Zeitschriftenartikel zum Thema „Federate learning“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Federate learning" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Oktian, Yustus Eko, Brian Stanley und Sang-Gon Lee. „Building Trusted Federated Learning on Blockchain“. Symmetry 14, Nr. 7 (08.07.2022): 1407. http://dx.doi.org/10.3390/sym14071407.
Der volle Inhalt der QuelleLi, Yanbin, Yue Li, Huanliang Xu und Shougang Ren. „An Adaptive Communication-Efficient Federated Learning to Resist Gradient-Based Reconstruction Attacks“. Security and Communication Networks 2021 (22.04.2021): 1–16. http://dx.doi.org/10.1155/2021/9919030.
Der volle Inhalt der QuelleBektemyssova, G. U., G. S. Bakirova, Sh G. Yermukhanbetova, A. Shyntore, D. B. Umutkulov und Zh S. Mangysheva. „Analysis of the relevance and prospects of application of federate training“. Bulletin of the National Engineering Academy of the Republic of Kazakhstan 92, Nr. 2 (30.06.2024): 56–65. http://dx.doi.org/10.47533/2024.1606-146x.26.
Der volle Inhalt der QuelleShkurti, Lamir, und Mennan Selimi. „AdaptiveMesh: Adaptive Federate Learning for Resource-Constrained Wireless Environments“. International Journal of Online and Biomedical Engineering (iJOE) 20, Nr. 14 (14.11.2024): 22–37. http://dx.doi.org/10.3991/ijoe.v20i14.50559.
Der volle Inhalt der QuelleKholod, Ivan, Evgeny Yanaki, Dmitry Fomichev, Evgeniy Shalugin, Evgenia Novikova, Evgeny Filippov und Mats Nordlund. „Open-Source Federated Learning Frameworks for IoT: A Comparative Review and Analysis“. Sensors 21, Nr. 1 (29.12.2020): 167. http://dx.doi.org/10.3390/s21010167.
Der volle Inhalt der QuelleSrinivas, C., S. Venkatramulu, V. Chandra Shekar Rao, B. Raghuram, K. Vinay Kumar und Sreenivas Pratapagiri. „Decentralized Machine Learning based Energy Efficient Routing and Intrusion Detection in Unmanned Aerial Network (UAV)“. International Journal on Recent and Innovation Trends in Computing and Communication 11, Nr. 6s (13.06.2023): 517–27. http://dx.doi.org/10.17762/ijritcc.v11i6s.6960.
Der volle Inhalt der QuelleTabaszewski, Maciej, Paweł Twardowski, Martyna Wiciak-Pikuła, Natalia Znojkiewicz, Agata Felusiak-Czyryca und Jakub Czyżycki. „Machine Learning Approaches for Monitoring of Tool Wear during Grey Cast-Iron Turning“. Materials 15, Nr. 12 (20.06.2022): 4359. http://dx.doi.org/10.3390/ma15124359.
Der volle Inhalt der QuelleLaunet, Laëtitia, Yuandou Wang, Adrián Colomer, Jorge Igual, Cristian Pulgarín-Ospina, Spiros Koulouzis, Riccardo Bianchi et al. „Federating Medical Deep Learning Models from Private Jupyter Notebooks to Distributed Institutions“. Applied Sciences 13, Nr. 2 (09.01.2023): 919. http://dx.doi.org/10.3390/app13020919.
Der volle Inhalt der QuelleParekh, Nisha Harish, und Mrs Vrushali Shinde. „Federated Learning : A Paradigm Shift in Collaborative Machine Learning“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, Nr. 11 (10.11.2024): 1–6. http://dx.doi.org/10.55041/ijsrem38501.
Der volle Inhalt der QuelleШубин, Б., Т. Максимюк, О. Яремко, Л. Фабрі und Д. Мрозек. „МОДЕЛЬ ІНТЕГРАЦІЇ ФЕДЕРАТИВНОГО НАВЧАННЯ В МЕРЕЖІ МОБІЛЬНОГО ЗВ’ЯЗКУ 5-ГО ПОКОЛІННЯ“. Information and communication technologies, electronic engineering 2, Nr. 1 (August 2022): 26–35. http://dx.doi.org/10.23939/ictee2022.01.026.
Der volle Inhalt der QuelleLi, Chengan. „Research advanced in the integration of federated learning and reinforcement learning“. Applied and Computational Engineering 40, Nr. 1 (21.02.2024): 147–54. http://dx.doi.org/10.54254/2755-2721/40/20230641.
