Inhaltsverzeichnis

  1. Zeitschriftenartikel

Auswahl der wissenschaftlichen Literatur zum Thema „Fast Boundary Element Methods“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fast Boundary Element Methods" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Fast Boundary Element Methods"

1

Kravčenko, Michal, Michal Merta, and Jan Zapletal. "Distributed fast boundary element methods for Helmholtz problems." Applied Mathematics and Computation 362 (December 2019): 124503. http://dx.doi.org/10.1016/j.amc.2019.06.017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gumerov, Nail A., and Ramani Duraiswami. "Fast multipole accelerated boundary element methods for room acoustics." Journal of the Acoustical Society of America 150, no. 3 (2021): 1707–20. http://dx.doi.org/10.1121/10.0006102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Of, G., O. Steinbach, and P. Urthaler. "Fast Evaluation of Volume Potentials in Boundary Element Methods." SIAM Journal on Scientific Computing 32, no. 2 (2010): 585–602. http://dx.doi.org/10.1137/080744359.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Harbrecht, H., and M. Peters. "Comparison of fast boundary element methods on parametric surfaces." Computer Methods in Applied Mechanics and Engineering 261-262 (July 2013): 39–55. http://dx.doi.org/10.1016/j.cma.2013.03.022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gumerov, Nail, and Ramani Duraiswami. "Simulations of room acoustics using fast multipole boundary element methods." Journal of the Acoustical Society of America 148, no. 4 (2020): 2693–94. http://dx.doi.org/10.1121/1.5147458.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

MUKHERJEE, SUBRATA, and YIJUN LIU. "THE BOUNDARY ELEMENT METHOD." International Journal of Computational Methods 10, no. 06 (2013): 1350037. http://dx.doi.org/10.1142/s0219876213500370.

Der volle Inhalt der Quelle
Annotation:
The boundary element method (BEM), along with the finite element and finite difference methods, is commonly used to carry out numerical simulations in a wide variety of subjects in science and engineering. The BEM, rooted in classical mathematics of integral equations, started becoming a useful computational tool around 50 years ago. Many researchers have worked on computational aspects of this method during this time.This paper presents an overview of the BEM and related methods. It has three sections. The first, relatively short section, presents the governing equations for classical applica
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dargush, G. F., and M. M. Grigoriev. "Fast and Accurate Solutions of Steady Stokes Flows Using Multilevel Boundary Element Methods." Journal of Fluids Engineering 127, no. 4 (2005): 640–46. http://dx.doi.org/10.1115/1.1949648.

Der volle Inhalt der Quelle
Annotation:
Most recently, we have developed a novel multilevel boundary element method (MLBEM) for steady Stokes flows in irregular two-dimensional domains (Grigoriev, M.M., and Dargush, G.F., Comput. Methods. Appl. Mech. Eng., 2005). The multilevel algorithm permitted boundary element solutions with slightly over 16,000 degrees of freedom, for which approximately 40-fold speedups were demonstrated for the fast MLBEM algorithm compared to a conventional Gauss elimination approach. Meanwhile, the sevenfold memory savings were attained for the fast algorithm. This paper extends the MLBEM methodology to dra
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

van 't Wout, Elwin, Reza Haqshenas, Pierre Gélat, and Nader Saffari. "Fast and accurate boundary element methods for large-scale computational acoustics." Journal of the Acoustical Society of America 154, no. 4_supplement (2023): A179. http://dx.doi.org/10.1121/10.0023190.

Der volle Inhalt der Quelle
Annotation:
The boundary element method (BEM) is a powerful algorithm to solve the Helmholtz equation for harmonic acoustic waves. The explicit use of Green’s functions avoids domain truncation of unbounded regions and accurately models wave propagation through homogeneous materials. Furthermore, fast multipole and hierarchical compression techniques provide efficient computations for dense matrix multiplications. However, the convergence of the iterative linear solvers deteriorates significantly when frequencies are high or materials have large contrasts in density or speed of sound. This talk presents s
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Newman, J. N., and C. H. Lee. "Boundary-Element Methods In Offshore Structure Analysis." Journal of Offshore Mechanics and Arctic Engineering 124, no. 2 (2002): 81–89. http://dx.doi.org/10.1115/1.1464561.

Der volle Inhalt der Quelle
Annotation:
Boundary-element methods, also known as panel methods, have been widely used for computations of wave loads and other hydrodynamic characteristics associated with the interactions of offshore structures with waves. In the conventional approach, based on the low-order panel method, the submerged surface of the structure is represented by a large number of small quadrilateral plane elements, and the solution for the velocity potential or source strength is approximated by a constant value on each element. In this paper, we describe two recent developments of the panel method. One is a higher-ord
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Chen, Leilei, Steffen Marburg, Wenchang Zhao, Cheng Liu, and Haibo Chen. "Implementation of Isogeometric Fast Multipole Boundary Element Methods for 2D Half-Space Acoustic Scattering Problems with Absorbing Boundary Condition." Journal of Theoretical and Computational Acoustics 27, no. 02 (2019): 1850024. http://dx.doi.org/10.1142/s259172851850024x.

Der volle Inhalt der Quelle
Annotation:
Isogeometric Analysis (IGA), which tries to bridge the gap between Computer Aided Engineering (CAE) and Computer Aided Design (CAD), has been widely proposed in recent research. According to the concept of IGA, this work develops a boundary element method (BEM) using non-Uniform Rational B-Splines (NURBS) as basis functions for the 2D half-space acoustic problems with absorbing boundary condition. Fast multipole method (FMM) is applied to accelerate the solution of an isogeometric BEM (IGA-BEM). Several examples are tested and it is shown that this advancement on isogeometric fast multipole bo
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!