Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Fault detection and prediction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fault detection and prediction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Fault detection and prediction"
S, Swetha, und Dr S. Venkatesh kumar. „Fault Detection and Prediction in Cloud Computing“. International Journal of Trend in Scientific Research and Development Volume-2, Issue-6 (31.10.2018): 878–80. http://dx.doi.org/10.31142/ijtsrd18647.
Der volle Inhalt der QuelleBasnet, Barun, Hyunjun Chun und Junho Bang. „An Intelligent Fault Detection Model for Fault Detection in Photovoltaic Systems“. Journal of Sensors 2020 (09.06.2020): 1–11. http://dx.doi.org/10.1155/2020/6960328.
Der volle Inhalt der QuelleBiddle, Liam, und Saber Fallah. „A Novel Fault Detection, Identification and Prediction Approach for Autonomous Vehicle Controllers Using SVM“. Automotive Innovation 4, Nr. 3 (05.04.2021): 301–14. http://dx.doi.org/10.1007/s42154-021-00138-0.
Der volle Inhalt der QuellePatan, Krzysztof, und Józef Korbicz. „Nonlinear model predictive control of a boiler unit: A fault tolerant control study“. International Journal of Applied Mathematics and Computer Science 22, Nr. 1 (01.03.2012): 225–37. http://dx.doi.org/10.2478/v10006-012-0017-6.
Der volle Inhalt der QuelleWang, Shizhuang, Xingqun Zhan, Yawei Zhai und Baoyu Liu. „Fault Detection and Exclusion for Tightly Coupled GNSS/INS System Considering Fault in State Prediction“. Sensors 20, Nr. 3 (21.01.2020): 590. http://dx.doi.org/10.3390/s20030590.
Der volle Inhalt der QuelleAl Qasem, Osama, und Mohammed Akour. „Software Fault Prediction Using Deep Learning Algorithms“. International Journal of Open Source Software and Processes 10, Nr. 4 (Oktober 2019): 1–19. http://dx.doi.org/10.4018/ijossp.2019100101.
Der volle Inhalt der QuelleLi, Qiuying, und Hoang Pham. „Modeling Software Fault-Detection and Fault-Correction Processes by Considering the Dependencies between Fault Amounts“. Applied Sciences 11, Nr. 15 (29.07.2021): 6998. http://dx.doi.org/10.3390/app11156998.
Der volle Inhalt der QuelleMa, Jie, und Jianan Xu. „Fault Prediction Algorithm for Multiple Mode Process Based on Reconstruction Technique“. Mathematical Problems in Engineering 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/348729.
Der volle Inhalt der QuelleShin, Donghoon, Kang-moon Park und Manbok Park. „Development of Fail-Safe Algorithm for Exteroceptive Sensors of Autonomous Vehicles“. Electronics 9, Nr. 11 (26.10.2020): 1774. http://dx.doi.org/10.3390/electronics9111774.
Der volle Inhalt der QuelleEncalada-Dávila, Á., C. Tutivén, B. Puruncajas und Y. Vidal. „Wind Turbine Multi-Fault Detection based on SCADA Data via an AutoEncoder“. Renewable Energy and Power Quality Journal 19 (September 2021): 487–92. http://dx.doi.org/10.24084/repqj19.325.
Der volle Inhalt der QuelleDissertationen zum Thema "Fault detection and prediction"
Halligan, Gary. „Fault detection and prediction with application to rotating machinery“. Diss., Rolla, Mo. : Missouri University of Science and Technology, 2009. http://scholarsmine.mst.edu/thesis/pdf/Halligan_09007dcc80708356.pdf.
Der volle Inhalt der QuelleVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed November 25, 2009) Includes bibliographical references.
Walden, Love. „Fault prediction in information systems“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254670.
