Auswahl der wissenschaftlichen Literatur zum Thema „Fast Boundary Element Methods“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fast Boundary Element Methods" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Fast Boundary Element Methods"

1

Kravčenko, Michal, Michal Merta und Jan Zapletal. „Distributed fast boundary element methods for Helmholtz problems“. Applied Mathematics and Computation 362 (Dezember 2019): 124503. http://dx.doi.org/10.1016/j.amc.2019.06.017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gumerov, Nail A., und Ramani Duraiswami. „Fast multipole accelerated boundary element methods for room acoustics“. Journal of the Acoustical Society of America 150, Nr. 3 (September 2021): 1707–20. http://dx.doi.org/10.1121/10.0006102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Of, G., O. Steinbach und P. Urthaler. „Fast Evaluation of Volume Potentials in Boundary Element Methods“. SIAM Journal on Scientific Computing 32, Nr. 2 (Januar 2010): 585–602. http://dx.doi.org/10.1137/080744359.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Harbrecht, H., und M. Peters. „Comparison of fast boundary element methods on parametric surfaces“. Computer Methods in Applied Mechanics and Engineering 261-262 (Juli 2013): 39–55. http://dx.doi.org/10.1016/j.cma.2013.03.022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gumerov, Nail, und Ramani Duraiswami. „Simulations of room acoustics using fast multipole boundary element methods“. Journal of the Acoustical Society of America 148, Nr. 4 (Oktober 2020): 2693–94. http://dx.doi.org/10.1121/1.5147458.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

MUKHERJEE, SUBRATA, und YIJUN LIU. „THE BOUNDARY ELEMENT METHOD“. International Journal of Computational Methods 10, Nr. 06 (02.05.2013): 1350037. http://dx.doi.org/10.1142/s0219876213500370.

Der volle Inhalt der Quelle
Annotation:
The boundary element method (BEM), along with the finite element and finite difference methods, is commonly used to carry out numerical simulations in a wide variety of subjects in science and engineering. The BEM, rooted in classical mathematics of integral equations, started becoming a useful computational tool around 50 years ago. Many researchers have worked on computational aspects of this method during this time.This paper presents an overview of the BEM and related methods. It has three sections. The first, relatively short section, presents the governing equations for classical applications of the BEM in potential theory, linear elasticity and acoustics. The second describes specialized applications in bodies with thin features including micro-electro-mechanical systems (MEMS). The final section addresses current research. It has three subsections that present the boundary contour, boundary node and fast multipole methods (BCM, BNM and FMM), respectively. Several numerical examples are included in the second and third sections of this paper.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dargush, G. F., und M. M. Grigoriev. „Fast and Accurate Solutions of Steady Stokes Flows Using Multilevel Boundary Element Methods“. Journal of Fluids Engineering 127, Nr. 4 (23.02.2005): 640–46. http://dx.doi.org/10.1115/1.1949648.

Der volle Inhalt der Quelle
Annotation:
Most recently, we have developed a novel multilevel boundary element method (MLBEM) for steady Stokes flows in irregular two-dimensional domains (Grigoriev, M.M., and Dargush, G.F., Comput. Methods. Appl. Mech. Eng., 2005). The multilevel algorithm permitted boundary element solutions with slightly over 16,000 degrees of freedom, for which approximately 40-fold speedups were demonstrated for the fast MLBEM algorithm compared to a conventional Gauss elimination approach. Meanwhile, the sevenfold memory savings were attained for the fast algorithm. This paper extends the MLBEM methodology to dramatically improve the performance of the original multilevel formulation for the steady Stokes flows. For a model problem in an irregular pentagon, we demonstrate that the new MLBEM formulation reduces the CPU times by a factor of nearly 700,000. Meanwhile, the memory requirements are reduced more than 16,000 times. These superior run-time and memory reductions compared to regular boundary element methods are achieved while preserving the accuracy of the boundary element solution.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

van 't Wout, Elwin, Reza Haqshenas, Pierre Gélat und Nader Saffari. „Fast and accurate boundary element methods for large-scale computational acoustics“. Journal of the Acoustical Society of America 154, Nr. 4_supplement (01.10.2023): A179. http://dx.doi.org/10.1121/10.0023190.

