Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Fermentation – Productivité“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fermentation – Productivité" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Fermentation – Productivité"
Villen, Rafael Almud, Walter Borzani und Antonio Sacco Netto. „Influence of the accumulation of phosphate and magnesium ions in the yeast cells on the ethanol productivity in batch ethanol fermentation“. Brazilian Archives of Biology and Technology 52, Nr. 1 (Februar 2009): 153–55. http://dx.doi.org/10.1590/s1516-89132009000100020.
Der volle Inhalt der QuelleCapilla, Miguel, Carlos Silvestre, Alejo Valles, Francisco Javier Álvarez-Hornos, Pau San-Valero und Carmen Gabaldón. „The Influence of Sugar Composition and pH Regulation in Batch and Continuous Acetone–Butanol–Ethanol Fermentation“. Fermentation 8, Nr. 5 (15.05.2022): 226. http://dx.doi.org/10.3390/fermentation8050226.
Der volle Inhalt der QuelleHarcum, Sarah W., und Thomas P. Caldwell. „High Gravity Fermentation of Sugarcane Bagasse Hydrolysate by Saccharomyces pastorianus to Produce Economically Distillable Ethanol Concentrations: Necessity of Medium Components Examined“. Fermentation 6, Nr. 1 (08.01.2020): 8. http://dx.doi.org/10.3390/fermentation6010008.
Der volle Inhalt der QuelleOmoruyi, G. O., I. O. Busari und O. J. Babayemi. „In-vitro assessment of the nutritive value of vegetable wastes as feed supplement for ruminants“. Nigerian Journal of Animal Production 49, Nr. 5 (26.05.2023): 138–46. http://dx.doi.org/10.51791/njap.v49i5.3772.
Der volle Inhalt der QuelleOjo, Abidemi Oluranti, und Olga de Smidt. „Lactic Acid: A Comprehensive Review of Production to Purification“. Processes 11, Nr. 3 (24.02.2023): 688. http://dx.doi.org/10.3390/pr11030688.
Der volle Inhalt der QuelleBarbuto Ferraiuolo, Simona, Odile Francesca Restaino, Ignacio Gutiérrez-del-Río, Riccardo Ventriglia, Marcella Cammarota, Claudio J. Villar, Felipe Lombó und Chiara Schiraldi. „Optimization of Pre-Inoculum, Fermentation Process Parameters and Precursor Supplementation Conditions to Enhance Apigenin Production by a Recombinant Streptomyces albus Strain“. Fermentation 7, Nr. 3 (21.08.2021): 161. http://dx.doi.org/10.3390/fermentation7030161.
Der volle Inhalt der QuelleHessa, Célestin Cokou, Yaya Idrissou, Alassan Seidou Assani, Hilaire Sorébou Sanni Worogo und Ibrahim Alkoiret Traoré. „Emissions de Gaz à Effet de Serre des Systèmes AgroSylvopastoraux et Sylvopastoraux de deux Zones Agroécologiques du Bénin“. European Scientific Journal, ESJ 20, Nr. 12 (29.04.2024): 221. http://dx.doi.org/10.19044/esj.2024.v20n12p221.
Der volle Inhalt der QuelleDolejš, Igor, Monika Líšková, Vladimír Krasňan, Kristína Markošová, Michal Rosenberg, Fabio Lorenzini, Andrew C. Marr und Martin Rebroš. „Production of 1,3-Propanediol from Pure and Crude Glycerol Using Immobilized Clostridium butyricum“. Catalysts 9, Nr. 4 (31.03.2019): 317. http://dx.doi.org/10.3390/catal9040317.
Der volle Inhalt der QuelleIram, Attia, Ali Özcan, Ercan Yatmaz, İrfan Turhan und Ali Demirci. „Effect of Microparticles on Fungal Fermentation for Fermentation-Based Product Productions“. Processes 10, Nr. 12 (13.12.2022): 2681. http://dx.doi.org/10.3390/pr10122681.
