Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „FEA validation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "FEA validation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "FEA validation"
Panagiotopoulou, O., S. D. Wilshin, E. J. Rayfield, S. J. Shefelbine und J. R. Hutchinson. „What makes an accurate and reliable subject-specific finite element model? A case study of an elephant femur“. Journal of The Royal Society Interface 9, Nr. 67 (13.07.2011): 351–61. http://dx.doi.org/10.1098/rsif.2011.0323.
Der volle Inhalt der QuelleAcar, Dogan, Mevlut Turkoz, Hasan Gedikli und Omer Necati Cora. „Finite Element Analysis and Experimental Validation of Warm Hydromechanical Deep Drawing Process“. Applied Mechanics and Materials 686 (Oktober 2014): 535–39. http://dx.doi.org/10.4028/www.scientific.net/amm.686.535.
Der volle Inhalt der QuelleKořínek, Jan. „Validation of Sinus Filter Choke Temperature Model“. TRANSACTIONS ON ELECTRICAL ENGINEERING 5, Nr. 2 (30.03.2020): 53–58. http://dx.doi.org/10.14311/tee.2016.2.053.
Der volle Inhalt der QuelleP. Hassan, Mohamed, Abdullah Saad Mahmud, A. S. M. Rafie und Rizal Zahari. „Alternative Numerical Validation Methodology for Short-Term Development Projects“. Applied Mechanics and Materials 564 (Juni 2014): 638–43. http://dx.doi.org/10.4028/www.scientific.net/amm.564.638.
Der volle Inhalt der QuelleDe Strycker, Maarten, Pascal Lava, Wim Van Paepegem, Luc Schueremans und Dimitri Debruyne. „Validation of Welding Simulations Using Thermal Strains Measured with DIC“. Applied Mechanics and Materials 70 (August 2011): 129–34. http://dx.doi.org/10.4028/www.scientific.net/amm.70.129.
Der volle Inhalt der QuelleBright, Jen A. „A review of paleontological finite element models and their validity“. Journal of Paleontology 88, Nr. 4 (Juli 2014): 760–69. http://dx.doi.org/10.1666/13-090.
Der volle Inhalt der QuelleL'Anson, R., J. Peña, R. Postic und J.-P. Barret. „Finite Element Analysis Applied to Radial Aircraft Tyre Engineering“. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 210, Nr. 1 (Januar 1996): 109–16. http://dx.doi.org/10.1243/pime_proc_1996_210_349_02.
Der volle Inhalt der QuelleKim, Hong Seok, Muammer Koç, Jun Ni und Amit Ghosh. „Finite Element Modeling and Analysis of Warm Forming of Aluminum Alloys—Validation Through Comparisons With Experiments and Determination of a Failure Criterion“. Journal of Manufacturing Science and Engineering 128, Nr. 3 (19.09.2005): 613–21. http://dx.doi.org/10.1115/1.2194065.
Der volle Inhalt der QuelleTarfaoui, Mostapha, und Papa Birame Gning. „Experimental Investigation and Finite Element Analysis of Dynamic Behavior and Damage of Glass/Epoxy Tubular Structures“. Key Engineering Materials 471-472 (Februar 2011): 951–56. http://dx.doi.org/10.4028/www.scientific.net/kem.471-472.951.
Der volle Inhalt der QuelleZhang, Peng, Song He, Michael C. Muir und G. S. J. Gautam. „Eccentricity Effects on NVH Performance of Interior Permanent Magnets Machines for Hybrid and Electric Vehicles“. INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, Nr. 4 (01.08.2021): 2384–92. http://dx.doi.org/10.3397/in-2021-2124.
Der volle Inhalt der QuelleDissertationen zum Thema "FEA validation"
Lashore, Michael. „Mathematical Model Validation of a Center of Gravity Measuring Platform Using Experimental Tests and FEA“. DigitalCommons@CalPoly, 2015. https://digitalcommons.calpoly.edu/theses/1467.
