Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Federate learning“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Federate learning" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Federate learning"
Oktian, Yustus Eko, Brian Stanley und Sang-Gon Lee. „Building Trusted Federated Learning on Blockchain“. Symmetry 14, Nr. 7 (08.07.2022): 1407. http://dx.doi.org/10.3390/sym14071407.
Der volle Inhalt der QuelleLi, Yanbin, Yue Li, Huanliang Xu und Shougang Ren. „An Adaptive Communication-Efficient Federated Learning to Resist Gradient-Based Reconstruction Attacks“. Security and Communication Networks 2021 (22.04.2021): 1–16. http://dx.doi.org/10.1155/2021/9919030.
Der volle Inhalt der QuelleBektemyssova, G. U., G. S. Bakirova, Sh G. Yermukhanbetova, A. Shyntore, D. B. Umutkulov und Zh S. Mangysheva. „Analysis of the relevance and prospects of application of federate training“. Bulletin of the National Engineering Academy of the Republic of Kazakhstan 92, Nr. 2 (30.06.2024): 56–65. http://dx.doi.org/10.47533/2024.1606-146x.26.
Der volle Inhalt der QuelleShkurti, Lamir, und Mennan Selimi. „AdaptiveMesh: Adaptive Federate Learning for Resource-Constrained Wireless Environments“. International Journal of Online and Biomedical Engineering (iJOE) 20, Nr. 14 (14.11.2024): 22–37. http://dx.doi.org/10.3991/ijoe.v20i14.50559.
Der volle Inhalt der QuelleKholod, Ivan, Evgeny Yanaki, Dmitry Fomichev, Evgeniy Shalugin, Evgenia Novikova, Evgeny Filippov und Mats Nordlund. „Open-Source Federated Learning Frameworks for IoT: A Comparative Review and Analysis“. Sensors 21, Nr. 1 (29.12.2020): 167. http://dx.doi.org/10.3390/s21010167.
Der volle Inhalt der QuelleSrinivas, C., S. Venkatramulu, V. Chandra Shekar Rao, B. Raghuram, K. Vinay Kumar und Sreenivas Pratapagiri. „Decentralized Machine Learning based Energy Efficient Routing and Intrusion Detection in Unmanned Aerial Network (UAV)“. International Journal on Recent and Innovation Trends in Computing and Communication 11, Nr. 6s (13.06.2023): 517–27. http://dx.doi.org/10.17762/ijritcc.v11i6s.6960.
Der volle Inhalt der QuelleTabaszewski, Maciej, Paweł Twardowski, Martyna Wiciak-Pikuła, Natalia Znojkiewicz, Agata Felusiak-Czyryca und Jakub Czyżycki. „Machine Learning Approaches for Monitoring of Tool Wear during Grey Cast-Iron Turning“. Materials 15, Nr. 12 (20.06.2022): 4359. http://dx.doi.org/10.3390/ma15124359.
Der volle Inhalt der QuelleLaunet, Laëtitia, Yuandou Wang, Adrián Colomer, Jorge Igual, Cristian Pulgarín-Ospina, Spiros Koulouzis, Riccardo Bianchi et al. „Federating Medical Deep Learning Models from Private Jupyter Notebooks to Distributed Institutions“. Applied Sciences 13, Nr. 2 (09.01.2023): 919. http://dx.doi.org/10.3390/app13020919.
Der volle Inhalt der QuelleParekh, Nisha Harish, und Mrs Vrushali Shinde. „Federated Learning : A Paradigm Shift in Collaborative Machine Learning“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, Nr. 11 (10.11.2024): 1–6. http://dx.doi.org/10.55041/ijsrem38501.
Der volle Inhalt der QuelleШубин, Б., Т. Максимюк, О. Яремко, Л. Фабрі und Д. Мрозек. „МОДЕЛЬ ІНТЕГРАЦІЇ ФЕДЕРАТИВНОГО НАВЧАННЯ В МЕРЕЖІ МОБІЛЬНОГО ЗВ’ЯЗКУ 5-ГО ПОКОЛІННЯ“. Information and communication technologies, electronic engineering 2, Nr. 1 (August 2022): 26–35. http://dx.doi.org/10.23939/ictee2022.01.026.