Der volle Inhalt der QuelleFeldetektering är en nyckelkomponent för att minimera nedtid i mjukvarutjänster. Feldetektering hanteras vanligtvis av ett övervakningssystem. Detta projekt undersöker möjligheten att utöka ett befintligt övervakningssystem till att kunna skicka ut larm baserat på avvikande mönster i tidsserier.Projektet bröts upp i två områden. Det första området genomförde en undersökning om det är möjligt att skicka ut larm baserat på avvikande mönster i tidsserier. En hypotes bildades enligt följande; prognosmodeller kan inte användas för att upptäcka avvikande mönster i tidsserier. Undersökningen använde fallstudier till att motbevisa hypotesen. Varje fallstudie använde en prognosmodell för att mäta antalet falska, missade och korrekt förutsedda larm. Resultaten användes sedan för att avgöra om hypotesen var motbevisad.Det andra området innefattade skapadet av en mjukvarudesign för utökning av ett övervakningssystem. En initial mjukvarudesign av systemet skapades. Mjukvarudesignen implementerades sedan och utvärderades för att hitta förbättringar. Resultatet användes sedan för att skapa en generell design. Resultaten från undersökningen motbevisade hypotesen. Rapporten presenterar även en allmän mjukvarudesign för ettanomalitetsdetekteringssystem.
Ingham, James. „A domain-specific language based approach to component composition, error-detection, and fault prediction“. Thesis, Durham University, 2001. http://etheses.dur.ac.uk/3954/.
Der volle Inhalt der QuelleSundberg, Jesper. „Anomaly Detection in Diagnostics Data with Natural Fluctuations“. Thesis, KTH, Optimeringslära och systemteori, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-170237.
Der volle Inhalt der QuelleI den här rapporten kommer det glödheta området anomalidetektering studeras, vilket tillhör ämnet Machine Learning. Företaget där arbetet utfördes på heter Procera Networks och jobbar med IT-lösningar inom bredband till andra företag. Procera önskar att kunna upptäcka fel hos kunderna i dessa system automatiskt. I det här projektet kommer olika metoder för att hitta intressanta företeelser i datatraffiken att genomföras och forskas kring. De mest intressanta företeelserna är framfärallt snabba avvikelser (avvikande punkt) och färändringar äver tid (trender) men också andra oväntade mänster. Tre modeller har analyserats, nämligen Linear Predictive Coding, Sparse Linear Prediction och Wavelet Transform. Det slutgiltiga resultatet från modellerna är grundat på en speciell träskel som är skapad fär att ge ett så bra resultat som mäjligt till den undersäkta modellen..
Williams, Darren Thomas. „Dynamic modelling of a linear friction welding machine actuation system for fault detection and prediction“. Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604889.
Der volle Inhalt der QuelleBergentz, Tobias. „Identifying symptoms of fault in District Heating Substations : An investigation in how a predictive heat load software can help with fault detection“. Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-174442.
Der volle Inhalt der QuellePiretti, Andrea. „Fault Detection in Industry 4.0 with Deep Learning Approaches“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22368/.
Der volle Inhalt der QuelleMohamed, Ahmed. „Fault-detection in Ambient Intelligence based on the modeling of physical effects“. Phd thesis, Supélec, 2013. http://tel.archives-ouvertes.fr/tel-00995066.
Der volle Inhalt der QuelleVerma, Anoop Prakash. „Performance monitoring of wind turbines : a data-mining approach“. Diss., University of Iowa, 2012. https://ir.uiowa.edu/etd/3398.
Der volle Inhalt der QuellePereira, Cássio Martini Martins. „Detecção de faltas: uma abordagem baseada no comportamento de processos“. Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12052011-141404/.