Der volle Inhalt der QuelleK. Usha Rani, Sreenivasulu Reddy L., Yaswanth Kumar Alapati, M. Katyayani, Kumar Keshamoni, A. Sree Rama Chandra Murthy,. „"Federated Learning: Advancements, Applications, and Future Directions for Collaborative Machine Learning in Distributed Environments"“. Journal of Electrical Systems 20, Nr. 5s (13.04.2024): 165–71. http://dx.doi.org/10.52783/jes.1900.
Der volle Inhalt der QuelleDelfin, Carl, Iulian Dragan, Dmitry Kuznetsov, Juan Fernandez Tajes, Femke Smit, Daniel E. Coral, Ali Farzaneh et al. „A Federated Database for Obesity Research: An IMI-SOPHIA Study“. Life 14, Nr. 2 (16.02.2024): 262. http://dx.doi.org/10.3390/life14020262.
Der volle Inhalt der QuelleSeol, Mihye, und Taejoon Kim. „Performance Enhancement in Federated Learning by Reducing Class Imbalance of Non-IID Data“. Sensors 23, Nr. 3 (19.01.2023): 1152. http://dx.doi.org/10.3390/s23031152.
Der volle Inhalt der QuelleZhang, Yong, und Mingchuan Zhang. „A Survey of Developments in Federated Meta-Learning“. Academic Journal of Science and Technology 11, Nr. 2 (12.06.2024): 27–29. http://dx.doi.org/10.54097/bzpfwa11.
Der volle Inhalt der QuelleRaju Cherukuri, Bangar. „Federated Learning: Privacy-Preserving Machine Learning in Cloud Environments“. International Journal of Science and Research (IJSR) 13, Nr. 10 (05.10.2024): 1539–49. http://dx.doi.org/10.21275/ms241022095645.
Der volle Inhalt der QuelleJinhyeok Jang, Jinhyeok Jang, Yoonju Oh Jinhyeok Jang, Gwonsang Ryu Yoonju Oh und Daeseon Choi Gwonsang Ryu. „Data Reconstruction Attack with Label Guessing for Federated Learning“. 網際網路技術學刊 24, Nr. 4 (Juli 2023): 893–903. http://dx.doi.org/10.53106/160792642023072404007.
Der volle Inhalt der QuelleAlaa Hamza Omran, Sahar Yousif Mohammed und Mohammad Aljanabi. „Detecting Data Poisoning Attacks in Federated Learning for Healthcare Applications Using Deep Learning“. Iraqi Journal For Computer Science and Mathematics 4, Nr. 4 (26.11.2023): 225–37. http://dx.doi.org/10.52866/ijcsm.2023.04.04.018.
Der volle Inhalt der QuelleGuo, Wenxin. „Overview of Research Progress and Challenges in Federated Learning“. Transactions on Computer Science and Intelligent Systems Research 5 (12.08.2024): 797–804. http://dx.doi.org/10.62051/9qyaha16.
Der volle Inhalt der QuelleMonteiro, Daryn, Ishaan Mavinkurve, Parth Kambli und Prof Sakshi Surve. „Federated Learning for Privacy-Preserving Machine Learning: Decentralized Model Training with Enhanced Data Security“. International Journal for Research in Applied Science and Engineering Technology 12, Nr. 11 (30.11.2024): 355–61. http://dx.doi.org/10.22214/ijraset.2024.65062.
Der volle Inhalt der QuelleAlferaidi, Ali, Kusum Yadav, Yasser Alharbi, Wattana Viriyasitavat, Sandeep Kautish und Gaurav Dhiman. „Federated Learning Algorithms to Optimize the Client and Cost Selections“. Mathematical Problems in Engineering 2022 (01.04.2022): 1–9. http://dx.doi.org/10.1155/2022/8514562.
Der volle Inhalt der QuelleFeng, Zecheng. „Federated Learning Security Threats and Defense Approaches“. Highlights in Science, Engineering and Technology 85 (13.03.2024): 121–27. http://dx.doi.org/10.54097/wvfhcd40.
Der volle Inhalt der QuelleNing, Weiguang, Yingjuan Zhu, Caixia Song, Hongxia Li, Lihui Zhu, Jinbao Xie, Tianyu Chen, Tong Xu, Xi Xu und Jiwei Gao. „Blockchain-Based Federated Learning: A Survey and New Perspectives“. Applied Sciences 14, Nr. 20 (16.10.2024): 9459. http://dx.doi.org/10.3390/app14209459.
Der volle Inhalt der QuelleJitendra Singh Chouhan, Amit Kumar Bhatt, Nitin Anand. „Federated Learning; Privacy Preserving Machine Learning for Decentralized Data“. Tuijin Jishu/Journal of Propulsion Technology 44, Nr. 1 (24.11.2023): 167–69. http://dx.doi.org/10.52783/tjjpt.v44.i1.2234.