Der volle Inhalt der Quelle
Annotation:
The boundary element method (BEM) is a powerful algorithm to solve the Helmholtz equation for harmonic acoustic waves. The explicit use of Green’s functions avoids domain truncation of unbounded regions and accurately models wave propagation through homogeneous materials. Furthermore, fast multipole and hierarchical compression techniques provide efficient computations for dense matrix multiplications. However, the convergence of the iterative linear solvers deteriorates significantly when frequencies are high or materials have large contrasts in density or speed of sound. This talk presents several algorithmic improvements of the BEM. First, a preconditioner based on on-surface radiation conditions drastically reduces the iteration count of linear solvers at high frequencies. Second, anovel boundary integral formulation remains well-conditioned for high-contrast transmission problems. We used our fast and accurate BEM implementation to simulate focused ultrasound propagation in the human body, which can be translated to important biomedical applications such as the non-invasive treatment of liver cancer and neuromodulation of the brain. We validated the methodology within the benchmarking exercise of the International Transcranial Ultrasonic Stimulation Safety and Standards (ITRUSST) consortium. As a second application, we simulated the collective resonances of water-entrained arrays of air bubbles. Finally, we implemented all functionality in our open-source Python library, OptimUS.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Newman, J. N., und C. H. Lee. „Boundary-Element Methods In Offshore Structure Analysis“. Journal of Offshore Mechanics and Arctic Engineering 124, Nr. 2 (11.04.2002): 81–89. http://dx.doi.org/10.1115/1.1464561.

Der volle Inhalt der Quelle
Annotation:
Boundary-element methods, also known as panel methods, have been widely used for computations of wave loads and other hydrodynamic characteristics associated with the interactions of offshore structures with waves. In the conventional approach, based on the low-order panel method, the submerged surface of the structure is represented by a large number of small quadrilateral plane elements, and the solution for the velocity potential or source strength is approximated by a constant value on each element. In this paper, we describe two recent developments of the panel method. One is a higher-order method where the submerged surface can be represented exactly, or approximated to a high degree of accuracy by B-splines, and the velocity potential is also approximated by B-splines. This technique, which was first used in the research code HIPAN, has now been extended and implemented in WAMIT. In many cases of practical importance, it is now possible to represent the geometry exactly to avoid the extra work required previously to develop panel input files for each structure. It is also possible to combine the same or different structures which are represented in this manner, to analyze multiple-body hydrodynamic interactions. Also described is the pre-corrected Fast Fourier Transform method (pFFT) which can reduce the computational time and required memory of the low-order method by an order of magnitude. In addition to descriptions of the two methods, several different applications are presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Chen, Leilei, Steffen Marburg, Wenchang Zhao, Cheng Liu und Haibo Chen. „Implementation of Isogeometric Fast Multipole Boundary Element Methods for 2D Half-Space Acoustic Scattering Problems with Absorbing Boundary Condition“. Journal of Theoretical and Computational Acoustics 27, Nr. 02 (Juni 2019): 1850024. http://dx.doi.org/10.1142/s259172851850024x.

Der volle Inhalt der Quelle
Annotation:
Isogeometric Analysis (IGA), which tries to bridge the gap between Computer Aided Engineering (CAE) and Computer Aided Design (CAD), has been widely proposed in recent research. According to the concept of IGA, this work develops a boundary element method (BEM) using non-Uniform Rational B-Splines (NURBS) as basis functions for the 2D half-space acoustic problems with absorbing boundary condition. Fast multipole method (FMM) is applied to accelerate the solution of an isogeometric BEM (IGA-BEM). Several examples are tested and it is shown that this advancement on isogeometric fast multipole boundary element method improves the accuracy of simulations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Fast Boundary Element Methods"

1

NOVELINO, LARISSA SIMOES. „APPLICATION OF FAST MULTIPOLE TECHNIQUES IN THE BOUNDARY ELEMENT METHODS“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=37003@1.