Der volle Inhalt der QuelleThe cost reduction for personal computers has enabled the construction of complex computational systems, such as clusters and grids. Because of the large number of resources available on those systems, the probability that faults may occur is high. An approach that helps to make systems more robust in the presence of faults is their detection, in order to restart or stop processes in safe states. Commonly adopted approaches for detection basically follow one of three strategies: the one based on control messages, on statistics or on machine learning. However, they typically do not consider the behavior of processes over time. Observing this limitation in related researches, this work presents an approach to measure the level of variation in the behavior of processes over time, so that unexpected changes are detected. These changes are considered, in the context of this work, as faults, which represent undesired transitions between process states and may cause incorrect processing, outside the specification. The approach is based on the estimation of Markov Chains that represent states visited by a process during its execution. Variations in these chains are used to identify faults. The approach is compared to the machine learning technique Support Vector Machines, as well as to the statistical technique Auto-Regressive Integrated Moving Average. These techniques have been selected for comparison because they are among the ones most employed in the literature. Experiments conducted have shown that the proposed approach has, with error \'alpha\'= 1%, an F-Measure higher than twice the one achieved by the other techniques. A complementary study has also been conducted about fault prediction. In this sense, a predictive approach based on the reconstruction of system behavior was proposed. The evaluation of the technique showed that it can provide up to an order of magnitude greater availability of a system in terms of uptime hours
Bücher zum Thema "Fault detection and prediction"
Zhou, Chengke. Novel approaches to alternator transient response prediction and rotor interturn fault detection. Manchester: University of Manchester, 1994.
Den vollen Inhalt der Quelle findenPakanen, Jouko. Prediction and fault detection of building energy consumption using multi-input, single-output dynamic model. Espoo: Technical Research Centre of Finland, 1992.
Den vollen Inhalt der Quelle findenSupervision and control for industrial processes: Using grey box models, predictive control, and fault detection methods. London: Springer, 1998.
Den vollen Inhalt der Quelle findenSohlberg, Björn. Supervision and Control for Industrial Processes: Using Grey Box Models, Predictive Control and Fault Detection Methods. London: Springer London, 1998.
Den vollen Inhalt der Quelle findenKumar, Sandeep, und Santosh Singh Rathore. Software Fault Prediction. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8715-8.
Der volle Inhalt der QuelleMeskin, Nader, und Khashayar Khorasani. Fault Detection and Isolation. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8393-0.
Der volle Inhalt der QuelleAlwi, Halim. Fault Detection and Fault-Tolerant Control Using Sliding Modes. London: Springer-Verlag London Limited, 2011.
Den vollen Inhalt der Quelle findenLi, Linlin. Fault Detection and Fault-Tolerant Control for Nonlinear Systems. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-13020-6.
Der volle Inhalt der QuelleAlwi, Halim, Christopher Edwards und Chee Pin Tan. Fault Detection and Fault-Tolerant Control Using Sliding Modes. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-650-4.
Der volle Inhalt der QuelleJalel, N. A. Fault detection using optimal control techniques. Sheffield: University of Sheffield, Dept. of Control Engineering, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Fault detection and prediction"
Andonovski, Goran, Sašo Blažič und Igor Škrjanc. „Evolving Fuzzy Model for Fault Detection and Fault Identification of Dynamic Processes“. In Predictive Maintenance in Dynamic Systems, 269–85. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05645-2_9.
Der volle Inhalt der QuellePiccoli, L. B., R. V. B. Henriques, E. Fabres, E. L. Schneider und C. E. Pereira. „Embedded Systems Solutions for Fault Detection and Prediction in Electrical Valves“. In Lecture Notes in Mechanical Engineering, 493–504. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06966-1_44.
Der volle Inhalt der QuelleMesquita, Acélio L., Vandilberto P. Pinto und Leonardo R. Rodrigues. „Detection and Fault Prediction in Electrolytic Capacitors Using Artificial Neural Networks“. In Communications in Computer and Information Science, 287–98. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71503-8_22.
Der volle Inhalt der QuelleKabasakal, İnanç, Fatma Demircan Keskin, Aydin Koçak und Haluk Soyuer. „A Prediction Model for Fault Detection in Molding Process Based on Logistic Regression Technique“. In Lecture Notes in Mechanical Engineering, 351–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31343-2_31.
