Dissertationen zum Thema „Fatigue wear“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Fatigue wear" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Watkins, Shaun Gareth. „Wear fatigue in nickel superalloys“. Thesis, Swansea University, 2015. https://cronfa.swan.ac.uk/Record/cronfa43108.
Der volle Inhalt der QuelleAlwahdi, Farag Abdullah Mohamed. „Wear and rolling contact fatigue of ductile materials“. Thesis, University of Sheffield, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.421003.
Der volle Inhalt der QuelleSato, Meiji. „Wear and rolling contact fatigue of rail steels“. The Ohio State University, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=osu1335372747.
Der volle Inhalt der QuelleDirks, Babette. „Simulation and Measurement of Wheel on Rail Fatigue and Wear“. Doctoral thesis, KTH, Spårfordon, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-168023.
Der volle Inhalt der QuelleQC 20150526
Iida, Yusuke. „The effects of magnetic fields on rolling contact fatigue wear“. Thesis, Brunel University, 2007. http://bura.brunel.ac.uk/handle/2438/7405.
Der volle Inhalt der QuelleLeiro, Alejandro. „Wear and fatigue properties of isothermally treated high-Si steels“. Licentiate thesis, Luleå tekniska universitet, Materialvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26642.
Der volle Inhalt der QuelleGodkänd; 2012; 20120521 (andbra); LICENTIATSEMINARIUM Ämnesområde: Konstruktionsmaterial/Engineering Materials Examinator: Professor Braham Prakash, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet Diskutant: PhD Peter Hedström, Kungliga Tekniska högskolan, Stockholm Tid: Onsdag den 20 juni 2012 kl 14.30 Plats: E231, Luleå tekniska universitet
Cuddon, Alan. „The wear of materials in an ash conditioner“. Master's thesis, University of Cape Town, 1989. http://hdl.handle.net/11427/17665.
Der volle Inhalt der QuelleThe abrasive nature of fly ash handled in large coal-fired power stations results in unacceptable material and maintenance costs in ash-water mixing plant. Wear testing has been carried out in situ using a variety of generic materials. A ranking order of wear performance has been established both as a function of material and operating costs, and it has been demonstrated that impressive cost savings can be effected by the use of ceramic-coated steel mixing blades. The performance of such composites has been found to be sensitive to the design and method of application. To optimise materials selection, a family of tungsten carbide-cobalt cermets together with a number of structural ceramics were tested in situ. The modes of wear can be related to material constitution. By ranking the performance of these candidate materials, value based materials selection and design for use can be applied.
Fordyce, E. P. „The unlubricated sliding wear behaviour of austempered ductile irons“. Master's thesis, University of Cape Town, 1989. http://hdl.handle.net/11427/21955.
Der volle Inhalt der QuelleA study has been made of the unlubricated sliding wear behaviour of austempered ductile irons under conditions of sliding velocity and load. The load was varied between 0.9 and 2.8 MPa, whilst the sliding velocity range was between 0.5 and 2.0 ms⁻¹. Two commercial grades of spheroidal graphite irons, SG42 and SG60 were austempered between 250⁰C and 400⁰C. A distinction in the wear behaviour was found with metallic type wear dominating at the lower sliding velocities and an oxidative type wear being evident at the higher sliding velocities. It was however found that an increase in the load resulted in an earlier onset of the oxidative type wear regime, for a specific sliding velocity. On austempering these spheroidal graphite irons the mechanical properties as well as the sliding wear resistance increased dramatically. Furthermore, the austempered irons' outperformed a series of steels of much higher hardness by factors between 2 and 28 times under the same conditions. At the lower velocity of testing the outstanding wear resistance is attributed to the austempered iron's unique microstructure of acicular ferrite and retained austenite and a partial transformation of austenite to martensite. However, at the higher sliding velocity the exceptional wear resistance is derived from a development of an tribologically protective oxide film together with the formation of a hardened white layer. The development of the work hardened layer is linked to the high carbon in the matrix of these irons. The work hardened layer leads to a similar wear rate prevailing for all irons austempered from a specific parent iron. The synergism of variation in load, sliding velocity and wear counterface together with the effect of initial microstructure has been explain in terms of simple wear models.
Meyer-Rödenbeck, G. D. „An abrasive-corrosive wear evaluation of some aluminium alloys“. Master's thesis, University of Cape Town, 1989. http://hdl.handle.net/11427/18784.
Der volle Inhalt der QuelleKim, Kyungmok. „The investigation of fretting wear and fretting fatigue of coated systems“. Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432361.
Der volle Inhalt der QuelleMadge, Jason John. „Numerical modelling of the effect of fretting wear on fretting fatigue“. Thesis, University of Nottingham, 2009. http://eprints.nottingham.ac.uk/10681/.
Der volle Inhalt der QuelleTyfour, Wa'il Radwan Ali. „Interaction between wear and rolling contact fatigue in pearlitic rail steels“. Thesis, University of Leicester, 1995. http://hdl.handle.net/2381/34715.
Der volle Inhalt der QuelleRiches, Alison Mary. „Aspects of the wear behaviour of zirconia sliding against silicon carbide“. Thesis, University of Surrey, 1999. http://epubs.surrey.ac.uk/843354/.