Der volle Inhalt der QuelleOgunbosoye, D. O., T. O. Abegunde, T. O. Binuomote und K. B. Salau. „Nutritional evaluation and growth response of West African dwarf (WAD) sheep fed varying levels of soybean cheese waste diets“. Nigerian Journal of Animal Production 49, Nr. 4 (10.02.2023): 166–75. http://dx.doi.org/10.51791/njap.v49i4.3713.
Der volle Inhalt der QuelleDissertationen zum Thema "Fermentation – Productivité"
Ozcelik, Hayriye. „Productivity Analyses In Fermentations With Three Different Biolarvacides“. Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12604988/index.pdf.
Der volle Inhalt der QuelleLacerda, Filho Armando Marsden. „Fermentation systems for enhancement of ethanol productivity in Saccharomyces cerevisiae at elevated temperatures“. Thesis, University of St Andrews, 1996. http://hdl.handle.net/10023/14371.
Der volle Inhalt der QuelleLaouali, Mahaman Sani. „Mise au point d'une filière complète de traitement des eaux usées urbaines de régions tropicales : digesteur à biomasse fixée, lagunages à Microphytes et à Macrophytes, production piscicole“. Montpellier 2, 1990. http://www.theses.fr/1990MON20141.
Der volle Inhalt der QuelleGomes, Elenice Mendes Silva. „Influência das concentrações de açúcares nos mostos sobre o desempenho da fermentação etanólica conduzida em batelada alimentada com vazão variável de alimentação“. Universidade Federal de Alagoas, 2011. http://www.repositorio.ufal.br/handle/riufal/1202.
Der volle Inhalt der QuelleFundação de Amparo a Pesquisa do Estado de Alagoas
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Este estudo objetivou avaliar a influência das concentrações de açúcares nos mostos, sobre o desempenho da fermentação etanólica conduzida em batelada alimentada com vazão variável de alimentação, para a definição das melhores concentrações de ART nos mostos (de caldo, de melaço e misto) que conduzam a melhores eficiências de fermentação e produtividade em etanol. Na preparação do mosto misto foram utilizadas as seguintes proporções (20% melaço + 80% caldo, 40% melaço + 60% caldo, 50% melaço + 50% caldo, 60% melaço + 40% caldo, 80% melaço + 20% caldo). O perfil de alimentação foi decrescente, variando-se a vazão de 0,75 a 0,25 L.h-1, com tempo de enchimento do fermentador de 3 horas para todos os ensaios, variando-se de 30 em 30 minutos a vazão de alimentação de mosto, em fermentador de 4L de volume de trabalho (3 litros de mosto e 1 litro de inoculo), avaliando-se diferentes concentrações de ART nos 3 tipos de mosto estudados. Foram avaliados parâmetros de desempenho, como eficiências fermentativa e de processo e produtividade em etanol. Nos mostos foram quantificados pH, acidez sulfúrica, Brix e ART. No meio fermentado (vinho), pH, acidez, Açúcares Residuais e teor de etanol e quantidade de células. O perfil cinético foi definido, quantificando-se as concentrações de células, substrato e etanol (em intervalos de 1 hora). Os valores indicados neste estudo, como ponto de partida para utilização industrial, são Brix de 16 a 18 (ART 114,25 a 125,86 g/L), de 14 a 18 °Brix (ART de 112,90 a 141,24 g/L) e próximo de 16 °Brix (ART de 113,68 g/L a 123,30), respectivamente para mostos de melaço, caldo e misto (caldo + melaço). As eficiências de fermentação foram: 77,17 a 90,30%, para mosto de caldo, 74,4 a 86,51% para mosto misto e 61,84 a 84,06 para mosto de melaço. As produtividades obtidas foram 6,85 a 8,21g/L.h, para mosto de caldo, 5,90 a 7,77g/L.h para mosto misto e 4,04 a 6,72g/L.h para mosto d melaço. Estas faixas recomendadas servem para subsidiar, como ponto de partida, a condução da fermentação etanólica industrial conduzida em batelada alimentada com vazão variável de alimentação, visto que as condições de condução dos ensaios, assim como as matérias-primas utilizadas na preparação dos mostos, foram semelhantes às utilizadas industrialmente.