Der volle Inhalt der QuelleYalowitz, Jeffrey S., Roger K. Youree, Aaron Corder und Teng K. Ooi. „Predictive Fault Detection for Missile Defense Mission Equipment and Structures“. In Experimental and Applied Mechanics, Volume 6, 757–64. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9792-0_107.
Der volle Inhalt der QuelleMondal, Kartick Chandra, und Hrishav Bakul Barua. „Fault Analysis and Trend Prediction in Telecommunication Using Pattern Detection: Architecture, Case Study and Experimentation“. In Communications in Computer and Information Science, 307–20. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8578-0_24.
Der volle Inhalt der QuelleOsman, Shazali, und Wilson Wang. „A New Hilbert-Huang Transform Technique for Fault Detection in Rolling Element Bearings“. In Predictive Maintenance in Dynamic Systems, 207–30. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05645-2_7.
Der volle Inhalt der QuelleChen, S. Y., C. Y. Yao, G. Xiao, Y. S. Ying und W. L. Wang. „Fault Detection and Prediction of Clocks and Timers Based on Computer Audition and Probabilistic Neural Networks“. In Computational Intelligence and Bioinspired Systems, 952–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11494669_117.
Der volle Inhalt der QuellePichler, Kurt. „Early Fault Detection in Reciprocating Compressor Valves by Means of Vibration and pV Diagram Analysis“. In Predictive Maintenance in Dynamic Systems, 167–205. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05645-2_6.
Der volle Inhalt der QuelleLeite, Daniel. „Comparison of Genetic and Incremental Learning Methods for Neural Network-Based Electrical Machine Fault Detection“. In Predictive Maintenance in Dynamic Systems, 231–68. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05645-2_8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Fault detection and prediction"
DePold, Hans R., Ravi Rajamani, William H. Morrison und Krishna R. Pattipati. „A Unified Metric for Fault Detection and Isolation in Engines“. In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-91095.
Der volle Inhalt der QuellePapakonstantinou, Nikolaos, Scott Proper, Douglas L. Van Bossuyt, Bryan O’Halloran und Irem Y. Tumer. „A Functional Modelling Based Methodology for Testing the Predictions of Fault Detection and Identification Systems“. In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59916.
Der volle Inhalt der QuelleLi, Mengyan, Junshan Li, Shuangshuang Li, Wenqing Wang und Fen Li. „TWT transmitter fault prediction based on ANFIS“. In LIDAR Imaging Detection and Target Recognition 2017, herausgegeben von Yueguang Lv, Jianzhong Su, Wei Gong, Jian Yang, Weimin Bao, Weibiao Chen, Zelin Shi, Jindong Fei, Shensheng Han und Weiqi Jin. SPIE, 2017. http://dx.doi.org/10.1117/12.2296313.
Der volle Inhalt der QuelleAndresen, Christian Andre, Bendik Nybakk Torsæter, Hallvar Haugdal und Kjetil Uhlen. „Fault Detection and Prediction in Smart Grids“. In 2018 IEEE 9th International Workshop on Applied Measurements for Power Systems (AMPS). IEEE, 2018. http://dx.doi.org/10.1109/amps.2018.8494849.
Der volle Inhalt der QuelleRogers, Austin, Fangzhou Guo und Bryan Rasmussen. „Applying Static Fault Detection and Diagnosis Methods to Transient Air Conditioning Data Using an Equilibrium Prediction“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11579.
Der volle Inhalt der QuelleChen, Yu, und Jiyu Chen. „Big Data Platform for Faults Prediction Diagnosis of CBI“. In 2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS). IEEE, 2019. http://dx.doi.org/10.1109/safeprocess45799.2019.9213406.
