Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Fatigue stress“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fatigue stress" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Fatigue stress"
Peng, Bin, und Zhen Xing Yue. „Effect of Uniaxial Compressive Stress on the Partially Fatigued Soft Lead Zirconate Titanate Piezoelectric Ceramics“. Key Engineering Materials 602-603 (März 2014): 817–21. http://dx.doi.org/10.4028/www.scientific.net/kem.602-603.817.
Der volle Inhalt der QuelleJAYAPRAKASH, Murugesan, und Yoshiharu MUTOH. „PS55 Generalized Tangential Stress Range-Compressive Stress Range Diagram for Predicting Fretting Fatigue Strength“. Proceedings of the Materials and Mechanics Conference 2010 (2010): 171–73. http://dx.doi.org/10.1299/jsmemm.2010.171.
Der volle Inhalt der QuelleSegal, BM, W. Thomas, X. Zhu, A. Diebes, G. McElvain, E. Baechler und M. Gross. „Oxidative stress and fatigue in systemic lupus erythematosus“. Lupus 21, Nr. 9 (16.04.2012): 984–92. http://dx.doi.org/10.1177/0961203312444772.
Der volle Inhalt der QuelleFriedberg, Fred. „The Stress/Fatigue Link in Chronic Fatigue Syndrome“. Journal of Chronic Fatigue Syndrome 1, Nr. 3-4 (Januar 1995): 147–52. http://dx.doi.org/10.1300/j092v01n03_23.
Der volle Inhalt der QuelleZhou, Yan Fen, Stephen Jerrams, Lin Chen und Mark Johnson. „The Determination of Multi-Axial Fatigue in Magnetorheological Elastomers Using Bubble Inflation“. Advanced Materials Research 875-877 (Februar 2014): 507–11. http://dx.doi.org/10.4028/www.scientific.net/amr.875-877.507.
Der volle Inhalt der QuelleKondo, Yoshiyuki, H. Eda und Masanobu Kubota. „Fatigue Failure under Varying Loading within Fatigue Limit Diagram“. Materials Science Forum 567-568 (Dezember 2007): 1–8. http://dx.doi.org/10.4028/www.scientific.net/msf.567-568.1.
Der volle Inhalt der QuelleIWASAKI, Chikahiro, und Yasushi IKAI. „Fatigue failure under stress below fatigue limit - From the viewpoint of internal stress.“ Journal of the Society of Materials Science, Japan 34, Nr. 385 (1985): 1133–39. http://dx.doi.org/10.2472/jsms.34.1133.
Der volle Inhalt der QuelleLi, Xin. „A new stress-based multiaxial high- cycle fatigue damage criterion“. Functional materials 25, Nr. 2 (27.06.2018): 406–12. http://dx.doi.org/10.15407/fm25.02.406.
Der volle Inhalt der QuelleAkiniwa, Yoshiaki, Keisuke Tanaka und Hidehiko Kimura. „Measurement of Stress Distribution Near Fatigue Crack in Ultra-Fine Grained Steel by Synchrotron Radiation“. Materials Science Forum 490-491 (Juli 2005): 118–23. http://dx.doi.org/10.4028/www.scientific.net/msf.490-491.118.
Der volle Inhalt der QuelleOhgi, Jun Ji, S. Tanaka, T. Kuramoto, M. Suzuki und Koichi Goda. „Stress-Strain Response in SiC/SiC Composites under Cyclic Loading“. Key Engineering Materials 353-358 (September 2007): 1406–9. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.1406.
Der volle Inhalt der QuelleDissertationen zum Thema "Fatigue stress"
Bellecave, Johan. „Stress Gradients In Fretting Fatigue“. Thesis, Cachan, Ecole normale supérieure, 2015. http://www.theses.fr/2015DENS0036/document.
Der volle Inhalt der QuelleThis thesis is part of an international research program (IRG Cognac) initiated by the engine manufacturer SNECMA (SAFRAN group) involving ENS Cachan, UnB, ENSMA, CNRS, Snecma, Turbomeca et Messier Bugatti Dowty. The thesis focuses on the effect of a stress gradient in fretting fatigue. Fretting-fatigue refers to the damage process localized at the frontier of the contact between two contacting bodies subjected to fatigue loadings. The prediction of this phenomenon is of major importance in determining, for instance, the lifetime of fan's disc. In the vicinity of the contact front, the stress field inherited from the contact loads is maximal at the surface and displays a strong gradient from the surface. It was shown in this thesis, for a Ti-6AL-4V alloy, that local approaches, based on local stresses at the most critical point, are not appropriate to predict fretting fatigue lives. As a matter of fact, short cracks initiated at the most critical point may stop if the stress decay from the surface is strong enough or may continue their growth, up to the failure of the component, if the stress gradient from the surface is not string enough. A second difficulty is the multiaxial and non-proportional nature of the loading conditions. Fatigue-fretting stems from the combination of loads that have neither the same spatial distribution nor the same time-dependency. In fretting-fatigue tests, three loading components are considered, the fatigue loading of the component (cyclic), the normal part (assumed to be constant) and the in-plane part (cyclic) of the loads between the two contacting components. To quantify the effect of the stress gradient, tests were carried out on a fatigue testing contact bench developed at the University of Brasilia, with experimental conditions ensuring different stress gradient while keeping the maximal stress the same. Damage mechanisms were studied using post-mortem analysis and optical microscopy on the contact elements tested. The prediction of the fretting fatigue life was done using different approaches. The first one is based on the Critical Distance Method and a fatigue criterion. The second is based on a K-based short crack arrest method. Finally, a new criterion was proposed. This method considers a generalized von Mises yield criterion for the crack tip region and accounts for the T-stresses in the asymptotic LEFM development
Li, Henan. „Flexible Pipe Stress and Fatigue Analysis“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for marin teknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18646.
Der volle Inhalt der QuelleNowak, William J. „Fatigue stress analysis of turbine blades /“. Online version of thesis, 2007. http://hdl.handle.net/1850/5467.
Der volle Inhalt der QuelleDesmond, Paula A. „Fatigue and stress in driving performance“. Thesis, University of Dundee, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364944.
Der volle Inhalt der QuelleHolmberg, Erik. „Stress and fatigue constrained topology optimization“. Licentiate thesis, Linköpings universitet, Mekanik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-88094.
Der volle Inhalt der QuelleChahardehi, Amir Ebrahim. „Fatigue Crack Growth in Complex Stress Fields“. Thesis, Cranfield University, 2008. http://hdl.handle.net/1826/3481.
Der volle Inhalt der QuelleJohansson, Frida, und Rebecka Karlsson. „Compassion Fatigue : En litteraturöversikt om compassion fatigue hos sjuksköterskor inom akutsjukvård“. Thesis, Högskolan i Skövde, Institutionen för hälsa och lärande, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-16804.
Der volle Inhalt der QuelleBackground: There´s a high speed in the emergency care and the expectation of the nurse seems to be versatile with quick assessment, confront the patients suffering and to prioritize the most acute patient in a stressful work environment. Untenable work environment with suffering patients and a high work speed for the nurse can developed compassion fatigue which means a lost of the ability to feel empathy. Purpose: To illustrate factors that causes compassion fatigue for nurses in emergency care. Method: A literature review consisting of 11 scientific articles with quantitative research. The search of the articles was performed in the databases CINAHL, MEDLINE, PubMed and WorldCat Discovery. Result: Three head themes was seen with analysis which was demographic factors, work relatable and psychosocial factors. Demographic factors which could cause compassion fatigue was age, gender and civil state. Work relatable factors was work environment which consisted less social support from managers and colleges, high workload, less team spirit and work relatable factors which consisted level of education, work experience and working hours. The psychosocial factors that was observed was stressors, patients suffering and trauma. Conclusion: Compassion fatigue needs to been seen and prioritize by individuals, colleges and managers in the healthcare. It was discovered that focus should be to create compassion satisfaction which prevent the appearance of compassion fatigue, which is relevant to embrace in staff development.
Hattingh, Daniel Gerhardus. „The fatigue properties of spring steel“. Thesis, University of Plymouth, 1998. http://hdl.handle.net/10026.1/2300.
Der volle Inhalt der QuelleBarsoum, Zuheir. „Residual stress analysis and fatigue of welded structures /“. Stockholm, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3872.
Der volle Inhalt der QuelleAckley, Jessica Lee. „Compassion Fatigue and Secondary Traumatic Stress in Nurses“. Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/318839.
Der volle Inhalt der QuelleBücher zum Thema "Fatigue stress"
Lieurade, H. P. Fatigue & stress. Gournay-sur-Marne, France: IITT-International, 1989.
Den vollen Inhalt der Quelle findenBattle fatigue. Nashville, Tenn: Broadman & Holman, 1995.
Den vollen Inhalt der Quelle findenKirsten, Kite, Hrsg. Flight stress: Stress, fatigue, and performance in aviation. Aldershot, Hants, England: Avebury Aviation, 1994.
Den vollen Inhalt der Quelle findenStokes, Alan. Flight stress: Stress, fatigue and performance in aviation. Aldershot: Ashgate, 1994.
Den vollen Inhalt der Quelle findenM, Birkner Katherine, Hrsg. Chronic emotional fatigue. San Antonio, Tex: Pain & Stress Therapy Center Publications, 1992.
Den vollen Inhalt der Quelle findenWebster, S. E. Fatigue, corrosion fatigue and stress corrosion of steels for offshore structures. Luxembourg: Commission of the European Communities, 1985.
Den vollen Inhalt der Quelle findenFracture and fatigue emanating from stress concentrators. Dordrecht: Kluwer Academic·, 2002.
Den vollen Inhalt der Quelle findenBauman, Judson T. Fatigue, Stress, and Strain of Rubber Components. München: Carl Hanser Verlag GmbH & Co. KG, 2008. http://dx.doi.org/10.3139/9783446433403.
Der volle Inhalt der QuellePluvinage, Guy. Fracture and fatigue emanating from stress concentrators. Dordrecht: Kluwer Academic publishers, 2010.
Den vollen Inhalt der Quelle findenHeslegrave, Ronald James. Gestion de la fatigue: Guide à l'intention des gestionnaires, des officers et des membres d'équipage de la Garde côtière canadienne. Ottawa, Ont: Garde côtière canadienne, 1999.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Fatigue stress"
Pelleg, Joshua. „Cyclic Stress – Fatigue“. In Mechanical Properties of Materials, 339–447. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4342-7_6.
Der volle Inhalt der QuellePelleg, Joshua. „Cyclic Stress: Fatigue“. In Mechanical Properties of Ceramics, 531–616. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04492-7_7.
Der volle Inhalt der QuelleArnetz, Bengt B., und Rolf Ekman. „Fatigue and Recovery“. In Stress in Health and Disease, 280–91. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527609156.ch16.
Der volle Inhalt der QuelleBauman, Judson T. „Fatigue Testing“. In Fatigue, Stress, and Strain of Rubber Components, 117–26. München: Carl Hanser Verlag GmbH & Co. KG, 2008. http://dx.doi.org/10.3139/9783446433403.008.
Der volle Inhalt der QuelleMilella, Pietro Paolo. „Stress-Based Fatigue Analysis High Cycle Fatigue“. In Fatigue and Corrosion in Metals, 245–308. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2336-9_5.
Der volle Inhalt der QuelleGdoutos, E. E. „Stress Intensity Factors for a Linear Stress Distribution“. In Problems of Fracture Mechanics and Fatigue, 53–56. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2774-7_12.
Der volle Inhalt der QuelleBauman, Judson T. „Fatigue Life Estimation“. In Fatigue, Stress, and Strain of Rubber Components, 135–41. München: Carl Hanser Verlag GmbH & Co. KG, 2008. http://dx.doi.org/10.3139/9783446433403.010.
Der volle Inhalt der QuelleSkelton, R. P. „Cyclic Stress-Strain Properties During High Strain Fatigue“. In High Temperature Fatigue, 27–112. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3453-5_2.
Der volle Inhalt der QuelleMurakami, Yukitaka. „Stress Concentration“. In Metal Fatigue, 11–24. Elsevier, 2002. http://dx.doi.org/10.1016/b978-008044064-4/50002-5.
Der volle Inhalt der QuelleZahavi, Eliahu, und Vladimir Torbilo. „Stress Method“. In Fatigue Design, 41–98. CRC Press, 2019. http://dx.doi.org/10.1201/9780203756133-3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Fatigue stress"
Dowling, Norman E. „Mean Stress Effects in Stress-Life and Strain-Life Fatigue“. In Second SAE Brasil International Conference on Fatigue. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2004. http://dx.doi.org/10.4271/2004-01-2227.
Der volle Inhalt der QuelleMönig, R. „Thermal Fatigue in Copper Interconnects“. In STRESS-INDUCED PHENOMENA IN METALLIZATION: Eighth International Workshop on Stress-Induced Phenomena in Metallization. AIP, 2006. http://dx.doi.org/10.1063/1.2173544.
Der volle Inhalt der QuelleEve, S. „Biaxial Fatigue Testing of Thin Films“. In STRESS-INDUCED PHENOMENA IN METALLIZATION: Eighth International Workshop on Stress-Induced Phenomena in Metallization. AIP, 2006. http://dx.doi.org/10.1063/1.2173536.
Der volle Inhalt der QuelleGoldstein, Igor Fillippe, und Lucia Vilela Leite Filgueiras. „Truck drivers' fatigue and stress“. In IHC '19: XVIII Brazilian Symposium on Human Factors in Computing Systems. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3357155.3360485.
Der volle Inhalt der QuelleZietek, Grazyna. „Energy Accumulation under Biaxial Cyclic Stress State for Materials with Athermal Martensitic Transformation“. In SAE Brasil International Conference on Fatigue. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-4056.
Der volle Inhalt der QuelleRogers, S. A. „Fatigue Cracking Of Cooling Water Pipes“. In Stress and Vibration: Recent Developments in Measurement and Analysis, herausgegeben von Peter Stanley. SPIE, 1989. http://dx.doi.org/10.1117/12.952912.
Der volle Inhalt der QuelleFei, Guan, und Chen Ping. „Stress Analysis and Fatigue Life Prediction“. In Passenger Car Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1986. http://dx.doi.org/10.4271/861395.
Der volle Inhalt der QuelleSiqueira, Célio P., Celso P. M. Pereira, Marcelino P. Nascimento, Herman J. C. Voorwald und Renato C. Souza. „Effects of Nitriding and Shot Peening treatments and Stress Concentration on the Fatigue Strength of AISI 4340 steel“. In SAE Brasil International Conference on Fatigue. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-4070.
Der volle Inhalt der QuelleHattori, T., und M. Yamashita. „Fatigue Strength Evaluation Methods Using Stress Distributions“. In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40114.
Der volle Inhalt der QuelleXu, Biqiang, Yanyao Jiang und Shenghong Yang. „Stress and Fatigue Analyses of Notched Shafts“. In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-0370.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Fatigue stress"
Klopcic, J. T. The Aura Fatigue and Heat Stress Algorithms. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1989. http://dx.doi.org/10.21236/ada216968.
Der volle Inhalt der QuelleLee, E. U., C. Lei, H. C. Sanders und R. Taylor. Evolution of Fractograph During Fatigue and Stress Corrosion Cracking. Fort Belvoir, VA: Defense Technical Information Center, Februar 2004. http://dx.doi.org/10.21236/ada420467.
Der volle Inhalt der QuelleWang, Yuanqing, Haoyang Gu, Xiaowei Liao, Tianshen Zhang und Liang Zong. STUDY ON LOW-TEMPERATURE FATIGUE OF STEEL STRUCTURES AND FATIGUE PROPERTIES OF WELDS UNDER SHEARS STRESS. The Hong Kong Institute of Steel Construction, Dezember 2018. http://dx.doi.org/10.18057/icass2018.p.055.
Der volle Inhalt der QuelleUnderwood, J. H., und A. P. Parker. Fatigue Life Assessment of Steel Pressure Vessels with Varying Stress Concentration, Residual Stress, and Initial Cracks. Fort Belvoir, VA: Defense Technical Information Center, Juli 1996. http://dx.doi.org/10.21236/ada317116.
Der volle Inhalt der QuelleBrausch, John C., und Noel A. Tracy. Effects of Compressive Stress on Fluorescent Penetrant Indications of Fatigue Cracks in Titanium. Fort Belvoir, VA: Defense Technical Information Center, März 2001. http://dx.doi.org/10.21236/ada404873.
Der volle Inhalt der QuelleAlmer, J. D., J. B. Cohen, K. R. McCallum und R. A. Winholtz. X-Ray Diffraction and Finite Element Study of Residual Stress Effects on Fatigue Crack Growth. Fort Belvoir, VA: Defense Technical Information Center, Mai 1997. http://dx.doi.org/10.21236/ada326227.
Der volle Inhalt der QuelleChampoux, R. L., J. H. Underwood und J. A. Kapp. Overview of ASTM Symposium on Analytical and Experimental Methods for Residual Stress Effects in Fatigue. Fort Belvoir, VA: Defense Technical Information Center, Februar 1989. http://dx.doi.org/10.21236/ada205622.
Der volle Inhalt der QuelleMiller, James C., Douglas R. Eddy und Joseph Fischer. The Sensitivity and Specificity of Oculometrics Under Fatigue Stress Compared to Performance and Subjective Measures. Fort Belvoir, VA: Defense Technical Information Center, Mai 2004. http://dx.doi.org/10.21236/ada425455.
Der volle Inhalt der QuelleParker, Anthony P., und John H. Underwood. Influence of the Bauschinger Effect on Residual Stress and Fatigue Lifetimes in Autofrettaged Thick-Walled Cylinders. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada330071.
Der volle Inhalt der QuelleKimmel, Donald B. Factors in Risk Prediction and Healing of Stress Fractures and Fatigue Damage in the Female Skeleton. Fort Belvoir, VA: Defense Technical Information Center, November 1998. http://dx.doi.org/10.21236/ada364081.
Der volle Inhalt der Quelle