice d’électrons par effet de champ avec une application aux tubes neutroniques scellés“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS251.
Der volle Inhalt der QuelleThis doctoral project, carried out at Sodern, a subsidiary of ArianeGroup, is dedicated to the optimization of sealed neutron tubes. These devices are used for material analysis, primarily in the oil and mining sectors. They operate on the principle of miniaturized particle accelerators, generating neutrons through the deuterium-tritium fusion reaction.The central issue of this research concerns the ion source of the tubes, currently based on a cold Penning-type cathode. This configuration presents significant limitations, such as inefficient control of the ion-generating plasma discharge. This problem is exacerbated by jitter, which characterizes variability in pulse widths, and a delay in ignition, which is the lag between powering the source and ion extraction. To overcome these obstacles while limiting power input, the introduction of a carbon nanotube (CNT) based electron-emitting cathode, operating by field effect, is considered due to its ability to emit under relatively low potential and without added temperature.The methodology adopted initially includes tests of CNT electron emission to evaluate their practical integration into the ion source. The operational parameters examined include the gaseous environment in the pressure range of the tubes, lifespan, repeatability, temperature, and neutron pulsation. These investigations led to the development of a modified ion source, integrating a CNT source. This integration was first carried out by simulation on CST Studio software, then by the design of a prototype. This prototype was realized and tested in the laboratory to characterize its temporal properties. The results show a significant reduction in ignition delay and jitter, although this has led to irreversible degradation of the CNTs after a few hours of operation. These tests show that a minimum emission current would allow these improvements.In conclusion, this thesis demonstrates the potential of adding an electron source to improve the temporal performance of a Penning-type ion source
Cooper, Joseph Andrew. „Investigation of the effects of process variables on the properties of europium-doped yttrium oxide phosphor“. Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/20503.
Der volle Inhalt der QuelleAndrew), Patterson Alex A. (Alex. „An analytical framework for field electron emission, incorporating quantum- confinement effects“. Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/84863.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 141-151).
As field electron emitters shrink to nanoscale dimensions, the effects of quantum confinement of the electron supply and electric field enhancement at the emitter tip play a significant role in determining the emitted current density (ECD). Consequently, the Fowler-Nordheim (FN) equation, which primarily applies to field emission from the planar surface of a bulk metal may not be valid for nanoscale emitters. While much effort has focused on studying emitter tip electrostatics, not much attention has been paid to the consequences of a quantum-confined electron supply. This work builds an analytical framework from which ECD equations for quantum-confined emitters of various geometries and materials can be generated and the effects of quantum confinement of the electron supply on the ECD can be studied. ECD equations were derived for metal emitters from the elementary model and for silicon emitters via a more physically-complete version of the elementary model. In the absence of field enhancement at the emitter tip, decreasing an emitter's dimensions is found to decrease the total ECD. When the effects of field enhancement are incorporated, the ECD increases with decreasing transverse emitter dimensions until a critical dimension dpeak, below which the reduced electron supply becomes the limiting factor for emission and the ECD decreases. Based on the forms of the ECD equations, alternate analytical methods to Fowler-Nordheim plots are introduced for parameter extraction from experimental field emission data. Analysis shows that the FN equation and standard analysis procedures over-predict the ECD from quantum-confined emitters. As a result, the ECD equations and methods introduced in this thesis are intended to replace the Fowler-Nordheim equation and related analysis procedures when treating field emission from suitably small field electron emitters.
by Alex A. Patterson.
S.M.
Mo, Yudong. „The Effects of Residual Gases on the Field Emission Properties of ZnO, GaN, ZnS Nanostructures, and the Effects of Light on the Resistivity of Graphene“. Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc500202/.
Der volle Inhalt der QuelleNarayanan, Sruthi Annapoorny. „Effect of magnetic seed fields on Lyman Alpha emission from distant quasars“. Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105651.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 55-57).