Der volle Inhalt der QuelleDissertationen zum Thema "Federate learning"
Eriksson, Henrik. „Federated Learning in Large Scale Networks : Exploring Hierarchical Federated Learning“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292744.
Der volle Inhalt der QuelleFederated Learning står inför en utmaning när det gäller att hantera data med en hög grad av heterogenitet och det kan i vissa fall vara olämpligt att använda sig av en approach där en och samma modell är tränad för att användas av alla noder i nätverket. Olika approacher för att hantera detta problem har undersökts som att anpassa den tränade modellen till varje nod och att klustra noderna i nätverket och träna en egen modell för varje kluster inom vilket datan är mindre heterogen. I detta arbete studeras möjligheterna att förbättra prestandan hos de lokala modellerna genom att dra nytta av den hierarkiska anordning som uppstår när de deltagande noderna i nätverket grupperas i kluster. Experiment är utförda med ett Long Short-Term Memory-nätverk för att utföra tidsserieprognoser för att utvärdera olika approacher som drar nytta av den hierarkiska anordningen och jämför dem med vanliga federated learning-approacher. Experimenten är utförda med ett dataset insamlat av Ericsson AB. Det består av "handoversfrån basstationer i en europeisk stad. De hierarkiska approacherna visade inga fördelar jämfört med de vanliga två-nivåapproacherna.
Taiello, Riccardo. „Apprentissage automatique sécurisé pour l'analyse collaborative des données de santé à grande échelle“. Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4031.
Der volle Inhalt der QuelleThis PhD thesis explores the integration of privacy preservation, medical imaging, and Federated Learning (FL) using advanced cryptographic methods. Within the context of medical image analysis, we develop a privacy-preserving image registration (PPIR) framework. This framework addresses the challenge of registering images confidentially, without revealing their contents. By extending classical registration paradigms, we incorporate cryptographic tools like secure multi-party computation and homomorphic encryption to perform these operations securely. These tools are vital as they prevent data leakage during processing. Given the challenges associated with the performance and scalability of cryptographic methods in high-dimensional data, we optimize our image registration operations using gradient approximations. Our focus extends to increasingly complex registration methods, such as rigid, affine, and non-linear approaches using cubic splines or diffeomorphisms, parameterized by time-varying velocity fields. We demonstrate how these sophisticated registration methods can integrate privacy-preserving mechanisms effectively across various tasks. Concurrently, the thesis addresses the challenge of stragglers in FL, emphasizing the role of Secure Aggregation (SA) in collaborative model training. We introduce "Eagle", a synchronous SA scheme designed to optimize participation by late-arriving devices, significantly enhancing computational and communication efficiencies. We also present "Owl", tailored for buffered asynchronous FL settings, consistently outperforming earlier solutions. Furthermore, in the realm of Buffered AsyncSA, we propose two novel approaches: "Buffalo" and "Buffalo+". "Buffalo" advances SA techniques for Buffered AsyncSA, while "Buffalo+" counters sophisticated attacks that traditional methods fail to detect, such as model replacement. This solution leverages the properties of incremental hash functions and explores the sparsity in the quantization of local gradients from client models. Both Buffalo and Buffalo+ are validated theoretically and experimentally, demonstrating their effectiveness in a new cross-device FL task for medical devices.Finally, this thesis has devoted particular attention to the translation of privacy-preserving tools in real-world applications, notably through the FL open-source framework Fed-BioMed. Contributions concern the introduction of one of the first practical SA implementations specifically designed for cross-silo FL among hospitals, showcasing several practical use cases
Mäenpää, Dylan. „Towards Peer-to-Peer Federated Learning: Algorithms and Comparisons to Centralized Federated Learning“. Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176778.
Der volle Inhalt der QuelleLiang, Jiarong. „Federated Learning for Bioimage Classification“. Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-420615.
Der volle Inhalt der QuelleZhao, Qiwei. „Federated Learning with Heterogeneous Challenge“. Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/27399.
Der volle Inhalt der QuelleCarlsson, Robert. „Privacy-Preserved Federated Learning : A survey of applicable machine learning algorithms in a federated environment“. Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-424383.
Der volle Inhalt der QuelleDinh, The Canh. „Distributed Algorithms for Fast and Personalized Federated Learning“. Thesis, The University of Sydney, 2023. https://hdl.handle.net/2123/30019.