Der volle Inhalt der Quelle
Annotation:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Este trabalho visa à implementação de um programa de elementos de contorno para problemas com milhões de graus de liberdade. Isto é obtido com a implementação do Método Fast Multipole (FMM), que pode reduzir o número de operações, para a solução de um problema com N graus de liberdade, de O(N(2)) para O(NlogN) ou O(N). O uso de memória também é reduzido, por não haver o armazenamento de matrizes de grandes dimensões como no caso de outros métodos numéricos. A implementação proposta é baseada em um desenvolvimento consistente do convencional, Método de colocação dos elementos de contorno (BEM) – com conceitos provenientes do Hibrido BEM – para problemas de potencial e elasticidade de larga escala em 2D e 3D. A formulação é especialmente vantajosa para problemas de topologia complicada ou que requerem soluções fundamentais complicadas. A implementação apresentada, usa um esquema para expansões de soluções fundamentais genéricas em torno de níveis hierárquicos de polos campo e fonte, tornando o FMM diretamente aplicável para diferentes soluções fundamentais. A árvore hierárquica dos polos é construída a partir de um conceito topológico de superelementos dentro de superelementos. A formulação é inicialmente acessada e validada em termos de um problema de potencial 2D. Como resolvedores iterativos não são necessários neste estágio inicial de simulação numérica, podese acessar a eficiência relativa à implementação do FMM.
This work aims to present an implementation of a boundary element solver for problems with millions of degrees of freedom. This is achieved through a Fast Multipole Method (FMM) implementation, which can lower the number of operations for solving a problem, with N degrees of freedom, from O(N(2)) to O(NlogN) or O(N). The memory usage is also very small, as there is no need to store large matrixes such as required by other numerical methods. The proposed implementations are based on a consistent development of the conventional, collocation boundary element method (BEM) - with concepts taken from the variationally-based hybrid BEM - for large-scale 2D and 3D problems of potential and elasticity. The formulation is especially advantageous for problems of complicated topology or requiring complicated fundamental solutions. The FMM implementation presented in this work uses a scheme for expansions of a generic fundamental solution about hierarchical levels of source and field poles. This makes the FMM directly applicable to different kinds of fundamental solutions. The hierarchical tree of poles is built upon a topological concept of superelements inside superelements. The formulation is initially assessed and validated in terms of a simple 2D potential problem. Since iterative solvers are not required in this first step of numerical simulations, an isolated efficiency assessment of the implemented fast multipole technique is possible.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bapat, Milind S. „New Developments in Fast Boundary Element Method“. University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1331296947.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ding, Jian. „Fast boundary element method solutions for three dimensional large scale problems“. Available online, Georgia Institute of Technology, 2005, 2004. http://etd.gatech.edu/theses/available/etd-01102005-174227/unrestricted/ding%5Fjian%5F200505%5Fphd.pdf.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph. D.)--Mechanical Engineering, Georgia Institute of Technology, 2005.
Mucha, Peter, Committee Member ; Qu, Jianmin, Committee Member ; Ye, Wenjing, Committee Chair ; Hesketh, Peter, Committee Member ; Gray, Leonard J., Committee Member. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bagur, Laura. „Modeling fluid injection effects in dynamic fault rupture using Fast Boundary Element Methods“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAE010.