Der volle Inhalt der QuelleWilson, Andrew David. „Wear and fatigue studies of surface engineered ferrous and non-ferrous aerospace alloys“. Thesis, University of Hull, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264952.
Der volle Inhalt der QuelleHu, Qinghua. „Fretting wear and fretting fatigue behaviour of a SiC particle reinforced aluminium alloy“. Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326537.
Der volle Inhalt der QuelleSpangenberg, Ulrich. „Reduction of rolling contact fatigue through the control of the wheel wear shape“. Thesis, University of Pretoria, 2017. http://hdl.handle.net/2263/62796.
Der volle Inhalt der QuelleThesis (PhD)--University of Pretoria, 2017.
Mechanical and Aeronautical Engineering
PhD
Unrestricted
Kienle, Ulrich F. B. „A laboratory simulation of adhesive wear of high speed reciprocating components in water powered mining equipment“. Master's thesis, University of Cape Town, 1989. http://hdl.handle.net/11427/22575.
Der volle Inhalt der QuelleA high-speed reciprocating sliding wear test rig was used to examine the metal on metal surface interactions of materials under consideration for application in water powered stoping equipment. The suitability of this test rig was investigated by implementing a test programme covering self-mated stainless steel and stainless steel-on-bronze couples. These couples were examined under water lubricated conditions in a broad test matrix, covering sinusoidal peak velocities of 1, 5 and 10 m/s; loads of 5, 10 and 20N and surface roughness values ranging from 0.2 to 0.4 μm, CLA. Due to poor reproducibility and inconclusive wear behaviours, no inferences could. be made as to the relative performance of the couples tested and no ranking tables could be compiled, In response to these findings, the emphasis changed to the design of a better test facility which could more accurately simulate the tribological interactions of interest. A new laboratory test rig, capable of investigating the performance of material surfaces, rubbing against one another under conditions of high speed reciprocating sliding in specific environments, was designed, built and commissioned. Subsequent tests conducted on this new facility showed average reproducibility for a 122 stainless steel rubbing against a CZ114 manganese bronze to have improved by a factor of two to approximately ± 20%. Initial results confirmed that adhesive wear is the dominant wear mode for the materials under consideration. This is manifested by homogeneous transfer layers and subsequent grooving of these layers.
Singh, Aparna Ph D. Massachusetts Institute of Technology. „Effect of nano-scale twinning on the fracture, fatigue and wear properties of copper“. Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/69669.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 143-154).
Grain refinement in materials has been one of the most common strategies for improving the strength of materials. However this comes at the price of reduced ductility, fracture toughness and stable fatigue crack propagation life. It has been shown that controlled introduction of nano scale growth twins in ultra fined grained (UFG) Cu through pulsed electro deposition leads to an increase in strength while maintaining a significant amount of ductility. Besides, introduction of deformation twins by the process of dynamic plastic deformation (DPD) involving repeated compaction of coarse-grained (CG) copper at high strain rates and cryogenic temperatures have also shown similar trends in terms of improved strength and considerable strain before failure. Unlike grain boundaries, twin boundaries do not adversely affect the electrical conductivity and resistance towards electro migration of copper. However there have been no studies done to elucidate the role of nano-scale twins in affecting the fracture toughness, stable crack propagation and response under contact fatigue. The aim of the current work was to gain an understanding of the role of microstructural length scale and design in terms of the introduction of twin boundaries vs. grain refinement in influencing the above-mentioned properties. With this aim stable crack propagation and fracture toughness studies were done on UFG copper specimens produced by pulsed electro deposition with an average grain size of 400-500nm but different twin densities to elucidate the effect of twin density on the damage tolerance of Cu. It was found that unlike grain refinement, twin lamellae refinement leads to an improvement in fracture toughness and stable fatigue crack growth life. In order to characterize the contact fatigue response of nano twinned copper, frictional sliding experiments were performed with a conical diamond indenter. The effects of twin density and number of repetitions of sliding cycles on the evolution of frictional coefficient and material pile up around the diamond indenter were studied quantitatively using depth-sensing instrumented sliding indentation. Cross-sectional focused ion beam (FIB) and scanning electron microscopy (SEM) observations were used to systematically monitor deformation-induced structural changes as a function of the number of frictional sliding passes. Nano indentation tests on the sliding tracks coupled with large-deformation finite element modeling (FEM) simulations were used to assess local gradients in mechanical properties and deformation around the indenter track. The results indicate that friction evolution as well as local mechanical response is more strongly influenced by local structure evolution during repeated sliding than by the initial microstructure. The frictional sliding experiments also lead to the striking result that Cu specimens with both high and low density of nano twins eventually converge to a similar microstructure underneath the indenter after repeated tribological deformation. Similar trend of convergence of microstructure and hardness in the vicinity of the scratch was also observed for DPD and CG Cu. This trend strongly mirrors the well-known steady-state response of microcrystalline copper to cyclic loading. General perspectives on contact fatigue response of nano-twinned copper are developed on the basis of these new findings.
by Aparna Singh.
Ph.D.
Müller, Ruan. „Characterising the stress-life response of mechanical formed AISI-1008 steel plate components“. Thesis, Nelson Mandela Metropolitan University, 2012. http://hdl.handle.net/10948/d1008102.