Der volle Inhalt der QuelleLongmire, Leala S. „Design, Optimization, and Validation of a Rear Subframe to allow for the Integration of an Electric Powertrain“. The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1594907186413918.
Der volle Inhalt der QuelleRydman, Joakim. „Validation of blast simulation models via drop-tower tests“. Thesis, Umeå universitet, Institutionen för fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-149403.
Der volle Inhalt der QuelleSylliaasen, Scott J. „The Development and Validation of a Finite Element Model of a Canine Rib For Use With a Bone Remodeling Algorithm“. DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/415.
Der volle Inhalt der QuelleWalters, David Michael. „Design, Validation, and Optimization of a Rear Sub-frame with Electric Powertrain Integration“. The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437665533.
Der volle Inhalt der QuelleProcházka, Vojtěch. „Výpočtová analýza oka ramene nápravy osobního automobilu“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443750.
Der volle Inhalt der QuelleMaranhão, César Miguel Ramos. „FEM analysis in machining and experimental validation“. Master's thesis, Universidade de Aveiro, 2008. http://hdl.handle.net/10773/2460.
Der volle Inhalt der QuelleA presente investigação contempla a simulação numérica e validação experimental de processos de maquinagem. O estudo consiste na simulação numérica da maquinagem de materiais de alto desempenho como a liga de alumínio 7075 e o aço inox AISI 316 com validação experimental. Diversas simulações e validações foram conduzidas de modo a cobrir uma gama de parâmetros de maquinagem. Forças de corte e de avanço, potência de maquinagem, máxima temperatura de corte e deformação plástica foram validadas com sucesso. Finalmente, foram modeladas outras grandezas nomeadamente tensões residuais no aço inoxidável. ABSTRACT: The present investigation contemplates numerical simulation and experimental validation of machining processes. The study consists in simulating the machining of high performance materials like aluminium alloy 7075 and stainless steel AISI 316 with experimental validation. Several simulations and validations were conducted in order to cover a wide range of machining parameters. Cutting and feed forces, cutting power, maximum cutting temperature and plastic strain were validated with success. Finally, residual stresses in stainless steel were also modelled.
Moravej, Maryam. „Développement et validation des matériaux métalliques pour stents cardiovasculaires biodégradables par dépôt électrolytique“. Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/27897/27897.pdf.
Der volle Inhalt der QuelleDegradable metallic coronary stents have emerged as possible alternatives for permanent stents fabricated from corrosion-resistant metals such as 316L stainless steel (316L SS). Pure iron has shown to be an interesting candidate for degradable stents in terms of mechanical properties, degradation and biocompatibility. This project is the first to investigate the feasibility of using electroforming process for production of iron for degradable stents where the material is used for a load-bearing application. In this project, firstly, an electroforming process was developed. The produced iron foils showed a fine microstructure and high yield and tensile strength were also obtained comparable to those of 316L SS. Annealing at 550˚C for 1h induced recrystallization in iron and improved its ductility from 8 to 18%. The investigation of the degradation of electroformed iron in Hank’s solution using potentiodynamic polarization, static immersion and dynamic degradation tests showed that it corrodes faster than Armco® iron previously investigated for degradable stents. The effect of current density as an electroforming parameter on the microstructure and thereby the degradation of iron was also studied. Electron backscatter diffraction (EBSD) showed that different microstructures including grain size and texture were produced at different current densities from 1-10 A dm-2. The highest degradation rate was obtained for iron fabricated at 5 A dm-2 since it possesses small grain size and equiaxed grains with random orientations providing more grain boundary volume can be held responsible for its faster degradation rate compared to the other iron samples. Finally, the electroforming process was successfully applied for the fabrication of iron tubes. Iron tubes were electroformed on Sn cylinders which were separated from them by melting after the process. The tubes were then used for the fabrication of iron stents by laser-cutting. Iron stents fabricated from electroformed tubes demonstrated an average grain size of 5 µm after annealing and acid-pickling. This grain size is finer than what usually obtained for 316L SS stents and could potentially provide high mechanical properties and targeted degradation for electroformed iron stents.