Lee, Jungeun. „Sustainable Production of Microbial Lipids from Renewable Biomass: Evaluation of Oleaginous Yeast Cultures for High Yield and Productivity“. Diss., Kansas State University, 2017. http://hdl.handle.net/2097/35300.
Der volle Inhalt der QuelleDepartment of Grain Science and Industry
Praveen V. Vadlani
Microbial lipids derived from oleaginous yeasts are a promising alternative source of edible oils due to the following advantages: no requirement of broad lands; availability of year-round production; and no food versus fuels controversy. Oleaginous yeast has an inherent ability to accumulate lipids inside cells and their lipids are preferable as starting materials in oleo-chemical industries because of their distinct fatty acid composition. Lignocellulosic biomass is a promising substrate to supply carbon sources for oleaginous yeast to produce lipids due to the high content of polysaccharides and their abundancy. Lignocellulosic-based sugar streams, which can be generated via pretreatment and enzymatic hydrolysis, contained diverse monosaccharides and inhibitors. The major objectives of this study were: 1) to develop a novel purification method to generate clean sugar stream using sorghum stalks after acid pretreatment; 2) to optimize fermentation conditions for Trichosporon oleaginosus to achieve high yields and productivity of microbial lipids using lignocellulosic hydrolysates; 3) to investigate the potentials of sorghum stalks and switchgrass as feedstocks for microbial lipid production using oleaginous yeast strains, such as T. oleaginosus, Lipomyces starkeyi, and Cryptococcus albidus; 4) to develop an integrated process of corn bran based-microbial lipids production using T. oleaginosus; and 5) to develop bioconversion process for high yields of lipids from switchgrass using engineered Escherichia coli. In our investigation, major inhibitory compounds of lignocellulosic hydrolysates induced by pretreatment were acetic acid, formic acid, hydroxymethyl furfural (HMF) and furfural. The activated charcoal was effective in removing hydrophobic compounds from sorghum stalk hydrolysates. Resin mixtures containing cationic exchangers and anionic exchangers in 7:3 ratio at pH 2.7 completely removed HMF, acetic acid, and formic acid from sorghum stalk hydrolysates. T. oleaginosus was a robust yeast strain for lipid production. In the nitrogen-limited synthetic media, total 22 g/L of lipid titers were achieved by T. oleaginosus with a lipid content of 76% (w/w). In addition, T. oleaginosus efficiently produced microbial lipids from lignocellulosic biomass hydrolysates. The highest lipid titers of 13 g/L lipids were achieved by T. oleaginosus using sorghum stalk hydrolysates with a lipid content of 60% (w/w). L. starkeyi and C. albidus also successfully produced microbial lipids using lignocellulosic hydrolysate with a lipid content of 40% (w/w). Furthermore, corn bran was a promising feedstock for microbial lipid production. The highest sugar yields of 0.53 g/g were achieved from corn bran at the pretreatment condition of 1% acid and 5% solid loading. Microbial lipids were successfully produced from corn bran hydrolysates by T. oleaginosus with lipid yields of 216 mg/g. Engineered E. coli also effectively produced lipids using switchgrass as feedstocks. E. coli ML103 pXZ18Z produced a total of 3.3 g/L free fatty acids with a yield of 0.23 g/g. The overall yield of free fatty acids was 0.12 g/g of raw switchgrass and it was 51 % of the maximum theoretical yield. This study provided useful strategies for the development of sustainable bioconversion processes for microbial lipids from renewable biomass and demonstrated the economic viability of a lignocellulosic based-biorefinery.
Claret, Carole. „Métabolismes oxydatif et fermentaire du glycérol chez les bactéries : étude physiologique et cinétique de sa conversion en dihydroxyacétone et en 1,3-propanediol“. Toulouse, INSA, 1992. http://www.theses.fr/1992ISAT0034.