Der volle Inhalt der QuelleVaradarajan, Bhadri Narayanan. „MICROMECHANICS OF DEBOND GROWTH AND INTERFACIAL WEAR UNDER FATIGUE LOADING IN A TRANSPARENT CERAMIC COMPOSITE“. University of Cincinnati / OhioLINK, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=ucin975352464.
Der volle Inhalt der QuelleHong, Hyun-Soo. „A metallurgical study of the oxidational theory of mild wear in stainless steel and surface modified stainless steel“. Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/19597.
Der volle Inhalt der QuelleKubiak, Krzysztof. „Quantification de la fissuration d'un contact soumis à des sollicitations complexes en fretting wear et fretting fatigue“. Ecully, Ecole centrale de Lyon, 2006. http://bibli.ec-lyon.fr/exl-doc/TH_T2062_kkubiak.pdf.
Der volle Inhalt der QuelleThe objective of this research focuses on the quantification of the fretting fatigue endurance of XC38 (EA1N) steel alloy used in the TGV axles components. This study mainly concerns the prediction of the crack nucleation and crack arrest conditions under complex fretting and fretting fatigue loadings. Combining experiments and modeling aspect it includes the following two parts. In the first part, fretting wear and fretting fatigue tests have been undertaken and modelized. It was demonstrated a threshold loading condition associated to the crack nucleation process. A specific formulation has been proposed to capture the size effect and provide pertinent and reliable crack nucleation predictions. From this analysis a fretting fatigue crack nucleation boundary has been defined and formalized. The second contribution of this work concerns the formalization of the crack propagation behavior under fretting and fretting fatigue conditions. Specific experiments have been developed to quantify the crack arrest boundaries. By combining crack nucleation, short crack propagation and long crack formulations, the endurance under complex fretting fatigue global situation has been derived. Hence, the fretting fatigue endurance curves have been quantified taking into accounts the respective contribution of fretting and fatigue loadings. Finally a global fretting fatigue chart has been introduced to rationalize the different cracking damages activated under complex fretting fatigue situations
Araujo, cardoso Raphael. „Études numériques sur la modélisation du fretting fatigue“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLN004/document.
Der volle Inhalt der QuelleThis work has been undertaken in the context of an international research cooperation between the University of Brasilia, the Brazilian Space Agency (AEB), the ENS Paris-Saclay and the SAFRAN group. The main subject of this cooperation is the investigation of fretting fatigue, which is a contact problem in conjunction with fatigue loads responsible for reducing considerably components’ fatigue life due to the high stress concentration, wear and non-proportional loading conditions involved in such problems. Regarding the high computational costs involved when assessing industrial applications, one of the aims of this work is to improve the performance of fretting simulations making use of an enrichment approach. The idea is to take advantage of the fact that the mechanical fields around the contact edges in cylindrical contact configurations under fretting conditions are similar to the ones found close to the crack tip in linear elastic fracture mechanics problems. This similarity makes attractive the idea of enriching finite element fretting simulations through the X-FEM framework, which enables us to work with coarser meshes while keeping a good accuracy. As it will be shown in this work, it is possible to work with meshes up to 10 times coarser than it should be if a conventional FE method was used allowing a strong improvement of the computational performances.This work will also investigate the influence of considering wear effects in the prediction of fretting fatigue lives. Therefore, fretting fatigue FE simulations have been carried considering the geometry update due to the material removal and results were compared to both experimental data and FE simulations where wear effects were neglected (simplifying strategy usually adopted when evaluating fretting fatigue problems). Conventional multiaxial fatigue criteria in association with the Theory of Critical Distances have been used in order to predict life. Results have shown that, for the data here assessed, where fretting fatigue tests were conducted on a Ti-6Al-4V alloy under partial slip conditions, considering wear effects might slightly increase the accuracy of life predictions. However, this slight improvement may not be worthwhile regarding the increase in the computational cost when compared to standard approaches where wear is neglected
Shrestha, Sanjay. „Wear behavior of Ti-6Al-4V for Joint Implants manufactured by Electron Beam Melting“. Youngstown State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1495471138802038.
Der volle Inhalt der QuelleReddy, Venkatarami. „Modelling and analysis of rail grinding and lubrication strategies for controlling rolling contact fatigue (RCF) and rail wear“. Queensland University of Technology, 2004. http://eprints.qut.edu.au/15864/.
Der volle Inhalt der QuelleYuen, Dick Kwan Kenneth. „Brake disc life prediction for material evaluation and selection : the application of finite element and fatigue analysis to the prediction of crack initiation in brake discs during operation“. Thesis, University of Bradford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363977.
Der volle Inhalt der QuelleLarsson, Jesper. „Wear mark evolution and numerical study of impact stresses in stainless steel flapper valves“. Thesis, KTH, Materialvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199301.
Der volle Inhalt der QuelleCrozatier, Mathilde. „Étude de la durabilité d'un matériau composite bobiné sous chargements sévères“. Thesis, Paris, ENSAM, 2017. http://www.theses.fr/2017ENAM0008/document.