Der volle Inhalt der QuelleFelix, Johannes Morsbach. „Hardened Model Aggregation for Federated Learning backed by Distributed Trust Towards decentralizing Federated Learning using a Blockchain“. Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-423621.
Der volle Inhalt der QuelleLeconte, Louis. „Compression and federated learning : an approach to frugal machine learning“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS107.
Der volle Inhalt der Quelle“Intelligent” devices and tools are gradually becoming the standard, as the implementation of algorithms based on artificial neural networks is experiencing widespread development. Neural networks consist of non-linear machine learning models that manipulate high-dimensional objects and obtain state-of-the-art performances in various areas, such as image recognition, speech recognition, natural language processing, and recommendation systems.However, training a neural network on a device with lower computing capacity can be challenging, as it can imply cutting back on memory, computing time or power. A natural approach to simplify this training is to use quantized neural networks, whose parameters and operations use efficient low-bit primitives. However, optimizing a function over a discrete set in high dimension is complex, and can still be prohibitively expensive in terms of computational power. For this reason, many modern applications use a network of devices to store individual data and share the computational load. A new approach, federated learning, considers a distributed environment: Data is stored on devices and a centralized server orchestrates the training process across multiple devices.In this thesis, we investigate different aspects of (stochastic) optimization with the goal of reducing energy costs for potentially very heterogeneous devices. The first two contributions of this work are dedicated to the case of quantized neural networks. Our first idea is based on an annealing strategy: we formulate the discrete optimization problem as a constrained optimization problem (where the size of the constraint is reduced over iterations). We then focus on a heuristic for training binary deep neural networks. In this particular framework, the parameters of the neural networks can only have two values. The rest of the thesis is about efficient federated learning. Following our contributions developed for training quantized neural network, we integrate them into a federated environment. Then, we propose a novel unbiased compression technique that can be used in any gradient based distributed optimization framework. Our final contributions address the particular case of asynchronous federated learning, where devices have different computational speeds and/or access to bandwidth. We first propose a contribution that reweights the contributions of distributed devices. Then, in our final work, through a detailed queuing dynamics analysis, we propose a significant improvement to the complexity bounds provided in the literature onasynchronous federated learning.In summary, this thesis presents novel contributions to the field of quantized neural networks and federated learning by addressing critical challenges and providing innovative solutions for efficient and sustainable learning in a distributed and heterogeneous environment. Although the potential benefits are promising, especially in terms of energy savings, caution is needed as a rebound effect could occur
Adapa, Supriya. „TensorFlow Federated Learning: Application to Decentralized Data“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Den vollen Inhalt der Quelle findenBücher zum Thema "Federate learning"
Yang, Qiang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen und Han Yu. Federated Learning. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-01585-4.
Der volle Inhalt der QuelleLudwig, Heiko, und Nathalie Baracaldo, Hrsg. Federated Learning. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96896-0.
Der volle Inhalt der QuelleYang, Qiang, Lixin Fan und Han Yu, Hrsg. Federated Learning. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63076-8.
Der volle Inhalt der QuelleJin, Yaochu, Hangyu Zhu, Jinjin Xu und Yang Chen. Federated Learning. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7083-2.
Der volle Inhalt der QuelleUddin, M. Irfan, und Wali Khan Mashwani. Federated Learning. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003466581.
Der volle Inhalt der QuelleSahoo, Jayakrushna, Mariya Ouaissa und Akarsh K. Nair. Federated Learning. New York: Apple Academic Press, 2024. http://dx.doi.org/10.1201/9781003497196.
Der volle Inhalt der QuelleRehman, Muhammad Habib ur, und Mohamed Medhat Gaber, Hrsg. Federated Learning Systems. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70604-3.
Der volle Inhalt der QuelleGoebel, Randy, Han Yu, Boi Faltings, Lixin Fan und Zehui Xiong, Hrsg. Trustworthy Federated Learning. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28996-5.
Der volle Inhalt der QuelleRazavi-Far, Roozbeh, Boyu Wang, Matthew E. Taylor und Qiang Yang, Hrsg. Federated and Transfer Learning. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-11748-0.