Der volle Inhalt der Quelle邱毓明. „Hydrogen-Productivity Comprison of Four types of Anaerobic Fermentation Reactors“. Thesis, 2002. http://ndltd.ncl.edu.tw/handle/35235154753452033928.
Der volle Inhalt der Quelle臺中師範學院
環境教育研究所
90
The conventional anaerobic wastewater treatments are able to deal with various types of organic wastewater and able to recovery biogas, which is mainly methane. Based on the regulation of the Framework Convention On Climate Change, methane is the next item to be put under control due to its greenhouse effect. Hydrogen produced by anaerobic fermentation can be used as an energy source with no greenhouse effect and therefore, become a highly potential technique with a great commercial market. After considering the physiological characteristics and growth condition of anaerobic hydrogenic bacteria, this study has designed 4 typical reactors suitable for anaerobic hydrogenesis , including Sludge recycling reactor, Continuous flow stirred tank reactor (CSTR), Non-mixing conventional reactor, and Plug flow reactor. The hydrogen productivity and wastewater treatment efficiencies of these 4 reactors were compared to evaluate which is the best for anaerobic production of hydrogen. The best operation condition of each reactor was also determined. As the results shown, within the influent COD concentration being 2,000-15,000 mg/L and HRT being 6-24 hrs, the hydrogen productivity is the best with an organic loading of 60 kg-COD/m3×d. Among these 4 reactors, continuous flow stirred tank reactor is the most appropriate for anaerobic fermentation hydrogenesis with a hydrogen productivity of 150 ml/g-CODre and a hydrogen productivity of per unit reactor of 774 L-H2/m3×d(1atm,25℃), followed by non-mixing conventional reactor with a hydrogen productivity of 129 ml/g-CODre and a hydrogen productivity of per unit reactor of 646 L-H2/m3×d(1atm,25℃). Only at a higher organic loading, sludge recycling reactor has a higher efficiency of hydrogen production due to the higher total production with a hydrogen productivity of 74.9 ml/g-CODre(1atm,25℃) and a hydrogen productivity of per unit reactor of 1100 L-H2/m3×d(1atm,25℃). The hydrogen productivity of each reactor was increased with the increase of organic loading and the decrease in HRT, furthermore, the effect of HRT was more significant. At an organic loading of 2 kg-COD/m3×d, all reactors have the best COD removal, ranging from 54.0 to 60.1%, due to the highly methanation at the low organic loading. At an organic loading of 60 kg-COD/m3×d, all reactors have the worst COD removal, ranging from 9.0 to 19.0%. The COD removal of each reactor was decreased with the increase in organic loading and the decrease in HRT. From the observation under the fluorescent microscope and electron microscope, it was found that yellow-orange fluorescence was emitted by a large amount of Clostridium bacteria in biomass while the anaerobic fermentation hydrogenesis was good. However, blue fluorescence, which indicated a highly methanation, was emitted while the anaerobic fermentation hydrogenesis was poor. These results may be helpful in determining the efficiency of anaerobic fermentation hydrogensis .
ChenChang, Chia, und 張嘉真. „Productivity simulation of combined sugar and ethanol production with selective fermentation technology“. Thesis, 2015. http://ndltd.ncl.edu.tw/handle/10409251462345150493.