Der volle Inhalt der QuelleMonika Dhananjay Rokade. „Advancements in Privacy-Preserving Techniques for Federated Learning: A Machine Learning Perspective“. Journal of Electrical Systems 20, Nr. 2s (31.03.2024): 1075–88. http://dx.doi.org/10.52783/jes.1754.
Der volle Inhalt der QuelleLiu, Chaoyi, und Qi Zhu. „Joint Resource Allocation and Learning Optimization for UAV-Assisted Federated Learning“. Applied Sciences 13, Nr. 6 (15.03.2023): 3771. http://dx.doi.org/10.3390/app13063771.
Der volle Inhalt der QuelleYarlagadda, Sneha Sree, Sai Harshith Tule und Karthik Myada. „F1 Score Based Weighted Asynchronous Federated Learning“. International Journal for Research in Applied Science and Engineering Technology 12, Nr. 2 (29.02.2024): 947–53. http://dx.doi.org/10.22214/ijraset.2024.58487.
Der volle Inhalt der QuelleLiu, Jessica Chia, Jack Goetz, Srijan Sen und Ambuj Tewari. „Learning From Others Without Sacrificing Privacy: Simulation Comparing Centralized and Federated Machine Learning on Mobile Health Data“. JMIR mHealth and uHealth 9, Nr. 3 (30.03.2021): e23728. http://dx.doi.org/10.2196/23728.
Der volle Inhalt der QuelleToofanee, Mohammud Shaad Ally, Mohamed Hamroun, Sabeena Dowlut, Karim Tamine, Vincent Petit, Anh Kiet Duong und Damien Sauveron. „Federated Learning: Centralized and P2P for a Siamese Deep Learning Model for Diabetes Foot Ulcer Classification“. Applied Sciences 13, Nr. 23 (28.11.2023): 12776. http://dx.doi.org/10.3390/app132312776.
Der volle Inhalt der QuelleLi, Jipeng, Xinyi Li und Chenjing Zhang. „Analysis on Security and Privacy-preserving in Federated Learning“. Highlights in Science, Engineering and Technology 4 (26.07.2022): 349–58. http://dx.doi.org/10.54097/hset.v4i.923.
Der volle Inhalt der QuelleWoo, Gimoon, Hyungbin Kim, Seunghyun Park, Cheolwoo You und Hyunhee Park. „Fairness-Based Multi-AP Coordination Using Federated Learning in Wi-Fi 7“. Sensors 22, Nr. 24 (13.12.2022): 9776. http://dx.doi.org/10.3390/s22249776.
Der volle Inhalt der QuelleDR.AR.SIVAKUMARAN, POLNENI ABHINAYA, PENDYALA SWETHA und POKALA MAHITHA. „DATA POISONING ATTACKS ON FEDERATED MACHINE LEARNING“. International Journal of Engineering, Science and Advanced Technology 24, Nr. 10 (2024): 188–97. http://dx.doi.org/10.36893/ijesat.2024.v24i10.022.
Der volle Inhalt der QuelleChouhan, Khushi Udaysingh, Nikita Pradeep Kumar Jha, Roshni Sanjay Jha, Shaikh Insha Kamaluddin und Dr Nupur Giri. „Mobile Keyword Prediction using Federated Learning“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 4 (30.04.2023): 3144–51. http://dx.doi.org/10.22214/ijraset.2023.50826.
Der volle Inhalt der QuelleWang, Weixi. „Empowering safe and secure autonomy: Federated learning in the era of autonomous driving“. Applied and Computational Engineering 51, Nr. 1 (25.03.2024): 40–44. http://dx.doi.org/10.54254/2755-2721/51/20241158.
Der volle Inhalt der QuelleAjay, Ajay, Ajay Kumar, Krishan Kant Singh Gautam, Pratibha Deshmukh, Pavithra G und Laith Abualigah. „Collaborative Intelligence for IoT: Decentralized Net security and confidentiality“. Journal of Intelligent Systems and Internet of Things 13, Nr. 2 (2024): 202–11. http://dx.doi.org/10.54216/jisiot.130216.
Der volle Inhalt der QuelleEmmanni, Phani Sekhar. „Federated Learning for Cybersecurity in Edge and Cloud Computing“. International Journal of Computing and Engineering 5, Nr. 4 (12.03.2024): 27–38. http://dx.doi.org/10.47941/ijce.1829.