There are indications that weak magnetic fields originating in the early Universe and magnified via magnetohydrodynamic (MHD) processes could cause perturbations in the thermodynamic state of the gas in the intergalactic medium which affect the Lyman-Alpha spectrum we observe. In this work we investigate to what extent the properties of the Lyman-Alpha forest are sensitive to the presence of large-scale cosmological magnetic fields as a function of the seed field intensity. To do so, we develop and use a series of numerical tools to analyze previously constructed cosmological MHD simulations that include state-of-the-art implementation of the relevant physical processes for galaxy formation. The inclusion of these physical mechanisms is crucial to get the level of magnetic field amplification currently observed in the structures that populate our Universe. With these tools we isolate characteristics, namely the Flux Probability Density Function and the Power Spectrum, of the Lyman-Alpha forest that are sensitive to the magnetic field strength. We then examine the implications of our results.
by Sruthi Annapoorny Narayanan.
S.B.
Bücher zum Thema "Field effect emission"
Prasad, Ghatak Kamakhya, Hrsg. Fowler-Nordheim field emission: Effects in semiconductor nanostructures. Heidelberg: Springer, 2012.
Den vollen Inhalt der Quelle findenM, Katkov V., und Strakhovenko V. M, Hrsg. Electromagnetic processes at high energies in oriented single crystals. Singapore: World Scientific, 1998.
Den vollen Inhalt der Quelle findenAssociation, Western Interprovincial Scientific Studies. Western Canada study of animal health effects associated with exposure to emissions from oil and natural gas field facilities: A study of 33,000 cattle in British Columbia, Alberta, and Saskatchewan. Calgary, Alta: WISSA, 2006.
Den vollen Inhalt der Quelle findenButusov, Oleg, und Valeriy Meshalkin. Fundamentals of informatization and mathematical modeling of ecological systems. ru: INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/1477254.
Der volle Inhalt der Quelle(Editor), Nebojsa Nakicenovic, und Robert Swart (Editor), Hrsg. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2000.
Den vollen Inhalt der Quelle findenSolymar, L., D. Walsh und R. R. A. Syms. The free electron theory of metals. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198829942.003.0006.
Der volle Inhalt der QuelleGhatak, Kamakhya Prasad, und Sitangshu Bhattacharya. Fowler-Nordheim Field Emission: Effects in Semiconductor Nanostructures. Springer Berlin / Heidelberg, 2014.
Den vollen Inhalt der Quelle findenGhatak, Kamakhya Prasad, und Sitangshu Bhattacharya. Fowler-Nordheim Field Emission: Effects in Semiconductor Nanostructures. Springer, 2012.
Den vollen Inhalt der Quelle findenKolmičkovs, Antons. Electric Field Effect on Combustion of Pelletized Biomass in Swirling Flow. RTU Press, 2022. http://dx.doi.org/10.7250/9789934227257.
Der volle Inhalt der QuelleNitrous oxide emissions from rice fields: Past, present, and future. Hauppauge, NY: Nova Science Publishers, 2009.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Field effect emission"
Villarreal, Carlos, R. Jáuregui und S. Hacyan. „Dynamical Casimir Effect, “Particle Emission” and Squeezing“. In Quantum Field Theory Under the Influence of External Conditions, 46. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-663-01204-7_6.
Der volle Inhalt der QuelleSmolyaninov, I. I. „Light Emission from the Tunnel Junction of the STM. Possible Role of Tcherenkov Effect“. In Near Field Optics, 353–60. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_40.
Der volle Inhalt der QuelleKazarnovskii, M. V., und A. V. Stepanov. „Recoilless γ Emission and Absorption by Atoms in a Magnetic Field“. In Proceedings of the Dubna Conference on the Mössbauer Effect 1963, 148–51. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-4848-9_14.
Der volle Inhalt der QuelleLee, Shih-Fong, Li-Ying Lee und Yung-Ping Chang. „The Effect of Hydrogen Plasma Treatment on the Field-Emission Characteristics of Silicon Nanowires“. In Lecture Notes in Electrical Engineering, 931–37. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04573-3_114.