Der volle Inhalt der QuelleComposites materials have been studied for decades. Indeed, the association between lightness and resistance of these structures leads to the development of their use. Their characterization remains an essential point in most researches.This work is part of Sollicitern project, which aims to design a composite water treatment truck, financed by a single interministerial fund. The aim is to study the durability of the composite material retained under severe loads. It thus offers tools to industrialists for adjusting parameters in the tank optimization and the estimation of the lifetime under these various loadings.In the first stage, attention is focused on the integration of the curvature of the structure and therefore of the material in the study. Indeed, it is manufactured by filament winding, which necessarily generates a tubular structure. In a second step, a static characterization is carried out. This part includes, in particular, radial compression tests on the whole tubular structure where an experimental protocol is developed. By coupling the results of these tests with a numerical simulation reproducing the test, the elastic properties of the unidirectional ply are obtained by optimization. In a third and final stage, more specific durability is discussed. Fatigue, impact, wear and aging tests are first carried out independently of one another. The final objective is to associate these different loadings and thus to apprehend their combined effect
Mussa, Abdulbaset. „A study on wear characteristics of high strength steels under sliding contact“. Licentiate thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik (from 2013), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-77660.
Der volle Inhalt der QuelleComponents used in rock drilling and sheet metal forming operate under harsh contact conditions that result in an early-life component failure. Wear and fatigue are considered as the most common damage mechanism for these components. Commonly, the service life of a component is designed based on its fatigue life. However, wear might have a significant effect on the components life too. Wear results in a surface damage that in turn may cause a fatigue crack initiation. Therefore, knowledge about wear of materials and components is a key factor in design and prediction of the lifetime of the components. In order to predict wear of a certain component, a thorough understanding of the component with regards to its material properties, application loads and working environment, and damage mechanisms is required. The overall aim of the present work was to define the typical wear mechanisms occurred on machinery components used in rock drilling and sheet metal forming. A comparative analysis of the case studies and results from performed laboratory tests simulated wear mechanisms in the applications highlighted wear mechanisms and factors influencing severity of wear in the applications. Obtained information is crucial for ranking and selection of the best material in the applications.
The presentation will will be via zoom. PhD student will together with the supervisors will be in Karlstad while the opponent is in Luleå.
Agudelo, Juan Ignacio Pereira. „Analysis of the microstructure transformation (wel formation) in pearlitic steel used in relevant engineering wear systems“. Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3151/tde-04092018-131559/.
Der volle Inhalt der QuelleNesta tese foi caracterizado o comportamento do aço perlítico em condições controladas de desgaste em laboratório e em serviço em dois estágios do processo de mineração de minério, cominução e transporte ferroviário. A tese consiste em três capítulos experimentais divididos segundo o tribosistema analisado. Em todos os capítulos do trabalho foi utilizada a técnica de microscopia eletrônica para análise microestrutural. Foi utilizado Microscopia eletrônica de varredura (MEV), Focused Ion Beam (FIB-SEM), Electron Backscatter Diffraction (EBSD) e Microscopia eletrônica de transmissão (MET). O primeiro capítulo experimental mostra a análise da perlita in condições de desgaste abrasivo com partículas soltas em eventos múltiplos. As amostras foram tiradas de um moinho semi-autógeno (SAG) e realizada uma simulação experimental do desgaste em condições controladas usando o tribômetro de roda de borracha (RWAT). Os resultados mostraram a formação de camada branca em ambas as condições de análise, consistindo em uma camada poli cristalina caracterizada pela formação de grãos ultrafinos na camada mais próxima da superfície de desgaste. Também foi concluído que a roda de borracha pode simular o desgaste produzido nos moinhos SAG tanto nas características superficiais quanto microestruturais em condições de maior severidade as comumente utilizadas na norma ASTM G65 (procedimento B). O Segundo capítulo experimental explora a caracterização da microestrutura depois da passagem do endentador no ensaio de riscamento (scratch test) utilizando duas condições de carga normal aplicada e 5 sequências de riscamento. A análise microestrutural mostrou a formação de duas camadas subsuperficiais identificadas pelo nível de alteração microestrutural. Na camada mais próxima da superfície de desgaste foi observada a formação de grãos ultrafinos de ferrita. A segunda camada identificada mais profundamente na amostra, denominada como camada de transição, é caracterizada pela combinação de colônias deformadas (redução do espaçamento interlamelar) e camadas não afetadas pelos esforços produzidos no contato. Nesta camada foi determinada a texturização em direção RD // nas amostras testadas a 4 N (carga normal aplicada) e uma passada. Posteriormente à análise de riscamento foi caracterizada a microestrutura de uma amostra tirada de um trilho esmerilhado (processo industrial que pode ser considerado como aplicação do ensaio de riscamento). Foram consideradas duas condições de esmerilhamento com variação de velocidade de esmerilhamento (deslocamento linear do veículo esmerilhador) e potência dos motores dos rebolos usada no procedimento. A combinação de baixa velocidade de esmerilhamento e alta potência nos motores controladores dos rebolos promoveu uma grande deformação nas camadas subsuperficiais na região de contato e uma baixa aleatoriedade das orientações cristalográficas das colônias de perlita. Finalmente, no capítulo três, a caracterização da microestrutura perlitica foi finalizada com o estudo de amostras de roda e trilho em condições de desgaste em campo e de Rolling Contact Fatigue (RCF) em ensaios de laboratório. A simulação experimental foi realizada utilizando o tribômetro twin-disc rolling (configuração disco-disco) com variação do número de ciclos. A caracterização da roda ferroviária mostrou a formação da camada branca caracterizada por níveis de cementita fraturada e alinhada em direção do movimento de rolamento/deslizamento com áreas de dissolução do átomo de carbono na ferrita formando uma ferrita supersaturada. Foi identificado a formação de policristais de ferrita (grãos ultrafinos) na camada mais superficial e uma orientação preferencial RD // na camada de transição. Os resultados dos ensaios de laboratório mostraram a nucleação de trincas superficiais se propagando a baixo ângulo na camada branca. A transformação microestrutural dessa camada após ensaios de laboratório consiste em policristais de ferrita e dissolução da cementita.