Der volle Inhalt der Quelle
Annotation:
Les tremblements de terre d'origine naturelle ou anthropique provoquent d'importants dégâts humains et matériels. Dans les deux cas, la présence de fluides interstitiels influe sur le déclenchement des instabilités sismiques. Une nouvelle question d'actualité dans la communauté est de montrer que l'instabilité sismique peut être atténuée par un contrôle actif de la pression des fluides. Dans ce travail, nous étudions la capacité des méthodes d'éléments de frontière rapides (Fast BEMs) à fournir un solveur robuste multi-physique à grande échelle nécessaire à la modélisation des processus sismiques, de la sismicité induite et de leur atténuation.Dans une première partie, un solveur BEM rapide avec différents algorithmes d'intégration temporelle est utilisé. Nous évaluons les performances de diverses méthodes à pas de temps adaptatif sur la base de problèmes de cycles sismiques 2D usuels pour les failles planes.Nous proposons une solution asismique analytique pour effectuer des études de convergence et fournir une comparaison rigoureuse des capacités des différentes méthodes en plus des problèmes de cycles sismiques de référence testés.Nous montrons qu'une méthode hybride prédiction-correction / Runge-Kutta à pas de temps adaptatif permet non seulement une résolution précise mais aussi d'incorporer à la fois les effets inertiels et les couplages hydro-mécaniques dans les simulations de rupture dynamique de faille.Dans une deuxième partie, une fois les outils numériques développés pour des configurations standards, notre objectif est de prendre en compte les effets de l'injection de fluide sur le glissement sismique. Nous choisissons le cadre poroélastodynamique pour incorporer les effets de l'injection sur l'instabilité sismique. Un modèle poroélastodynamique complet nécessiterait des coûts de calcul ou des approximations non négligeables. Nous justifions rigoureusement quels effets fluides prédominants sont en jeu lors d'un tremblement de Terre ou d'un cycle sismique. Pour cela, nous effectuons une analyse dimensionnelle des équations, et illustrons les résultats en utilisant un problème de poroelastodynamique 1D simplifié. Plus précisément, nous montrons qu'à l'échelle de temps de l'instabilité sismique, les effets inertiels sont prédominants alors qu'une combinaison de la diffusion du fluide et de la déformation élastique de la matrice solide due à la variation de la pression interstitielle devrait être privilégiée à l'échelle de temps du cycle sismique, au lieu du modèle de diffusion principalement utilisé dans la littérature
Earthquakes due to either natural or anthropogenic sources cause important human and material damage. In both cases, the presence of pore fluids influences the triggering of seismic instabilities.A new and timely question in the community is to show that the earthquake instability could be mitigated by active control of the fluid pressure. In this work, we study the ability of Fast Boundary Element Methods (Fast BEMs) to provide a multi-physic large-scale robust solver required for modeling earthquake processes, human induced seismicity and their mitigation.In a first part, a Fast BEM solver with different temporal integration algorithms is used. We assess the performances of various possible adaptive time-step methods on the basis of 2D seismic cycle benchmarks available for planar faults. We design an analytical aseismic solution to perform convergence studies and provide a rigorous comparison of the capacities of the different solving methods in addition to the seismic cycles benchmarks tested. We show that a hybrid prediction-correction / adaptive time-step Runge-Kutta method allows not only for an accurate solving but also to incorporate both inertial effects and hydro-mechanical couplings in dynamic fault rupture simulations.In a second part, once the numerical tools are developed for standard fault configurations, our objective is to take into account fluid injection effects on the seismic slip. We choose the poroelastodynamic framework to incorporate injection effects on the earthquake instability. A complete poroelastodynamic model would require non-negligible computational costs or approximations. We justify rigorously which predominant fluid effects are at stake during an earthquake or a seismic cycle. To this aim, we perform a dimensional analysis of the equations, and illustrate the results using a simplified 1D poroelastodynamic problem. We formally show that at the timescale of the earthquake instability, inertial effects are predominant whereas a combination of diffusion and elastic deformation due to pore pressure change should be privileged at the timescale of the seismic cycle, instead of the diffusion model mainly used in the literature
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

SHEN, LIANG. „ADAPTIVE FAST MULTIPOLE BOUNDARY ELEMENT METHODS FOR THREE-DIMENSIONAL POTENTIAL AND ACOUSTIC WAVE PROBLEMS“. University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1193706024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

MITRA, KAUSIK PRADIP. „APPLICATION OF MULTIPOLE EXPANSIONS TO BOUNDARY ELEMENT METHOD“. University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1026411773.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Rahman, Mizanur. „Fast boundary element methods for integral equations on infinite domains and scattering by unbounded surfaces“. Thesis, Brunel University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324648.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ding, Jian. „Fast Boundary Element Method Solutions For Three Dimensional Large Scale Problems“. Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6830.