Der volle Inhalt der QuelleCourdier, A., und Y. G. Li. „Power Setting Sensor Fault Detection and Accommodation for Gas Turbine Engines Using Artificial Neural Networks“. In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56304.
Der volle Inhalt der QuelleJia, Chao, und Hanwen Zhang. „RUL Prediction: Reducing Statistical Model Uncertainty Via Bayesian Model Aggregation“. In 2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS). IEEE, 2019. http://dx.doi.org/10.1109/safeprocess45799.2019.9213433.
Der volle Inhalt der QuelleLiu, Y., C. Liu, D. Wang, X. Feng und Q. Lu. „3D Fault Detection Using Structure Prediction and Nonstationary Similarity“. In 74th EAGE Conference and Exhibition incorporating EUROPEC 2012. Netherlands: EAGE Publications BV, 2012. http://dx.doi.org/10.3997/2214-4609.20148245.
Der volle Inhalt der QuelleUpadhyaya, B. R., G. Mathai und J. D. Green. „Data Clustering and Prediction for Fault Detection and Diagnostics“. In 1988 American Control Conference. IEEE, 1988. http://dx.doi.org/10.23919/acc.1988.4789798.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Fault detection and prediction"
Ingle, Richard M., John H. Bordelon, Michael J. Willis und C. D. Stokes. Analog Microcircuit Fault Prediction. Fort Belvoir, VA: Defense Technical Information Center, April 1994. http://dx.doi.org/10.21236/ada281958.
Der volle Inhalt der QuelleYinger, Robert, J., Venkata, S., S. und Virgilio Centeno. Fault Locating, Prediction and Protection (FLPPS). Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/989414.
Der volle Inhalt der QuelleShabalina, A., A. Carpenter, M. Rahman, C. Tennant und L. Vidyaratne. Machine Learning Based Cavity Fault Classification and Prediction. Office of Scientific and Technical Information (OSTI), Dezember 2020. http://dx.doi.org/10.2172/1735851.
Der volle Inhalt der QuelleKing, Bruce Hardison, und Christian Birk Jones. Final Technical Report: PV Fault Detection Tool. Office of Scientific and Technical Information (OSTI), Dezember 2015. http://dx.doi.org/10.2172/1233822.
Der volle Inhalt der QuelleORINCON CORP LA JOLLA CA. Conditioned Based Machinery Maintenance (Helicopter Fault Detection). Fort Belvoir, VA: Defense Technical Information Center, Juni 1992. http://dx.doi.org/10.21236/ada252822.
Der volle Inhalt der QuelleORINCON CORP LA JOLLA CA. Conditioned Based Machinery Maintenance (Helicopter Fault Detection). Fort Belvoir, VA: Defense Technical Information Center, August 1992. http://dx.doi.org/10.21236/ada255796.
Der volle Inhalt der QuelleButzbaugh, Joshua, Abraham SD Tidwell und Chrissi Antonopoulos. Automatic Fault Detection & Diagnostics: Residential Market Analysis. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1670423.
Der volle Inhalt der QuelleHeo, Jaehyeok, W. Vance Payne, Piotr A. Domanski und Zhimin Du. Self-training of a fault-free model for residential air conditioner fault detection and diagnostics. Gaithersburg, MD: National Institute of Standards and Technology, Mai 2015. http://dx.doi.org/10.6028/nist.tn.1881.
Der volle Inhalt der QuelleLavrova, Olga, Jack David Flicker und Jay Johnson. PV Systems Reliability Final Technical Report: Ground Fault Detection. Office of Scientific and Technical Information (OSTI), Januar 2016. http://dx.doi.org/10.2172/1234818.
Der volle Inhalt der QuelleBrotherton, T. W., und T. G. Pollard. Condition Based Machinery Maintenance (Helicopter Fault Detection). Phase I. Fort Belvoir, VA: Defense Technical Information Center, Januar 1993. http://dx.doi.org/10.21236/ada259774.
Der volle Inhalt der Quelle