Hasan, Mushfiq. „Investigation of micropitting and wear in rolling/sliding contacts operating under boundary lubrication conditions“. Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-87215.
Der volle Inhalt der QuelleGu, Chongjie. „Modeling of two-body fatigue wear of cylinder liner in internal combustion engines during the break-in period and its impact on engine lubrication“. Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/111760.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 104-108).
Internal combustion engines are widely utilized in modem automobiles. Around 10% of the total fuel energy is dissipated to heat due to mechanical friction, among which 20% is caused by the contact between the cylinder liner and the piston rings. The wear of cylinder liner not only leads to surface damage, but also results in the change of liner lubrication conditions. Therefore, a large number of tests are performed by researchers to investigate the liner wear process and its impact on engine lubrication. This work is the first step toward developing a wear model to predict the evolution of liner roughness and ring pack lubrication during break-in period. A physics-based liner wear model is built in this work, with focus on two mechanisms: surface plastic flattening and fatigue wear. Both mechanisms are simulated through a set of governing equations and are coupled together to complete the algorithm of the liner wear model. Simulations of break-in wear are performed to different liner surfaces finishes, with different external normal pressures. Simulation results indicate that the liner wear rate depends on the size and shape of liner surface asperities, which may provide guidance for surface manufacturing. The results also show consistence with the Archard's wear law, describing the proportional correlation between normal pressure and steady state wear rate. This wear model is then used to study the influence of liner wear on engine lubrication. Through the friction for entire engine cycles, simulated results are compared with experimental friction measurements. The comparison shows that the calculated friction evolution during break-in has the same trend and comparable magnitude as the measurements, indicating the efficiency of the wear model. Some initial work of modeling of third-body abrasive wear is also discussed in this thesis.
by Chongjie Gu.
S.M.
Gu, Chongjie. „Modeling of two-body fatigue wear of cylinder liner in internal combustion engines during the break-in period and its impact on engine lubrication“. Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111760.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 104-108).
Internal combustion engines are widely utilized in modem automobiles. Around 10% of the total fuel energy is dissipated to heat due to mechanical friction, among which 20% is caused by the contact between the cylinder liner and the piston rings. The wear of cylinder liner not only leads to surface damage, but also results in the change of liner lubrication conditions. Therefore, a large number of tests are performed by researchers to investigate the liner wear process and its impact on engine lubrication. This work is the first step toward developing a wear model to predict the evolution of liner roughness and ring pack lubrication during break-in period. A physics-based liner wear model is built in this work, with focus on two mechanisms: surface plastic flattening and fatigue wear. Both mechanisms are simulated through a set of governing equations and are coupled together to complete the algorithm of the liner wear model. Simulations of break-in wear are performed to different liner surfaces finishes, with different external normal pressures. Simulation results indicate that the liner wear rate depends on the size and shape of liner surface asperities, which may provide guidance for surface manufacturing. The results also show consistence with the Archard's wear law, describing the proportional correlation between normal pressure and steady state wear rate. This wear model is then used to study the influence of liner wear on engine lubrication. Through the friction for entire engine cycles, simulated results are compared with experimental friction measurements. The comparison shows that the calculated friction evolution during break-in has the same trend and comparable magnitude as the measurements, indicating the efficiency of the wear model. Some initial work of modeling of third-body abrasive wear is also discussed in this thesis.
by Chongjie Gu.
S.M.
Kahlin, Magnus. „Fatigue Performance of Additive Manufactured Ti6Al4V in Aerospace Applications“. Licentiate thesis, Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-137233.
Der volle Inhalt der QuelleSolano, Alvarez Wilberth. „Microstructural degradation of bearing steels“. Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/249201.
Der volle Inhalt der QuelleSilva, Paula Fernanda da. „Desgaste e fadiga térmica de ligas \'aço matriz + NbC\'“. Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/3/3133/tde-13032007-170403/.