Der volle Inhalt der Quelle
Annotation:
Efficiency is one of the key issues in numerical simulation of large-scale problems with complex 3-D geometry. Traditional domain based methods, such as finite element methods, may not be suitable for these problems due to, for example, the complexity of mesh generation. The Boundary Element Method (BEM), based on boundary integral formulations (BIE), offers one possible solution to this issue by discretizing only the surface of the domain. However, to date, successful applications of the BEM are mostly limited to linear and continuum problems. The challenges in the extension of the BEM to nonlinear problems or problems with non-continuum boundary conditions (BC) include, but are not limited to, the lack of appropriate BIE and the difficulties in the treatment of the volume integrals that result from the nonlinear terms. In this thesis work, new approaches and techniques based on the BEM have been developed for 3-D nonlinear problems and Stokes problems with slip BC. For nonlinear problems, a major difficulty in applying the BEM is the treatment of the volume integrals in the BIE. An efficient approach, based on the precorrected-FFT technique, is developed to evaluate the volume integrals. In this approach, the 3-D uniform grid constructed initially to accelerate surface integration is used as the baseline mesh to evaluate volume integrals. The cubes enclosing part of the boundary are partitioned using surface panels. No volume discretization of the interior cubes is necessary. This grid is also used to accelerate volume integration. Based on this approach, accelerated BEM solvers for non-homogeneous and nonlinear problems are developed and tested. Good agreement is achieved between simulation results and analytical results. Qualitative comparison is made with current approaches. Stokes problems with slip BC are of particular importance in micro gas flows such as those encountered in MEMS devices. An efficient approach based on the BEM combined with the precorrected-FFT technique has been proposed and various techniques have been developed to solve these problems. As the applications of the developed method, drag forces on oscillating objects immersed in an unbounded slip flow are calculated and validated with either analytic solutions or experimental results.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Grasso, Eva. „Modelling visco-elastic seismic wave propagation : a fast-multipole boundary element method and its coupling with finite elements“. Phd thesis, Université Paris-Est, 2012. http://tel.archives-ouvertes.fr/tel-00730752.

Der volle Inhalt der Quelle
Annotation:
The numerical simulation of elastic wave propagation in unbounded media is a topical issue. This need arises in a variety of real life engineering problems, from the modelling of railway- or machinery-induced vibrations to the analysis of seismic wave propagation and soil-structure interaction problems. Due to the complexity of the involved geometries and materials behavior, modelling such situations requires sophisticated numerical methods. The Boundary Element method (BEM) is a very effective approach for dynamical problems in spatially-extended regions (idealized as unbounded), especially since the advent of fast BEMs such as the Fast Multipole Method (FMM) used in this work. The BEM is based on a boundary integral formulation which requires the discretization of the only domain boundary (i.e. a surface in 3-D) and accounts implicitly for the radiation conditions at infinity. As a main disadvantage, the BEM leads a priori to a fully-populated and (using the collocation approach) non-symmetrical coefficient matrix, which make the traditional implementation of this method prohibitive for large problems (say O(106) boundary DoFs). Applied to the BEM, the Multi-Level Fast Multipole Method (ML-FMM) strongly lowers the complexity in computational work and memory that hinder the classical formulation, making the ML-FMBEM very competitive in modelling elastic wave propagation. The elastodynamic version of the Fast Multipole BEM (FMBEM), in a form enabling piecewise-homogeneous media, has for instance been successfully used to solve seismic wave propagation problems in a previous work (thesis dissertation of S. Chaillat, ENPC, 2008). This thesis aims at extending the capabilities of the existing frequency-domain elastodynamic FMBEM in two directions. Firstly, the time-harmonic elastodynamic ML-FMBEM formulation has been extended to the case of weakly dissipative viscoelastic media. Secondly, the FMBEM and the Finite Element Method (FEM) have been coupled to take advantage of the versatility of the FEM to model complex geometries and non-linearities while the FM-BEM accounts for wave propagation in the surrounding unbounded medium. In this thesis, we consider two strategies for coupling the FMBEM and the FEM to solve three-dimensional time-harmonic wave propagation problems in unbounded domains. The main idea is to separate one or more bounded subdomains (modelled by the FEM) from the complementary semi-infinite viscoelastic propagation medium (modelled by the FMBEM) through a non-overlapping domain decomposition. Two coupling strategies have been implemented and their performances assessed and compared on several examples
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