Der volle Inhalt der QuelleKrishnan, Saravanan, A. Jose Anand, R. Srinivasan, R. Kavitha und S. Suresh. Handbook on Federated Learning. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003384854.
Der volle Inhalt der QuelleBuchteile zum Thema "Federate learning"
Rehman, Atiq Ur, Samir Brahim Belhaouari, Tanya Stanko und Vladimir Gorovoy. „Divide to Federate Clustering Concept for Unsupervised Learning“. In Proceedings of Seventh International Congress on Information and Communication Technology, 19–29. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2397-5_3.
Der volle Inhalt der QuelleHuang, Hai, Wei Wu, Xin Tang und Zhong Zhou. „Federate Migration in Grid-Based Virtual Wargame Collaborative Environment“. In Technologies for E-Learning and Digital Entertainment, 606–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11736639_75.
Der volle Inhalt der QuelleJin, Yaochu, Hangyu Zhu, Jinjin Xu und Yang Chen. „Summary and Outlook“. In Federated Learning, 213–15. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7083-2_5.
Der volle Inhalt der QuelleJin, Yaochu, Hangyu Zhu, Jinjin Xu und Yang Chen. „Introduction“. In Federated Learning, 1–92. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7083-2_1.
Der volle Inhalt der QuelleJin, Yaochu, Hangyu Zhu, Jinjin Xu und Yang Chen. „Communication Efficient Federated Learning“. In Federated Learning, 93–137. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7083-2_2.
Der volle Inhalt der QuelleJin, Yaochu, Hangyu Zhu, Jinjin Xu und Yang Chen. „Secure Federated Learning“. In Federated Learning, 165–212. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7083-2_4.
Der volle Inhalt der QuelleJin, Yaochu, Hangyu Zhu, Jinjin Xu und Yang Chen. „Evolutionary Multi-objective Federated Learning“. In Federated Learning, 139–64. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7083-2_3.
Der volle Inhalt der QuelleYang, Qiang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen und Han Yu. „Incentive Mechanism Design for Federated Learning“. In Federated Learning, 95–105. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-01585-4_7.
Der volle Inhalt der QuelleYang, Qiang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen und Han Yu. „Introduction“. In Federated Learning, 1–15. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-01585-4_1.
Der volle Inhalt der QuelleYang, Qiang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen und Han Yu. „Vertical Federated Learning“. In Federated Learning, 69–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-01585-4_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Federate learning"
Seo, Seonguk, Jinkyu Kim, Geeho Kim und Bohyung Han. „Relaxed Contrastive Learning for Federated Learning“. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 12279–88. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.01167.
Der volle Inhalt der QuelleAlbuquerque, R. A., L. P. Dias, Momo Ziazet, K. Vandikas, S. Ickin, B. Jaumard, C. Natalino, L. Wosinska, P. Monti und E. Wong. „Asynchronous Federated Split Learning“. In 2024 IEEE 8th International Conference on Fog and Edge Computing (ICFEC), 11–18. IEEE, 2024. http://dx.doi.org/10.1109/icfec61590.2024.00010.
Der volle Inhalt der QuelleOh, Seungeun, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh Raskar, Mehdi Bennis und Seong-Lyun Kim. „LocFedMix-SL: Localize, Federate, and Mix for Improved Scalability, Convergence, and Latency in Split Learning“. In WWW '22: The ACM Web Conference 2022. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3485447.3512153.
Der volle Inhalt der QuelleOh, Seungeun, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh Raskar, Mehdi Bennis und Seong-Lyun Kim. „LocFedMix-SL: Localize, Federate, and Mix for Improved Scalability, Convergence, and Latency in Split Learning“. In WWW '22: The ACM Web Conference 2022. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3485447.3512153.
Der volle Inhalt der QuelleCosta, Arthur N. F. Martins da, und Pedro Silva. „Computação, Saúde e Segurança: Explorando o Potencial da Aprendizagem Federada na Detecção de Arritmias Cardíacas“. In Escola Regional de Computação Aplicada à Saúde. Sociedade Brasileira de Computação - SBC, 2024. http://dx.doi.org/10.5753/ercas.2024.238587.
Der volle Inhalt der QuelleLiu, Gaoyang, Xiaoqiang Ma, Yang Yang, Chen Wang und Jiangchuan Liu. „FedEraser: Enabling Efficient Client-Level Data Removal from Federated Learning Models“. In 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS). IEEE, 2021. http://dx.doi.org/10.1109/iwqos52092.2021.9521274.