Der volle Inhalt der QuelleThe concept of ?matrix steel + NbC? was used to cast alloys with the M2 steel matrix (0,5%C ? 2%W ? 3%Mo ? 4,6%Cr ? 1%V) and different volume fractions of niobium carbides. Niobium (2,5 e 5%) and stoichiometric carbon were added to produce NbC carbides and titanium (0,1%) to modify de NbC carbides morphology. NbC presented three basic morphologies: Chinese script (coupled eutectic); primary carbides with cross morphology and polygonal primary and eutectic carbides (divorced eutectics). After heat treatment of quench and temper in order to obtain the maximum hardness, the alloys were submitted to thermal fatigue test (100 cycles, 650ºC), dry rubber wheel abrasive wear test (130N, 200rpm, 30min, hematite as abrasive) and reciprocating sliding wear test (70,6N, amplitude: 6mm, frequency: 6Hz, 2h). The alloys with polygonal NbC carbides and lower volume fractions of carbides (for the same morphology) showed the best behaviour due to their low ?carbide continuity/carbide free path? ratio of the microstructure. The alloys were characterized by optical microscopy and SEM to investigate de cracks nucleation and propagation. In the dry rubber wheel tests, polygonal NbC eutectic carbides (divorced eutectics) showed better behaviour than Chinese script NbC eutectic carbides. High volume fractions of NbC carbides improved the abrasion resistance until a maximum and after that, the presence of big primary NbC carbides, lowered the abrasion resistance due to cracks in those big carbides. The results of the reciprocating sliding tests have not allowed to rank the performance of the alloys. Abrasion and sliding specimens were submitted to optical microscopy and SEM in order to evaluate the prevalent wear mechanisms. One high speed steel for hot rolling mill rolls (2%C ? 5%Cr ? 5%Mo ? 5%V) was tested under the same conditions that the alloys studied were tested in order to compare their performances. The high speed steel showed better performance in abrasion and reciprocating sliding wear due to the high volume fraction of coupled eutectic carbides and lower performance in thermal fatigue due to the high ?carbide continuity/carbide free path? ratio of the microstructure than the alloys studied.
Fernandes, Frederico Augusto Pires. „Produção e caracterização de camadas nitretadas e nitrocementadas por plasma nos aços UNS S31603, S31254 e S41425“. Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/88/88131/tde-14032012-122709/.
Der volle Inhalt der QuelleThe production of functional surfaces on engineering components, in order to obtain improved wear, corrosion and fatigue resistance is a persistent technological challenge. The plasma nitriding and nitrocarburizing thermochemical processes are surface engineering techniques used to improve surface hardness and wear resistance of stainless steels, without compromising its corrosion resistance. The main goal of this study is to evaluate the influence of plasma nitriding and nitrocarburizing temperature on the structure of the layers produced on UNS S31603 (austenitic), S31254 (superaustenitic) and S41425 (supermartensitic) stainless steels and in addition their wear, corrosion and fatigue performance. It was found that both treatments produced homogeneous and continuous layers. Of all the samples in this work, the nitrocarburized UNS S31603 and S31254 steels and the nitrided UNS S41425 steel presented the thickest layers at a given temperature. Regardless of the treatment used, the microhardness of the layers increased with the raising of the temperature for all the samples. The X-ray diffraction indicated that expanded phases, either S-phase or α\'N, were obtained at lower treatment temperatures (400 and 450°C). The increase in treatment temperature promoted the formation of carbides and/or nitrides for nitrocarburizing and nitriding, respectively. For the samples of UNS S31603 and S31254 steels, this occurred due to the decomposition of S-phase in a typical lamellar microstructure consisting of ferrite and chromium nitride. In the case of UNS S41425 steel, the increase in treatment temperature caused an increase on the amount of carbides and/or nitrides. This increase in treatment temperature also promoted a decrease of the wear resistance for the layers produced on the UNS S31603 and S31254 steels samples. On the other hand, the wear resistance increased with treatment temperature for the UNS S41425 steel for both treatments. The corrosion resistance in NaCl solution decreased with increasing treatment temperature for all the samples, due to the presence of carbides and/or nitrides. The contact fatigue tests on UNS S31603 and S31254 steels indicated that an increase on treatment temperature did not cause significant changes on rupture stress of the layers. In UNS S41425 steel, such critical stress decreased with increasing temperature.
Ferré, Romain. „Etude expérimentale et modélisation de la durabilité d'un contact représentatif de l'interface aube / disque de soufflante grenaillé soumis à des chargements de fretting / fatigue / usure“. Thesis, Ecully, Ecole centrale de Lyon, 2013. http://www.theses.fr/2013ECDL0012.
Der volle Inhalt der QuelleThis work aims at studying the crack initiation risk of a blade/disk contact under fretting/fatigue loading. The fan stage of a civil engine is studied and the material used is a titanium alloy: Ti-6Al-4V. This complex issue concerns small contacts which are subjected to high contact pressures and micro-displacements. Thus, a complex multiaxial loading occurs on the structure. Fretting, static stressed fretting and fretting fatigue testing are performed in order to quantify the crack nucleation thresholds. In addition, several geometries which present different stress gradient values are used. The experimental results show a stress gradient effect on the crack initiation. Thus, using a wide range of stress gradient, it has been confirmed that stress gradient delays crack nucleation. A multiaxial fatigue criterion is used to determine the equivalent stress field under the contact. Then, a non-local approach, identified thanks to one fretting experimental condition, is employed in order to consider the stress gradient effect. This approach provides the prediction of the whole experimental results. In this way, a predictive method of the initiation fatigue life has been introduced. This numerical approach takes into account the multiaxial loading, the stress gradient effect, the plastic-elastic behavior of the interface and the fatigue strength limits of the material. The blade/disk contacts of the engine are shot-peened. During the flight, interfaces are subjected to low displacement amplitudes leading to crack initiation. On the other hand, during landing and take-off, contacts are submitted to high displacement amplitudes leading to the interface wear. As a consequence, competition between wear kinetic and nucleation one is studied and “bell curves” are plotted (i.e. fatigue life time versus displacement amplitude).Moreover, the effect of the shot-peening residual stresses on fatigue life time is observed. In case of un-treated material, a beneficial impact on the fatigue life time is observed due to wear process. Compressive residual stresses of shot-peening increase the fatigue life when fretting/fatigue on partial slip regime occurs. Nevertheless, a decrease of the fatigue life time is observed when wear process is activated by the gross slip condition. Finally, the complex loading of the engine blade/disk contact has been reproduced in the laboratory. To achieve this, a new testing, using an experimental machine composed of three hydraulic actuators is developed. Thus, the global life time of the representative interface of the fan stage is studied. Oligocyclic (low frequency) and polycyclic (high frequency) solicitations interact themselves and lead, firstly, to a rearrangement of the residual stresses, and secondly, to an increase of the wear kinetics. This research work highlights the interest to consider the polycyclic loadings to design the blade/disk structure. These solicitations reproduce the “cracking” fatigue phenomenon, the cumulative damages and the wear kinetics of the interface
Chemkhi, Mahdi. „Nanocristallisation superficielle couplée à la nitruration plasma pour augmenter les propriétés de fatigue et d’usure d’alliages métalliques“. Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0038/document.