Caycho-Rodríguez, Tomás, José M. Tomás, Miguel Barboza-Palomino, José Ventura-León, Miguel Gallegos, Mario Reyes-Bossio und Lindsey W. Vilca. „Assessment of Fear of COVID-19 in Older Adults: Validation of the Fear of COVID-19 Scale“. Springer, 2021. http://hdl.handle.net/10757/655711.
Der volle Inhalt der QuelleCabrera, Carlos Andres Cuenca. „Ductile failure prediction using phenomenological fracture model for steels: calibration, validation and application“. Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3135/tde-27082018-075853/.
Der volle Inhalt der QuelleA presente dissertação apresenta o processo de análise, calibração e aplicação das propriedades mecânicas, incluindo o comportamento elastoplástico e de dano, para o aço A285, utilizando o critério \"Stress modified criticai strain\" (SMCS). Para obter o comportamento mecânico do material, testes experimentais foram realizados com a implementação de 5 tipos diferentes de geometrias: barra cilíndrica sem entalhe, barra cilíndrica com entalhe (R = 1, 2, 3 mm) e corpos de prova SE(B) com trinca inicial profunda e rasa. Para o processo de calibração das propriedades mecânicas foram gerados modelos de elementos finitos, utilizando elementos sólidos 30 com 8 nós (C3D8), que representam de forma adequada a geometria e as propriedades dos corpos de prova testados. Para calibrar o comportamento elastoplástico e iniciação do dano, utilizou-se a resposta experimental e numérica obtida para as amostras de barra cilíndrica com e sem entalhe; e, para a calibração da evolução do dano, foram utilizadas as respostas obtidas para os espécimes SEB de trincas profundas e rasa. Este modelo calibrado foi capaz de recuperar as respostas experimentais dos corpos de prova SE(B), o que valida o uso do material caracterizado em uma estrutura complexa. Uma vez calibradas as propriedades mecânicas, foram obtidos os fatores do critério SMSC representados pela equação ....... , e, a condição de dano que é representada pelo deslocamento na falha .... e o fator de amolecimento exponencial .... . Depois, o material totalmente caracterizado foi aplicado em dois dutos que possuem trinca elíptica circunferencial inicial externa; sendo o primeiro tubo com trinca superficial e o segundo com trinca profunda. Finalmente, ambos os tubos foram submetidos a cargas de tensão para prever o comportamento do dano dúctil, obtendo a carga necessária para o início do crescimento da trinca e a evolução da falha.
Bücher zum Thema "FEA validation"
Draft Guideline on Validation of Analytical Procedures for Pharmaceuticals (Fda Harmonisation). Interpharm Pr, 1994.
Den vollen Inhalt der Quelle findenHaider, Syed Imtiaz. Pharmaceutical Master Validation Plan: The Ultimate Guide to FDA, GMP, and GLP Compliance. Informa Healthcare, 2001.
Den vollen Inhalt der Quelle findenStokes, David. Testing Computers Systems for FDA/MHRA Compliance (Computer Systems Validation Life Cycle Activities). Informa Healthcare, 2003.
Den vollen Inhalt der Quelle findenPharmaceutical Computer Validation Introduction Manual and CD, GMP (Good Manufacturing Practices) Training Introduction To Meet FDA Regulations in the ... on Computer System Validation and Part 11. UniversityOfHealthCare, 2003.
Den vollen Inhalt der Quelle findenFarb, Daniel. Pharmaceutical Computer Validation Introduction 5 Users: GMP (Good Manufacturing Practices) Training Introduction to Meet FDA Regulations in the Use of ... on Computer System Validation and Part 11. UniversityOfHealthCare, 2005.
Den vollen Inhalt der Quelle findenPart 11 and Computer Validation Manual and CD, The FDA Regulations on Part 11, Electronic Records and Electronic Signatures, For Pharmaceutical, Medical ... Emphasis on Computer System Validation a. UniversityOfHealthCare, 2003.