BAPAT, MILIND SHRIKANT. „FAST MULTIPOLE BOUNDARY ELEMENT METHOD FOR SOLVING TWO-DIMENSIONAL ACOUSTIC WAVE PROBLEMS“. University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1163773308.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Fast Boundary Element Methods"

1

Liu, Yijun. Fast multipole boundary element method: Theory and applications in engineering. Cambridge: Cambridge University Press, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Langer, Ulrich, Martin Schanz, Olaf Steinbach und Wolfgang L. Wendland, Hrsg. Fast Boundary Element Methods in Engineering and Industrial Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25670-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Langer, Ulrich. Fast Boundary Element Methods in Engineering and Industrial Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bond, Dave M. Fast wavelet transforms for matrices arising from boundary element methods. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sauter, Stefan A., und Christoph Schwab. Boundary Element Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-68093-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kobayashi, S., und N. Nishimura, Hrsg. Boundary Element Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-06153-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gwinner, Joachim, und Ernst Peter Stephan. Advanced Boundary Element Methods. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92001-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Cruse, Thomas A., Hrsg. Advanced Boundary Element Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83003-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Annigeri, Balkrishna S., und Kadin Tseng, Hrsg. Boundary Element Methods in Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84238-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Subrata, Mukherjee, Hrsg. Boundary element methods in manufacturing. New York: Oxford University Press, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Fast Boundary Element Methods"

1

Fu, Y., J. R. Overfelt und G. J. Rodin. „Fast Summation Methods and Integral Equations“. In Mathematical Aspects of Boundary Element Methods, 128–39. Boca Raton: Chapman and Hall/CRC, 2024. http://dx.doi.org/10.1201/9780429332449-11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Grzhibovskis, Richards, Christian Michel und Sergej Rjasanow. „Fast Boundary Element Methods for Composite Materials“. In Multi-scale Simulation of Composite Materials, 97–141. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-57957-2_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bonnet, Marc, Stéphanie Chaillat und Jean-François Semblat. „Multi-Level Fast Multipole BEM for 3-D Elastodynamics“. In Recent Advances in Boundary Element Methods, 15–27. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9710-2_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Yao, Zhenhan. „Some Investigations of Fast Multipole BEM in Solid Mechanics“. In Recent Advances in Boundary Element Methods, 433–49. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9710-2_28.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yu, Wenjian, und Xiren Wang. „Fast Boundary Element Methods for Capacitance Extraction (I)“. In Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits, 19–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54298-5_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yu, Wenjian, und Xiren Wang. „Fast Boundary Element Methods for Capacitance Extraction (II)“. In Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits, 39–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54298-5_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Liu, Yijun, Liang Shen und Milind Bapat. „Development of the Fast Multipole Boundary Element Method for Acoustic Wave Problems“. In Recent Advances in Boundary Element Methods, 287–303. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9710-2_19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Frangi, Attilio. „Fast Stokes Solvers for MEMS“. In Fast Boundary Element Methods in Engineering and Industrial Applications, 221–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25670-7_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Tausch, Johannes. „Fast Nyström Methods for Parabolic Boundary Integral Equations“. In Fast Boundary Element Methods in Engineering and Industrial Applications, 185–219. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25670-7_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Dondero, Marco, Adrián P. Cisilino, Alexis Rodriguez Carranza und Georgios Stavroulakis. „Fast Multipole BEM and Genetic Algorithms for the Design of Foams with Functional-Graded Thermal Conductivity“. In Recent Advances in Boundary Element Methods, 57–70. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9710-2_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Fast Boundary Element Methods"