Der volle Inhalt der QuelleCoupled mechanical and thermochemical surface treatments have been the subject of much research effort in recent years. The goal of such a coupling is to improve diffusion kinetics leading to increased penetration depths, and/or to decrease the treatment temperature for mechanically pretreated materials. In this work, SMAT (Surface Mechanical Attrittion Treatment), used to refine the grain size by severe plastic deformation, is combined with plasma nitriding of a 316L medical-grade stainless steel. This duplex process significantly improves nitrogen diffusion. An intermediate treatment between SMAT and plasma nitriding is also proposed and its significant effect on the nitrogen diffusion is demonstrated. Comparisons between nitrided-only samples and duplex-treated samples have shown up to 60% increase of the nitrided layer thickness. In order to better understand the link between the generated microstructures and the mechanical fatigue and tribological responses, the samples have been characterised by many different techniques. Also, a multiscale numerical model of the diffusion process is proposed in order to simulate the nitrogen concentration profiles after duplex treatment. The simulated and experimental profiles correspond rather well
Forsström, William. „Utredning av frekvensregleringens påverkan på mekanisk utrustning i en kaplanturbin“. Thesis, Uppsala universitet, Elektricitetslära, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-247261.
Der volle Inhalt der QuelleWang, Yu. „Mechanical properties and microstructure of laser sintered and starch consolidated iron-based powders“. Doctoral thesis, Karlstad : Faculty of Technology and Science, Materials Engineering, Karlstads universitet, 2008. http://www.diva-portal.org/kau/abstract.xsql?dbid=1593.
Der volle Inhalt der QuelleRec, Matouš. „Návrh testovacího stavu pro stanovení opotřebení u kontaktu železničního kola a kolejnice“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445166.
Der volle Inhalt der QuelleFayolle, Caroline. „Influence de la dispersion de la silice sur les propriétés viscoélastiques et mécaniques des élastomères renforcés“. Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10059/document.
Der volle Inhalt der QuelleFilled elastomers are used in tread tires. It has been demonstrated that most of rolling resistance of tires is due to filled elastomer energy dissipation. In that way, understanding viscoelastic properties of these materials is a key point. Then, filled elastomer behavior at high deformations may be involved in ultimate properties of tire application such as fatigue crack propagation and wear. The aim of this work is to study the impact of silica dispersion on viscoelastic and mechanical properties of filled elastomers. First, levers impacting silica dispersion are evaluated. Dispersion of fillers can be considered as a competition between fillers cohesion forces and applied forces to the system to break them, these parameters have been studied methodically. Finally, the impact of silica-matrix interactions is studied, changing silica surface treatments or elastomer natures. The quantity of interactions possible per polymer chain between the silica and the elastomer may play a role in silica dispersion. Secondly, the impact of silica dispersion on viscoelastic and mechanical properties is discussed. It is shown than increasing silica dispersion leads to a decrease of linear elastic modulus and an increase of reinforcement in tensile at high deformations. Finally, regarding ultimate properties, our experimental device on the selected formulations has not shown any impact of silica dispersion on fatigue crack propagation. Nevertheless, we observe a better wear resistance with increasing dispersion, despite the lower materials hardness
Mohammadi, Ramona. „Verifieringsmetod för flexibla avgasledande element - Felmodsanalys“. Thesis, KTH, Maskinkonstruktion (Inst.), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192488.
Der volle Inhalt der QuelleThis thesis was conducted at Scania CV AB with information based on corrosion and wear. The main goal of this work is to develop a test method to investigate the stripwounded hose’s lifetime. A series of tests were performed to understand the reasons of their failure and a FE analysis was performed to verify the results obtained from these tests. It was observed that a large part of stripwounded hose becomes stiff due to high temperatures of the exhaust gas. The high temperature leads to plastic deformation of the hose. In contrast, the three first windings closest to the engine keep their flexibility due to continuously engine vibrations while there is sign of wear between the layers in these three windings more than other parts of the stripwounded hose. Hence, it is concluded that the main reason for stripwounded hose’s unpredictable failures is wear which leads to crack initiation. The crack propagation is in type of low cycle fatigue which means that it takes a short time until the stripewounded hose breaks. Corrosion is initiated between the non-flexible parts of the hose. The rate of corrosion is increased by time and causes small holes on the surfaces. According to results from the experiments the most suitable location for the lifetime investigation is Scania’s component test cells . Several tests with different time spans needs to be performed. By measuring the wear depth rate under repeatable test conditions and bycomparing with stripwounded hoses from customer trucks, a lifetime can be estimated. To improve the fatigue lifetime of the stripwounded hoses, it is recommended to use stainless steel of type 1.4828, manufactured through hot-forming with larger distance between layers and thicker layers to find out the wear rate.