Der volle Inhalt der QuelleZhang, Ticao, und Shiwen Mao. „An Introduction to the Federated Learning Standard“. GetMobile: Mobile Computing and Communications 25, Nr. 3 (07.01.2022): 18–22. http://dx.doi.org/10.1145/3511285.3511291.
Der volle Inhalt der QuelleLee, Haeyun, Young Jun Chai, Hyunjin Joo, Kyungsu Lee, Jae Youn Hwang, Seok-Mo Kim, Kwangsoon Kim et al. „Federated Learning for Thyroid Ultrasound Image Analysis to Protect Personal Information: Validation Study in a Real Health Care Environment“. JMIR Medical Informatics 9, Nr. 5 (18.05.2021): e25869. http://dx.doi.org/10.2196/25869.
Der volle Inhalt der QuelleTian, Junfeng, Xinyao Chen und Shuo Wang. „Few-Shot Federated Learning: A Federated Learning Model for Small-Sample Scenarios“. Applied Sciences 14, Nr. 9 (04.05.2024): 3919. http://dx.doi.org/10.3390/app14093919.
Der volle Inhalt der QuelleHang, Yifei. „Federated learning-based neural network for hotel cancellation prediction“. Applied and Computational Engineering 45, Nr. 1 (15.03.2024): 190–95. http://dx.doi.org/10.54254/2755-2721/45/20241092.
Der volle Inhalt der QuelleGao, Yuan. „Federated learning: Impact of different algorithms and models on prediction results based on fashion-MNIST data set“. Applied and Computational Engineering 86, Nr. 1 (31.07.2024): 210–18. http://dx.doi.org/10.54254/2755-2721/86/20241594.
Der volle Inhalt der QuelleAl-Tameemi, M., M. B. Hassan und S. A. Abass. „Federated Learning (FL) – Overview“. LETI Transactions on Electrical Engineering & Computer Science 17, Nr. 5 (2024): 74–82. http://dx.doi.org/10.32603/2071-8985-2024-17-5-74-82.
Der volle Inhalt der QuelleLi, Sirui, Keyu Shao und Jingqi Zhou. „Research Advanced in Federated Learning“. Applied and Computational Engineering 40, Nr. 1 (21.02.2024): 140–46. http://dx.doi.org/10.54254/2755-2721/40/20230640.
Der volle Inhalt der QuelleChen, Gaofeng, und Qingtao Wu. „A Review of Personalized Federated Reinforcement Learning“. International Journal of Computer Science and Information Technology 3, Nr. 1 (15.06.2024): 1–9. http://dx.doi.org/10.62051/ijcsit.v3n1.01.
Der volle Inhalt der QuelleJiang, Jingyan, Liang Hu, Chenghao Hu, Jiate Liu und Zhi Wang. „BACombo—Bandwidth-Aware Decentralized Federated Learning“. Electronics 9, Nr. 3 (05.03.2020): 440. http://dx.doi.org/10.3390/electronics9030440.
Der volle Inhalt der QuelleShrivastava, Arpit. „Privacy-Centric AI: Navigating the Landscape with Federated Learning“. International Journal for Research in Applied Science and Engineering Technology 12, Nr. 5 (31.05.2024): 357–63. http://dx.doi.org/10.22214/ijraset.2024.61000.
Der volle Inhalt der QuelleJin, Xuan, Yuanzhi Yao und Nenghai Yu. „Efficient secure aggregation for privacy-preserving federated learning based on secret sharing“. JUSTC 53, Nr. 4 (2023): 1. http://dx.doi.org/10.52396/justc-2022-0116.
Der volle Inhalt der QuelleTian, Mengmeng. „An Contract Theory based Federated Learning Aggregation Algorithm in IoT Network“. Journal of Physics: Conference Series 2258, Nr. 1 (01.04.2022): 012008. http://dx.doi.org/10.1088/1742-6596/2258/1/012008.
Der volle Inhalt der QuelleYang, Xun, Shuwen Xiang, Changgen Peng, Weijie Tan, Yue Wang, Hai Liu und Hongfa Ding. „Federated Learning Incentive Mechanism with Supervised Fuzzy Shapley Value“. Axioms 13, Nr. 4 (11.04.2024): 254. http://dx.doi.org/10.3390/axioms13040254.
Der volle Inhalt der QuelleLuo, Yihang, Bei Gong, Haotian Zhu und Chong Guo. „A Trusted Federated Incentive Mechanism Based on Blockchain for 6G Network Data Security“. Applied Sciences 13, Nr. 19 (22.09.2023): 10586. http://dx.doi.org/10.3390/app131910586.
Der volle Inhalt der Quelle