Der volle Inhalt der QuelleZaman, M., K. Kleineidam, L. Bakken, J. Berendt, C. Bracken, K. Butterbach-Bahl, Z. Cai et al. „Automated Laboratory and Field Techniques to Determine Greenhouse Gas Emissions“. In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques, 109–39. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55396-8_3.
Der volle Inhalt der QuelleLuo, J. „On the Stress Field and Dislocation Emission of an Elliptically Blunted Mode III Crack with Surface Stress Effect“. In IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures, 277–87. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4911-5_24.
Der volle Inhalt der QuelleFarías, Oscar, Pablo Cornejo, Cristian Cuevas, Jorge Jimenez, Meylí Valín, Claudio Garcés und Sebastian Gallardo. „Design of a Condensing Heat Recovery Integrated with an Electrostatic Precipitator for Wood Heaters“. In Proceedings of the XV Ibero-American Congress of Mechanical Engineering, 210–16. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-38563-6_31.
Der volle Inhalt der QuelleKumar, Abhishek. „Creating Effects with Particle Emissions and Fields/Solvers“. In Beginning VFX with Autodesk Maya, 109–38. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7857-4_6.
Der volle Inhalt der QuelleZaman, M., K. Kleineidam, L. Bakken, J. Berendt, C. Bracken, K. Butterbach-Bahl, Z. Cai et al. „Climate-Smart Agriculture Practices for Mitigating Greenhouse Gas Emissions“. In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques, 303–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55396-8_8.
Der volle Inhalt der Quellede Colle, Fabio, und Alejandro Raga. „Effects of the Magnetic Field on the Hα Emission from Jets“. In Virtual Astrophysical Jets, 173–80. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2664-5_19.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Field effect emission"
Palma, John F., und Samson Mil'shtein. „P1.4: Field effect controlled lateral field emission triode“. In 2010 23rd International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2010. http://dx.doi.org/10.1109/ivnc.2010.5563165.
Der volle Inhalt der QuelleYafyasov, A., V. Bogevolnov, A. Tomilov, B. Pavlov und G. Fursey. „Modelling of the electron field emission effect on the low dimensional carbon structures“. In 2014 2nd International Conference on Emission Electronics (ICEE). IEEE, 2014. http://dx.doi.org/10.1109/emission.2014.6893980.
Der volle Inhalt der QuelleKnap, Wojciech, Nina V. Dyakonova, Franz Schuster, Dominique Coquillat, Frédéric Teppe, Benoît Giffard, Dmytro B. But et al. „Terahertz detection and emission by field-effect transistors“. In SPIE Optical Engineering + Applications, herausgegeben von Manijeh Razeghi, Alexei N. Baranov, Henry O. Everitt, John M. Zavada und Tariq Manzur. SPIE, 2012. http://dx.doi.org/10.1117/12.930091.
Der volle Inhalt der QuelleBaturin, Stanislav S., Alexander V. Zinovev und Sergey V. Baryshev. „Vacuum effect on field emission I-V curves“. In 2017 30th International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2017. http://dx.doi.org/10.1109/ivnc.2017.8051638.
Der volle Inhalt der QuelleYang, Y., S. Huo, L. H. Jiang, Y. C. Kong, T. S. Chen, H. Zhou, A. S. Teh, T. Butler, D. Hasko und G. A. Amaratunga. „Carbon Nanotube Lateral Field Emission Device with Embedded Field Effect Transistor“. In 2018 IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC). IEEE, 2018. http://dx.doi.org/10.1109/edssc.2018.8487091.
Der volle Inhalt der QuelleTao, Zhi, Xiang Liu, Wei Lei, Chi Li und Yuxuan Chen. „Photo enhanced QDs/ZnO-nanowire field-emission type field-effect transistor“. In 2015 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2015. http://dx.doi.org/10.1109/ivec.2015.7223927.