Lidholm, Oskar, und Daniel Lundgren. „Metodik för identifiering av T-stycke med risk för termisk utmattning“. Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-227433.
Der volle Inhalt der QuelleAl-Haddad, Ala'A. „Characterisation and performance of fibre-reinforced composite restorations“. Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/characterisation-and-performance-of-fibrereinforced-composite-restorations(bdcc1685-a341-4b8a-9e4a-542467f4b321).html.
Der volle Inhalt der QuelleMai, Si Hai. „Etude de dégradation des voies ferrées urbaines“. Phd thesis, Université Paris-Est, 2011. http://pastel.archives-ouvertes.fr/pastel-00659068.
Der volle Inhalt der QuelleFerreira, Eduardo Prudente. „Estudo do comportamento tribológico em ferros fundidos nodulares austemperados para aplicações em eixo comando de válvulas“. Universidade do Estado de Santa Catarina, 2012. http://tede.udesc.br/handle/handle/1630.
Der volle Inhalt der QuelleCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
In this present conducted in wear resistance nodular cast iron subjected to heat treatment at different temperatures isothermal austempering treatment (340 ° C and 320 °), corresponding to the materials of Classes 3 and 4 of ASTM A897, compared with nodular quenched and tempered with same level hardness. The objective was to develop alternatives for future studies on new materials applied camshaft valve internal combustion engines. For this wear tests were conducted pin-on-disc, using as alumina ball against the body, thus considering zero wear on the counter-body. All cast irons tested under the conditions of this work had hardness in the range 40-46 HRc. It was found in analyzes by scanning electron microscopy the effect of graphite nodules and the matrix material, the wear mechanisms, thus observing the effect that stress concentrator nodes imposes the metallic matrix. The damage to the material surface was initially with crack of the matrix surrounding graphite nodules, they generally located subsurface, moreover, it can be seen that the nodules torn metal matrix acted as a lubricant for testing, and the sites left by lumps were previously coated particles detached from the matrix. It was found with the results of wear tests the performance of austempered ductile iron in comparison with the quenched and tempered for distances exceeding 1000 m slip, thereby qualifying the ADI as an alternative material for future studies in manufacturing valve camshafts.
Apresenta-se neste trabalho um estudo de resistência ao desgaste realizado em ferros fundidos nodulares submetidos ao tratamento térmico de austêmpera em duas temperaturas isotérmicas de tratamento (340°C e 320°), correspondendo aos materiais das classes 3 e 4 da norma ASTM A897, comparativamente com o nodular temperado e revenido de nível de dureza similar. Objetivou-se desenvolver alternativas para estudos futuros em novos materiais aplicados a eixo comando de válvula de motores a combustão interna. Para isto foram realizados ensaios de desgaste pino-sobre-disco, utilizando como contra corpo esfera de alumina, considerando assim desgaste zero no contra-corpo. Todos os ferros fundidos ensaiados nas condições deste trabalho tiveram dureza na faixa de 40 46 HRc. Constatou-se em análises por microscopia eletrônica de varredura o efeito dos nódulos de grafita e da matriz do material, sobre os mecanismos de desgaste, observando assim o efeito concentrador de tensão que os nódulos impõe a matriz metálica. O dano à superfície do material ocorreu inicialmente com o tricamento da matriz em torno dos nódulos de grafita, estes geralmente localizados subsuperficialmente, além disto, pode se observar que os nódulos arrancados da matriz metálica atuaram como lubrificantes ao ensaio, e os sítios deixados pelos nódulos foram recobertos por partículas anteriormente desprendidas da matriz. Constatou-se com os resultados dos ensaios de desgaste o bom desempenho do ferro nodular austemperado em comparação com o temperado e revenido para distâncias de deslizamento superiores a 1000 m, qualificando assim o ADI como material alternativo para futuros estudos na fabricação de eixos comando de válvula.
Osman, Thaer. „Simulation de l'usure et d'avaries sur des dentures d'engrenages cylindriques : Influence sur le comportement statique et dynamique de transmission par engrenages“. Phd thesis, INSA de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00760062.
Der volle Inhalt der QuelleCorne, Pascale. „Contribution à l’étude de l’endommagement des connexions implantaires en odontologie prothétique“. Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0221.
Der volle Inhalt der QuelleThis research based on the study of two levels of damage focused on the implant connection: firstly, the wear associated with the opening/closing cycle dedicated to the manufacturing process; secondly, the damage over the time, that is a fretting-corrosion study of dental implants in human saliva. During the tightening/loosening cycles, damage to all the components is present. The screws that include the majority of the complications have to be changed after 20 tightening cycles. The use of laboratory screws limits the damage and optimizes the preload value. When the prosthesis and the implant are assemblies, the damage appears thanks to fretting/corrosion (tribocorrosion) behavior. This phenomenon does involve synergistic wear and a modification of the microstructure on the fretting surfaces