Der volle Inhalt der Quelle國立成功大學
環境工程學系
103
Selective fermentation realized by invertase-defective yeasts that convert only the reducing sugars in a mixed saccharide (e.g. sugarcane juice) into ethanol is an emerging process technology in sugarcane industry. This technology opens possibilities in stabilization and enhancement of total productivity of sugar and ethanol, as productive and stronger cultivars that have higher content of reducing sugar becomes a potential raw material in sugar mills. To trigger the system-wide innovation of this technology, the changes in stability and enhancement of productivity must be described by changes in cultivars and cropping schedules. Here, a descriptive model developed in this study highlights consequences of introduction of selective fermentation technology considering a given scenario on choice of cultivars and cropping schedules. Moreover, utilizing a prototype database, design of scenarios based on optimization techniques are demonstrated. The results from demonstrative scenario design indicate the potential advantages of selective fermentation technology in combination with a cane cultivar with high yield, high biomass and reducing sugar content on Tanegashima Island of Japan. The study also indicates the new requirement on data from sugarcane cultivation, such as a wider range of growth profiles (stalk weight, composition), growth and harvest observations of perennial ratoon and rate of physical damage by typhoon by varied rationing months. Future directions of study including directions in enhancement of the model and database are discussed.
ZENG, WEN-GI, und 曾文祺. „Effect of fermentation conditions on the growth of recombinant saccharomyces cerevisiae and HBsAg productivity“. Thesis, 1988. http://ndltd.ncl.edu.tw/handle/16356562196326261863.
Der volle Inhalt der QuelleHuang, Chong-ruey, und 黃重睿. „Increasing Productivity of Bio-ethanol by Using Pichia stipitis Fermentation in Continuous Dual-tank“. Thesis, 2011. http://ndltd.ncl.edu.tw/handle/78154135746176485488.
Der volle Inhalt der Quelle大葉大學
生物產業科技學系
99
To avoid grain prices rising and causing inflation, production of the biomass fuel alcohol of the second era is mostly abandoned grain crops, and used the non-grain crops of abounded biomass cellulose or agriculture waste as raw materials. The saccharides that biomass fiber through preprocessing hydrolysis and producing are used by organism methods for fermentation to get alcohol, and the saccharides of the kind of raw materials obtained possess the two classes of five carbon and six carbon. In order to amply use these reducing sugars, developing co-fermentation process is an important topic. The bacteria strains that are able to ferment five carbon saccharides are quite rare in the nature world, and therefore using gene recombination to develop new bacteria strains is an important work. Besides the fermentation rate of the five carbon saccharides is quite slow, and therefore the rising of efficiency is also an important research. This research is according to the earlier established Pichia stipitis fermentation model, and analyzing the efficiency problem of two-tank continuous fermenting glucose and xylose the mixture solution to produce alcohol. The used substrate sources of two-tank continuous fermentation, in accordance with preprocessing, can be classified as 50 g/L pure glucose and the mixture solution of 8 g/L glucose/24 g/L xylose, the two sorts. Therefore, this research is designed that tank-one and tank-two are particular fed one kind of substrates, and the first tank is fed two kinds of substrates at the same time, et cetera, many kinds of operating method, to confer ethanol production rate, ethanol produced ratio, and substrate used ratio, et cetera, the variation under respective sorts of combination, and analyze the ethanol production rate. When comparing two-tank continuous fermenting and one-tank continuous fermenting, two-tank ethanol production rate is not certainly higher, but substrate used ratio is higher. For example of pure glucose fed, one-tank ethanol production rate in dilution rate 0.06 1/hr is 0.24 g/L/hr, and substrate used ratio is 0.265; and two-tank ethanol production rate, in the first and second dilution rate particularly 0.06 1/hr and 0.30 1/hr, is 0.232 g/L/hr, and substrate used ratio is 0.306. And the case of the first tank fed mixture solution substrates and the second tank fed pure glucose of two-tank continuous fermenting, mixture solution fed dilution rate 0.015 – 0.1 1/hr, and pure glucose fed dilution rate 0.050 1/hr, and dilution rate of liquid flowing from the first tank into the second tank 0.0005 1/hr, equivalent to the volume of the second tank being at least 30 times of the volume of the first tank, can get the most ideal ethanol production rate 0.267 g/L/hr, but neither ethanol produced ratio 0.323 nor substrate used ratio 0.34 are ideal. Because dilution rate is lower, ethanol production rate is lower, but ethanol produced ratio and substrate used ratio are higher. That is ethanol produced ratio and substrate used ratio needing sacrificing in order to obtain the highest ethanol production rate.