Der volle Inhalt der QuelleDupuy, Christophe, Tanya G. Roosta, Leo Long, Clement Chung, Rahul Gupta und Salman Avestimehr. „Learnings from Federated Learning in The Real World“. In ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022. http://dx.doi.org/10.1109/icassp43922.2022.9747113.
Der volle Inhalt der Quelleda Silva, Vinicios B., Renan R. de Oliveira, Antonio Oliveira-Jr und Ronaldo M. da Costa. „Treinamento Federado Aplicado à Segmentação do Ventrículo Esquerdo“. In Escola Regional de Informática de Goiás. Sociedade Brasileira de Computação, 2023. http://dx.doi.org/10.5753/erigo.2023.237317.
Der volle Inhalt der QuelleChen, Zhikun, Daofeng Li, Ming Zhao, Sihai Zhang und Jinkang Zhu. „Semi-Federated Learning“. In 2020 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2020. http://dx.doi.org/10.1109/wcnc45663.2020.9120453.
Der volle Inhalt der QuelleRizk, Elsa, Stefan Vlaski und Ali H. Sayed. „Dynamic Federated Learning“. In 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2020. http://dx.doi.org/10.1109/spawc48557.2020.9154327.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Federate learning"
Shteyn, Anastasia, Konrad Kollnig und Calum Inverarity. Federated learning: an introduction [report]. Open Data Institute, Januar 2023. http://dx.doi.org/10.61557/vnfu8593.
Der volle Inhalt der QuelleWang, Yixuan. Federated Learning User Friendly Web App. Ames (Iowa): Iowa State University, August 2023. http://dx.doi.org/10.31274/cc-20240624-720.
Der volle Inhalt der QuelleSokolovsky, Dmitry, Sergey Sokolov und Alexey Rezaykin. e-learning course "Informatics". SIB-Expertise, Januar 2024. http://dx.doi.org/10.12731/er0785.29012024.
Der volle Inhalt der QuelleFerraz, Claudio, Frederico Finan und Diana Moreira. Corrupting Learning: Evidence from Missing Federal Education Funds in Brazil. Cambridge, MA: National Bureau of Economic Research, Juni 2012. http://dx.doi.org/10.3386/w18150.
Der volle Inhalt der QuelleInman, Robert, und Daniel Rubinfeld. Federal Institutions and the Democratic Transition: Learning from South Africa. Cambridge, MA: National Bureau of Economic Research, Januar 2008. http://dx.doi.org/10.3386/w13733.
Der volle Inhalt der QuelleEugenio, Evercita. Federated Learning and Differential Privacy: What might AI-Enhanced co-design of microelectronics learn?. Office of Scientific and Technical Information (OSTI), Mai 2022. http://dx.doi.org/10.2172/1868417.
Der volle Inhalt der QuelleWorley, Sean, Scott Palmer und Nathan Woods. Building, Sustaining and Improving: Using Federal Funds for Summer Learning and Afterschool. Education Counsel, Juli 2022. http://dx.doi.org/10.59656/yd-os9931.001.
Der volle Inhalt der QuelleDavis, Allison Crean, John Hitchcock, Beth-Ann Tek, Holly Bozeman, Kristen Pugh, Clarissa McKithen und Molly Hershey-Arista. A National Call to Action for Summer Learning: How Did States Respond? Westat, Juli 2023. http://dx.doi.org/10.59656/yd-os6574.001.
Der volle Inhalt der QuelleBadrinarayan, Aneesha, und Linda Darling-Hammond. Developing State Assessment Systems That Support Teaching and Learning: What Can the Federal Government Do? Learning Policy Institute, April 2023. http://dx.doi.org/10.54300/885.821.
Der volle Inhalt der QuelleHart, Nick Hart, Sara Stefanik Stefanik, Christopher Murell Murell und Karol Olejniczak Olejniczak. Blueprints for Learning: A Synthesis of Federal Evidence-Building Plans Under the Evidence Act. Data Foundation, Juni 2024. http://dx.doi.org/10.15868/socialsector.43901.
Der volle Inhalt der Quelle