Den vollen Inhalt der Quelle findenGuide to Inspections of Oral Solid Dosage Forms-Pre/Post Approval Issues for Development and Validation (Fda Inspection Guidelines). Interpharm Pr, 1994.
Den vollen Inhalt der Quelle findenPIAE EUROPE 2021. VDI Verlag, 2021. http://dx.doi.org/10.51202/9783181023853.
Der volle Inhalt der QuelleCelik, I. Experimental and Computational Aspects of Validation of Multiphase Flow Cfd Codes: Presented at the 1994 Asme Fluids Engineering Division Summer Meeti (Fed). American Society of Mechanical Engineers, 1994.
Den vollen Inhalt der Quelle findenELIV 2019. VDI Verlag, 2019. http://dx.doi.org/10.51202/9783181023570.
Der volle Inhalt der QuelleBuchteile zum Thema "FEA validation"
Saouma, Victor, Alain Sellier, Stéphane Multon und Yann Le Pape. „Benchmark Problems for AAR FEA Code Validation“. In Diagnosis & Prognosis of AAR Affected Structures, 381–410. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44014-5_21.
Der volle Inhalt der QuelleKelleher, Jordan E., Michael D. Hayward und Paul J. Gloeckner. „Connecting Rod FEA Validation Using Digital Image Correlation“. In Advancement of Optical Methods in Experimental Mechanics, Volume 3, 157–62. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22446-6_20.
Der volle Inhalt der QuellePatel, Jash H., Vinayak H. Khatawate, Gaurav Jain und Param Shah. „Static Analysis of Tripod Housing Using FEA and Its Validation“. In Proceedings of International Conference on Intelligent Manufacturing and Automation, 763–76. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4485-9_75.
Der volle Inhalt der QuelleSonawane, Ishan, und A. Muthuraja. „FEA Validation of Experimental Results of First Ply Failure of Composite Structure“. In Lecture Notes on Multidisciplinary Industrial Engineering, 947–54. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9072-3_79.
Der volle Inhalt der QuelleMoorcroft, David M., und Joseph Pellettiere. „Impact of Numerical Model Verification and Validation Within FAA Certification“. In Model Validation and Uncertainty Quantification, Volume 3, 249–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15224-0_26.
Der volle Inhalt der QuelleBurdick, Richard K., David J. LeBlond, Lori B. Pfahler, Jorge Quiroz, Leslie Sidor, Kimberly Vukovinsky und Lanju Zhang. „Process Design: Stage 1 of the FDA Process Validation Guidance“. In Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry, 115–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50186-4_3.
Der volle Inhalt der QuelleBurdick, Richard K., David J. LeBlond, Lori B. Pfahler, Jorge Quiroz, Leslie Sidor, Kimberly Vukovinsky und Lanju Zhang. „Process Qualification: Stage 2 of the FDA Process Validation Guidance“. In Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry, 155–72. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50186-4_4.
Der volle Inhalt der QuelleStefania, Spada, Germanà Danila, Sessa Fabrizio und Lidia Ghibaudo. „FCA Ergonomics Proactive Approach in Developing New Cars: Virtual Simulations and Physical Validation“. In Advances in Intelligent Systems and Computing, 57–63. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41627-4_6.
Der volle Inhalt der QuelleChen, Yixiong, Yang Yang, Zhanyao Lei, Mingyuan Xia und Zhengwei Qi. „Bootstrapping Automated Testing for RESTful Web Services“. In Fundamental Approaches to Software Engineering, 46–66. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71500-7_3.
Der volle Inhalt der QuelleBurdick, Richard K., David J. LeBlond, Lori B. Pfahler, Jorge Quiroz, Leslie Sidor, Kimberly Vukovinsky und Lanju Zhang. „GMP Monitoring and Continuous Process Verification: Stage 3 of the FDA Process Validation Guidance“. In Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry, 173–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50186-4_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "FEA validation"
Marjani, Mehrsa, Moustafa El-Gindy, David Philipps, Fredrik Öijer und Inge Johansson. „FEA Tire Modeling and Validation Techniques“. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46514.