Der volle Inhalt der QuelleLiu, Thomas, David Morris, Jonathan Zagel, Codrin Cionca, Yang Li, Christopher Smith, Alexandru Riposan, Alec Gallimore, Brian Gilchrist und Roy Clarke. „Use of Boron Nitride for Field Effect Electron Emission“. In 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-5253.
Der volle Inhalt der QuelleDyakonova, N., A. El Fatimy, J. Lusakowskil, W. Knap, M. I. Dyakonov, M. A. Poisson, E. Morvan et al. „Room-temperature terahertz emission from nanometer field-effect transistors“. In >2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics. IEEE, 2006. http://dx.doi.org/10.1109/icimw.2006.368353.
Der volle Inhalt der QuelleSchulz, S. „Field effect enhanced carrier-emission from InAs Quantum Dots“. In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994352.
Der volle Inhalt der QuelleLiao, M. X., S. Z. Deng, N. S. Xu und Jun Chen. „Photosensitivity effect of field emission from zinc oxide nanowires“. In 2012 25th International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2012. http://dx.doi.org/10.1109/ivnc.2012.6316961.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Field effect emission"
Porter, Troy A., Igor V. Moskalenko und Andrew W. Strong. Inverse Compton Emission from Galactic Supernova Remnants: Effect of the Interstellar Radiation Field. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/888781.
Der volle Inhalt der QuelleTong, W., T. E. Felter, L. S. Pan, S. Anders, A. Cossy-Facre und T. Stammler. The effect of aspect ratio and sp2/sp3 content on the field emission properties of carbon films grown by Ns-spiked PECVD. Office of Scientific and Technical Information (OSTI), April 1998. http://dx.doi.org/10.2172/666026.
Der volle Inhalt der QuelleCowell, Luke, Alejandro Camou, Ivan Carlos und Dustin Truesdel. PR-283-16201-R01 Improved SoLoNOx Taurus 60 Control Algorithm to Reduce Part Load Emissions. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2018. http://dx.doi.org/10.55274/r0011510.
Der volle Inhalt der QuelleBusby, Ryan, Morgan Conrady, Kyoo Jo und Donald Cropek. Characterising earth scent. Engineer Research and Development Center (U.S.), Februar 2024. http://dx.doi.org/10.21079/11681/48262.
Der volle Inhalt der QuelleOttinger, P. F., G. Cooperstein, J. W. Schumer und S. B. Swanekamp. Self-Magnetic Field Effects on Electron Emission as the Critical Current is Approached. Office of Scientific and Technical Information (OSTI), September 2001. http://dx.doi.org/10.2172/1185204.
Der volle Inhalt der QuelleOttinger, P. F., G. Cooperstein, J. W. Schumer und S. B. Swanekamp. Self-Magnetic Field Effects on Electron Emission as the Critical Current is Approached. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada390441.
Der volle Inhalt der QuelleKlausmeier. L51483 Evaluation of EPA Method 20 Ambient Correction Procedure. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Mai 1985. http://dx.doi.org/10.55274/r0010652.
Der volle Inhalt der QuelleFowler. L51754 Field Application of Electronic Gas Admission with Cylinder Pressure Feedback for LB Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juni 1996. http://dx.doi.org/10.55274/r0010363.
Der volle Inhalt der QuelleAlmutairi, Hossa, und Axel Pierru. Assessing Climate Mitigation Benefits of Public Support to CCS-EOR: An Economic Analysis. King Abdullah Petroleum Studies and Research Center, Juni 2023. http://dx.doi.org/10.30573/ks--2023-dp12.
Der volle Inhalt der QuelleKhalil, M. A. K., und R. A. Rasmussen. Methane emissions from rice fields: The effects of climatic and agricultural factors. Final report, March 1, 1994--April 30, 1997. Office of Scientific and Technical Information (OSTI), Oktober 1997. http://dx.doi.org/10.2172/534483.
Der volle Inhalt der Quelle