1

Zuccotti, A., und K. Cools. „Fast and Accurate Time Domain Solver Based on the Exact Calculation of Matrix Entries in Boundary Element Method for Scalar Wave Scattering“. In 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), 1329–30. IEEE, 2024. http://dx.doi.org/10.1109/ap-s/inc-usnc-ursi52054.2024.10686669.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ptaszny, Jacek. „Parallel fast multipole boundary element method applied to computational homogenization“. In COMPUTER METHODS IN MECHANICS (CMM2017): Proceedings of the 22nd International Conference on Computer Methods in Mechanics. Author(s), 2018. http://dx.doi.org/10.1063/1.5019145.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hardesty, Sean. „Approximate Shape Gradients with Boundary Element Methods.“ In Proposed for presentation at the Workshop on Fast Boundary Element Methods in Industrial Applications held October 13-16, 2022 in Hirschegg, Vorarlberg Austria. US DOE, 2022. http://dx.doi.org/10.2172/2005357.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

B, Dias Júnior, A., und Albuquerque, E. L. „The Fast Multipole Boundary Element Method for plane anisotropic problems“. In XXXVIII Iberian-Latin American Congress on Computational Methods in Engineering. Florianopolis, Brazil: ABMEC Brazilian Association of Computational Methods in Engineering, 2017. http://dx.doi.org/10.20906/cps/cilamce2017-0623.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bastos, Emerson, Éder Lima de Albuquerque und Lucas Silveira Campos. „A Fast Multipole Boundary Element Code Written in Julia Language“. In XXXVIII Iberian-Latin American Congress on Computational Methods in Engineering. Florianopolis, Brazil: ABMEC Brazilian Association of Computational Methods in Engineering, 2017. http://dx.doi.org/10.20906/cps/cilamce2017-1262.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Schanz, M. „Fast Multipole Accelerated Boundary Element Method for Poroelastodynamics“. In Sixth Biot Conference on Poromechanics. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480779.210.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ostanin, I., A. Mikhalev, D. Zorin und I. Oseledets. „Engineering optimization with the fast boundary element method“. In BEM/MRM 38. Southampton, UK: WIT Press, 2015. http://dx.doi.org/10.2495/bem380141.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Abboud, Toufic, und Denis Barbier. „Hi-BoX: A generic library of fast solvers for boundary element methods“. In 2016 IEEE Conference on Antenna Measurements & Applications (CAMA). IEEE, 2016. http://dx.doi.org/10.1109/cama.2016.7815803.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Al-Jelawy, Sarah, Hayder Al-Jelawy, Zaid Al-Fuhami und Rasha Rahman. „A theoretical and computational study into essential fast multipole boundary element methods (BEM)“. In THE FOURTH AL-NOOR INTERNATIONAL CONFERENCE FOR SCIENCE AND TECHNOLOGY (4NICST2022). AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0202186.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Grigoriev, M. M., und G. F. Dargush. „A Fast Multi-Level Boundary Element Method for the Steady Heat Diffusion Equation“. In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47450.

Der volle Inhalt der Quelle
Annotation:
A fast, accurate and efficient multi-level boundary element method is developed to solve general boundary value problems. Here we concentrate on problems of two-dimensional steady potential flow and present a fast direct boundary element formulation. This novel method extends the pioneering work of Brandt and Lubrecht on multi-level multi-integration (MLMI) in several important ways to address problems with mixed boundary conditions. We utilize bi-conjugate gradient methods (BCGM) and implement the MLMI approach for fast matrix and matrix transpose multiplication for every iteration loop. Furthermore, by introducing a C-cycle multigrid algorithm, we find that the number of iterations for the bi-conjugate gradient methods is independent of the boundary element mesh discretization for problems of steady-state heat diffusion considered in this paper. As a result, the computational complexity of the proposed method is proportional to only N · log(N), where N is the number of degrees of freedom.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Fast Boundary Element Methods"