Der volle Inhalt der QuelleDerradji-Aouat, Ahmed, Melanie Sarzynski und Roger Cordes. „Iceberg Ice Constitutive Modeling and FEA Validation“. In OTC Arctic Technology Conference. Offshore Technology Conference, 2015. http://dx.doi.org/10.4043/25590-ms.
Der volle Inhalt der QuellePike, Kelly, Z. C. Lin und Alan Tahran. „SEM Validation Technique for FEA of Small Specimens“. In ASME 2007 2nd Frontiers in Biomedical Devices Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/biomed2007-38038.
Der volle Inhalt der QuelleZhou, Lei, Quinn Leland, Earl Gregory, Wendell Brokaw, Louis Chow, Yeong-Ren Lin, Jared Bindl et al. „Lumped Node Thermal Modeling of EMA with FEA Validation“. In Power Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2010. http://dx.doi.org/10.4271/2010-01-1749.
Der volle Inhalt der QuelleSalleh, Mohd Rizal, Qing Ping Yang, Peng Wei und Barry Jones. „Experimental Validation of FEA Modeling of Touch Trigger Probes“. In 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007. IEEE, 2007. http://dx.doi.org/10.1109/imtc.2007.379096.
Der volle Inhalt der QuelleZhao, Tianwen (Tina), Amy Martinez und Hengchu Cao. „Experimental Validation of SAPIEN Transcatheter Heart Valve FEA Models“. In ASME 2013 Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/fmd2013-16053.
Der volle Inhalt der QuelleMarzola da Cunha, Luís Fernando, Matheus Lisboa Cardoch Valdes, Rhander Viana, Danilo dos Santos Oliveira und Luiz Eduardo Rodrigues Vieira. „CHASSIS TORSIONAL RIGIDITY: VALIDATION OF FEA DATA BY EXPERIMENTAL TEST“. In 25th International Congress of Mechanical Engineering. ABCM, 2019. http://dx.doi.org/10.26678/abcm.cobem2019.cob2019-2174.
Der volle Inhalt der QuelleTaylor, William, Joe Fuehne, Richard Lyon, Jaesu Kim und J. K. Lee. „FEA Simulation and Experimental Validation of Catalytic Converter Structural Integrity“. In SAE 2000 World Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. http://dx.doi.org/10.4271/2000-01-0219.
Der volle Inhalt der QuelleKoyama, Masato, Takahiro Mikami und Yasutaka Fujimoto. „Validation of spiral motor parameters by FEA and experimental identification“. In 2013 IEEE 22nd International Symposium on Industrial Electronics (ISIE). IEEE, 2013. http://dx.doi.org/10.1109/isie.2013.6563856.
Der volle Inhalt der QuelleAbdennadher, I., R. Kessentini und A. Masmoudi. „Analytical derivation and FEA validation of the inductances of CWPMM“. In 2009 6th International Multi-Conference on Systems, Signals and Devices (SSD). IEEE, 2009. http://dx.doi.org/10.1109/ssd.2009.4956711.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "FEA validation"
Park, Byoung, Richard Leavy und John Henry Niederhaus. Penetration of rod projectiles in semi-infinite targets : a validation test for Eulerian X-FEM in ALEGRA. Office of Scientific and Technical Information (OSTI), März 2013. http://dx.doi.org/10.2172/1088058.
Der volle Inhalt der QuellePark, Byoung Y., R. B. Leavy und John H. Niederhaus. Penetration of Rod Projectiles in Semi-Infinite Targets: A Validation Test for Eulerian X-FEM in Alegra. Fort Belvoir, VA: Defense Technical Information Center, März 2013. http://dx.doi.org/10.21236/ada580847.
Der volle Inhalt der QuelleNUMERICAL STUDY ON SHEAR BEHAVIOUR OF ENHANCED C-CHANNELS IN STEEL-UHPC-STEEL SANDWICH STRUCTURES. The Hong Kong Institute of Steel Construction, September 2021. http://dx.doi.org/10.18057/ijasc.2021.17.3.4.
Der volle Inhalt der Quelle