Buchteile zum Thema "Fermentation – Productivité"
Rebello, Sharrel, Embalil Mathachan Aneesh, Raveendran Sindhu, Parameswaran Binod, Ashok Pandey und Edgard Gnansounou. „Enzyme Catalysis: A Workforce to Productivity of Textile Industry“. In High Value Fermentation Products, 49–65. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119555384.ch3.
Der volle Inhalt der QuelleXu, Jie, Anu Das, Jarrod Erbe, L. M. Hall und Kenneth B. Taylor. „Genetic Engineering for Productivity in the Fermentation of Xylose to Ethanol“. In Conversion And Utilization Of Waste Materials, 169–80. Boca Raton: Routledge, 2023. http://dx.doi.org/10.1201/9781315140360-14.
Der volle Inhalt der QuelleCarro, M. D., und E. M. Ungerfeld. „Utilization of Organic Acids to Manipulate Ruminal Fermentation and Improve Ruminant Productivity“. In Rumen Microbiology: From Evolution to Revolution, 177–97. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2401-3_13.
Der volle Inhalt der QuelleWang, Jing, Jinglin Zhou und Xiaolu Chen. „Soft-Transition Sub-PCA Monitoring of Batch Processes“. In Intelligent Control and Learning Systems, 59–77. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8044-1_5.
Der volle Inhalt der QuelleOh, J., und A. N. Hristov. „Effects of Plant-Derived Bio-Active Compounds on Rumen Fermentation, Nutrient Utilization, Immune Response, and Productivity of Ruminant Animals“. In ACS Symposium Series, 167–86. Washington, DC: American Chemical Society, 2016. http://dx.doi.org/10.1021/bk-2016-1218.ch011.
Der volle Inhalt der QuelleRao, Raman, Paramjeet Dhull, Shilpa und Sachin Kumar. „Recent Advances and Challenges in Biobutanol Production“. In Green Gasoline, 109–23. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781837670079-00109.
Der volle Inhalt der QuelleAhmed Soltan, Yosra, und Amlan Kumar Patra. „Ruminal Microbiome Manipulation to Improve Fermentation Efficiency in Ruminants“. In Animal Feed Science and Nutrition - Health and Environment [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.101582.
Der volle Inhalt der QuelleOjukwu, Moses, Chigozie Emmanuel Ofoedu, Chijioke M. Osuji und Ogbonnaya Okoro Aja. „Recent Advances in the Utilisation of Artificial Intelligence in the Food Industry“. In Advances in Environmental Engineering and Green Technologies, 299–317. IGI Global, 2023. http://dx.doi.org/10.4018/979-8-3693-0819-6.ch012.
Der volle Inhalt der QuelleBitew, Dagnew, und Berhanu Andualem. „Diacetyl Production During Brewing and its Management Through Process Optimization and Molecular Evolution of Yeast“. In New Advances in Saccharomyces. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1003823.
Der volle Inhalt der QuelleMurguia-Fierro, Salma Verónica,. „Evaluation of obtaining biohydrogen by different fermentation methods“. In Young researchers Engineering Applications, 61–70. ECORFAN, 2023. http://dx.doi.org/10.35429/p.2023.1.61.70.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Fermentation – Productivité"
Mathew, Anil, Mitch Crook, Keith Chaney und Andrea Humphries. „Bioethanol Production From Canola Straw Using a Continuous Flow Immobilized Cell System“. In ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/es2012-91061.
Der volle Inhalt der QuelleAbdullah, Abdullah, Hario Satmoko und Wahyu Zuli Pratiwi. „Types and variations of buffer concentrations effect on biohydrogen productivity from sago dregs with fermentation method“. In THE 2ND INTERNATIONAL SYMPOSIUM OF INDONESIAN CHEMICAL ENGINEERING 2021: Enhancing Innovations and Applications of Chemical Engineering for Accelerating Sustainable Development Goals. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0113935.
Der volle Inhalt der Quelle