1

Masumoto, Takayuki. The Effect of Applying the Multi-Level Fast Multipole Algorithm to the Boundary Element Method. Warrendale, PA: SAE International, September 2005. http://dx.doi.org/10.4271/2005-08-0589.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

GRIFFITH, RICHARD O., und KENNETH K. MURATA. Proposed Extension of FETI Methods to the Boundary Element Technique. Office of Scientific and Technical Information (OSTI), Oktober 2001. http://dx.doi.org/10.2172/787646.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gray, L. J. (Environmental and geophysical modeling, fracture mechanics, and boundary element methods). Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6369024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

T.F. Eibert, J.L. Volakis und Y.E. Erdemli. Hybrid Finite Element-Fast Spectral Domain Multilayer Boundary Integral Modeling of Doubly Periodic Structures. Office of Scientific and Technical Information (OSTI), März 2002. http://dx.doi.org/10.2172/821699.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Babuska, I., B. Q. Guo und E. P. Stephan. On the Exponential Convergence of the h-p Version for Boundary Element Galerkin Methods on Polygons. Fort Belvoir, VA: Defense Technical Information Center, Mai 1989. http://dx.doi.org/10.21236/ada215814.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Trahan, Corey, Jing-Ru Cheng und Amanda Hines. ERDC-PT : a multidimensional particle tracking model. Engineer Research and Development Center (U.S.), Januar 2023. http://dx.doi.org/10.21079/11681/48057.

Der volle Inhalt der Quelle
Annotation:
This report describes the technical engine details of the particle- and species-tracking software ERDC-PT. The development of ERDC-PT leveraged a legacy ERDC tracking model, “PT123,” developed by a civil works basic research project titled “Efficient Resolution of Complex Transport Phenomena Using Eulerian-Lagrangian Techniques” and in part by the System-Wide Water Resources Program. Given hydrodynamic velocities, ERDC-PT can track thousands of massless particles on 2D and 3D unstructured or converted structured meshes through distributed processing. At the time of this report, ERDC-PT supports triangular elements in 2D and tetrahedral elements in 3D. First-, second-, and fourth-order Runge-Kutta time integration methods are included in ERDC-PT to solve the ordinary differential equations describing the motion of particles. An element-by-element tracking algorithm is used for efficient particle tracking over the mesh. ERDC-PT tracks particles along the closed and free surface boundaries by velocity projection and stops tracking when a particle encounters the open boundary. In addition to passive particles, ERDC-PT can transport behavioral species, such as oyster larvae. This report is the first report of the series describing the technical details of the tracking engine. It details the governing equation and numerical approaching associated with ERDC-PT Version 1.0 contents.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zhao, George, Grang Mei, Bulent Ayhan, Chiman Kwan und Venu Varma. DTRS57-04-C-10053 Wave Electromagnetic Acoustic Transducer for ILI of Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), März 2005. http://dx.doi.org/10.55274/r0012049.

Der volle Inhalt der Quelle
Annotation:
In this project, Intelligent Automation, Incorporated (IAI) and Oak Ridge National Lab (ORNL) propose a novel and integrated approach to inspect the mechanical dents and metal loss in pipelines. It combines the state-of-the-art SH wave Electromagnetic Acoustic Transducer (EMAT) technique, through detailed numerical modeling, data collection instrumentation, and advanced signal processing and pattern classifications, to detect and characterize mechanical defects in the underground pipeline transportation infrastructures. The technique has four components: (1) thorough guided wave modal analysis, (2) recently developed three-dimensional (3-D) Boundary Element Method (BEM) for best operational condition selection and defect feature extraction, (3) ultrasonic Shear Horizontal (SH) waves EMAT sensor design and data collection, and (4) advanced signal processing algorithm like a nonlinear split-spectrum filter, Principal Component Analysis (PCA) and Discriminant Analysis (DA) for signal-to-noise-ratio enhancement, crack signature extraction, and pattern classification. This technology not only can effectively address the problems with the existing methods, i.e., to detect the mechanical dents and metal loss in the pipelines consistently and reliably but also it is able to determine the defect shape and size to a certain extent.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie