Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Fast Boundary Element Methods“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fast Boundary Element Methods" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Fast Boundary Element Methods"
Kravčenko, Michal, Michal Merta und Jan Zapletal. „Distributed fast boundary element methods for Helmholtz problems“. Applied Mathematics and Computation 362 (Dezember 2019): 124503. http://dx.doi.org/10.1016/j.amc.2019.06.017.
Der volle Inhalt der QuelleGumerov, Nail A., und Ramani Duraiswami. „Fast multipole accelerated boundary element methods for room acoustics“. Journal of the Acoustical Society of America 150, Nr. 3 (September 2021): 1707–20. http://dx.doi.org/10.1121/10.0006102.
Der volle Inhalt der QuelleOf, G., O. Steinbach und P. Urthaler. „Fast Evaluation of Volume Potentials in Boundary Element Methods“. SIAM Journal on Scientific Computing 32, Nr. 2 (Januar 2010): 585–602. http://dx.doi.org/10.1137/080744359.
Der volle Inhalt der QuelleHarbrecht, H., und M. Peters. „Comparison of fast boundary element methods on parametric surfaces“. Computer Methods in Applied Mechanics and Engineering 261-262 (Juli 2013): 39–55. http://dx.doi.org/10.1016/j.cma.2013.03.022.
Der volle Inhalt der QuelleGumerov, Nail, und Ramani Duraiswami. „Simulations of room acoustics using fast multipole boundary element methods“. Journal of the Acoustical Society of America 148, Nr. 4 (Oktober 2020): 2693–94. http://dx.doi.org/10.1121/1.5147458.
Der volle Inhalt der QuelleMUKHERJEE, SUBRATA, und YIJUN LIU. „THE BOUNDARY ELEMENT METHOD“. International Journal of Computational Methods 10, Nr. 06 (02.05.2013): 1350037. http://dx.doi.org/10.1142/s0219876213500370.
Der volle Inhalt der QuelleDargush, G. F., und M. M. Grigoriev. „Fast and Accurate Solutions of Steady Stokes Flows Using Multilevel Boundary Element Methods“. Journal of Fluids Engineering 127, Nr. 4 (23.02.2005): 640–46. http://dx.doi.org/10.1115/1.1949648.
Der volle Inhalt der Quellevan 't Wout, Elwin, Reza Haqshenas, Pierre Gélat und Nader Saffari. „Fast and accurate boundary element methods for large-scale computational acoustics“. Journal of the Acoustical Society of America 154, Nr. 4_supplement (01.10.2023): A179. http://dx.doi.org/10.1121/10.0023190.
Der volle Inhalt der QuelleNewman, J. N., und C. H. Lee. „Boundary-Element Methods In Offshore Structure Analysis“. Journal of Offshore Mechanics and Arctic Engineering 124, Nr. 2 (11.04.2002): 81–89. http://dx.doi.org/10.1115/1.1464561.
Der volle Inhalt der QuelleChen, Leilei, Steffen Marburg, Wenchang Zhao, Cheng Liu und Haibo Chen. „Implementation of Isogeometric Fast Multipole Boundary Element Methods for 2D Half-Space Acoustic Scattering Problems with Absorbing Boundary Condition“. Journal of Theoretical and Computational Acoustics 27, Nr. 02 (Juni 2019): 1850024. http://dx.doi.org/10.1142/s259172851850024x.
Der volle Inhalt der QuelleDissertationen zum Thema "Fast Boundary Element Methods"
NOVELINO, LARISSA SIMOES. „APPLICATION OF FAST MULTIPOLE TECHNIQUES IN THE BOUNDARY ELEMENT METHODS“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=37003@1.
Der volle Inhalt der QuelleCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Este trabalho visa à implementação de um programa de elementos de contorno para problemas com milhões de graus de liberdade. Isto é obtido com a implementação do Método Fast Multipole (FMM), que pode reduzir o número de operações, para a solução de um problema com N graus de liberdade, de O(N(2)) para O(NlogN) ou O(N). O uso de memória também é reduzido, por não haver o armazenamento de matrizes de grandes dimensões como no caso de outros métodos numéricos. A implementação proposta é baseada em um desenvolvimento consistente do convencional, Método de colocação dos elementos de contorno (BEM) – com conceitos provenientes do Hibrido BEM – para problemas de potencial e elasticidade de larga escala em 2D e 3D. A formulação é especialmente vantajosa para problemas de topologia complicada ou que requerem soluções fundamentais complicadas. A implementação apresentada, usa um esquema para expansões de soluções fundamentais genéricas em torno de níveis hierárquicos de polos campo e fonte, tornando o FMM diretamente aplicável para diferentes soluções fundamentais. A árvore hierárquica dos polos é construída a partir de um conceito topológico de superelementos dentro de superelementos. A formulação é inicialmente acessada e validada em termos de um problema de potencial 2D. Como resolvedores iterativos não são necessários neste estágio inicial de simulação numérica, podese acessar a eficiência relativa à implementação do FMM.
This work aims to present an implementation of a boundary element solver for problems with millions of degrees of freedom. This is achieved through a Fast Multipole Method (FMM) implementation, which can lower the number of operations for solving a problem, with N degrees of freedom, from O(N(2)) to O(NlogN) or O(N). The memory usage is also very small, as there is no need to store large matrixes such as required by other numerical methods. The proposed implementations are based on a consistent development of the conventional, collocation boundary element method (BEM) - with concepts taken from the variationally-based hybrid BEM - for large-scale 2D and 3D problems of potential and elasticity. The formulation is especially advantageous for problems of complicated topology or requiring complicated fundamental solutions. The FMM implementation presented in this work uses a scheme for expansions of a generic fundamental solution about hierarchical levels of source and field poles. This makes the FMM directly applicable to different kinds of fundamental solutions. The hierarchical tree of poles is built upon a topological concept of superelements inside superelements. The formulation is initially assessed and validated in terms of a simple 2D potential problem. Since iterative solvers are not required in this first step of numerical simulations, an isolated efficiency assessment of the implemented fast multipole technique is possible.
Bapat, Milind S. „New Developments in Fast Boundary Element Method“. University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1331296947.
Der volle Inhalt der QuelleDing, Jian. „Fast boundary element method solutions for three dimensional large scale problems“. Available online, Georgia Institute of Technology, 2005, 2004. http://etd.gatech.edu/theses/available/etd-01102005-174227/unrestricted/ding%5Fjian%5F200505%5Fphd.pdf.
Der volle Inhalt der QuelleMucha, Peter, Committee Member ; Qu, Jianmin, Committee Member ; Ye, Wenjing, Committee Chair ; Hesketh, Peter, Committee Member ; Gray, Leonard J., Committee Member. Vita. Includes bibliographical references.
Bagur, Laura. „Modeling fluid injection effects in dynamic fault rupture using Fast Boundary Element Methods“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAE010.
Der volle Inhalt der QuelleEarthquakes due to either natural or anthropogenic sources cause important human and material damage. In both cases, the presence of pore fluids influences the triggering of seismic instabilities.A new and timely question in the community is to show that the earthquake instability could be mitigated by active control of the fluid pressure. In this work, we study the ability of Fast Boundary Element Methods (Fast BEMs) to provide a multi-physic large-scale robust solver required for modeling earthquake processes, human induced seismicity and their mitigation.In a first part, a Fast BEM solver with different temporal integration algorithms is used. We assess the performances of various possible adaptive time-step methods on the basis of 2D seismic cycle benchmarks available for planar faults. We design an analytical aseismic solution to perform convergence studies and provide a rigorous comparison of the capacities of the different solving methods in addition to the seismic cycles benchmarks tested. We show that a hybrid prediction-correction / adaptive time-step Runge-Kutta method allows not only for an accurate solving but also to incorporate both inertial effects and hydro-mechanical couplings in dynamic fault rupture simulations.In a second part, once the numerical tools are developed for standard fault configurations, our objective is to take into account fluid injection effects on the seismic slip. We choose the poroelastodynamic framework to incorporate injection effects on the earthquake instability. A complete poroelastodynamic model would require non-negligible computational costs or approximations. We justify rigorously which predominant fluid effects are at stake during an earthquake or a seismic cycle. To this aim, we perform a dimensional analysis of the equations, and illustrate the results using a simplified 1D poroelastodynamic problem. We formally show that at the timescale of the earthquake instability, inertial effects are predominant whereas a combination of diffusion and elastic deformation due to pore pressure change should be privileged at the timescale of the seismic cycle, instead of the diffusion model mainly used in the literature
SHEN, LIANG. „ADAPTIVE FAST MULTIPOLE BOUNDARY ELEMENT METHODS FOR THREE-DIMENSIONAL POTENTIAL AND ACOUSTIC WAVE PROBLEMS“. University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1193706024.
Der volle Inhalt der QuelleMITRA, KAUSIK PRADIP. „APPLICATION OF MULTIPOLE EXPANSIONS TO BOUNDARY ELEMENT METHOD“. University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1026411773.
Der volle Inhalt der QuelleRahman, Mizanur. „Fast boundary element methods for integral equations on infinite domains and scattering by unbounded surfaces“. Thesis, Brunel University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324648.
Der volle Inhalt der QuelleDing, Jian. „Fast Boundary Element Method Solutions For Three Dimensional Large Scale Problems“. Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6830.
Der volle Inhalt der QuelleGrasso, Eva. „Modelling visco-elastic seismic wave propagation : a fast-multipole boundary element method and its coupling with finite elements“. Phd thesis, Université Paris-Est, 2012. http://tel.archives-ouvertes.fr/tel-00730752.
Der volle Inhalt der QuelleBAPAT, MILIND SHRIKANT. „FAST MULTIPOLE BOUNDARY ELEMENT METHOD FOR SOLVING TWO-DIMENSIONAL ACOUSTIC WAVE PROBLEMS“. University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1163773308.
Der volle Inhalt der QuelleBücher zum Thema "Fast Boundary Element Methods"
Liu, Yijun. Fast multipole boundary element method: Theory and applications in engineering. Cambridge: Cambridge University Press, 2009.
Den vollen Inhalt der Quelle findenLanger, Ulrich, Martin Schanz, Olaf Steinbach und Wolfgang L. Wendland, Hrsg. Fast Boundary Element Methods in Engineering and Industrial Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25670-7.
Der volle Inhalt der QuelleLanger, Ulrich. Fast Boundary Element Methods in Engineering and Industrial Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Den vollen Inhalt der Quelle findenBond, Dave M. Fast wavelet transforms for matrices arising from boundary element methods. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1994.
Den vollen Inhalt der Quelle findenSauter, Stefan A., und Christoph Schwab. Boundary Element Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-68093-2.
Der volle Inhalt der QuelleKobayashi, S., und N. Nishimura, Hrsg. Boundary Element Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-06153-4.
Der volle Inhalt der QuelleGwinner, Joachim, und Ernst Peter Stephan. Advanced Boundary Element Methods. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92001-6.
Der volle Inhalt der QuelleCruse, Thomas A., Hrsg. Advanced Boundary Element Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83003-7.
Der volle Inhalt der QuelleAnnigeri, Balkrishna S., und Kadin Tseng, Hrsg. Boundary Element Methods in Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84238-2.
Der volle Inhalt der QuelleSubrata, Mukherjee, Hrsg. Boundary element methods in manufacturing. New York: Oxford University Press, 1997.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Fast Boundary Element Methods"
Fu, Y., J. R. Overfelt und G. J. Rodin. „Fast Summation Methods and Integral Equations“. In Mathematical Aspects of Boundary Element Methods, 128–39. Boca Raton: Chapman and Hall/CRC, 2024. http://dx.doi.org/10.1201/9780429332449-11.
Der volle Inhalt der QuelleGrzhibovskis, Richards, Christian Michel und Sergej Rjasanow. „Fast Boundary Element Methods for Composite Materials“. In Multi-scale Simulation of Composite Materials, 97–141. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-57957-2_5.
Der volle Inhalt der QuelleBonnet, Marc, Stéphanie Chaillat und Jean-François Semblat. „Multi-Level Fast Multipole BEM for 3-D Elastodynamics“. In Recent Advances in Boundary Element Methods, 15–27. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9710-2_2.
Der volle Inhalt der QuelleYao, Zhenhan. „Some Investigations of Fast Multipole BEM in Solid Mechanics“. In Recent Advances in Boundary Element Methods, 433–49. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9710-2_28.
Der volle Inhalt der QuelleYu, Wenjian, und Xiren Wang. „Fast Boundary Element Methods for Capacitance Extraction (I)“. In Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits, 19–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54298-5_3.
Der volle Inhalt der QuelleYu, Wenjian, und Xiren Wang. „Fast Boundary Element Methods for Capacitance Extraction (II)“. In Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits, 39–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54298-5_4.
Der volle Inhalt der QuelleLiu, Yijun, Liang Shen und Milind Bapat. „Development of the Fast Multipole Boundary Element Method for Acoustic Wave Problems“. In Recent Advances in Boundary Element Methods, 287–303. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9710-2_19.
Der volle Inhalt der QuelleFrangi, Attilio. „Fast Stokes Solvers for MEMS“. In Fast Boundary Element Methods in Engineering and Industrial Applications, 221–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25670-7_7.
Der volle Inhalt der QuelleTausch, Johannes. „Fast Nyström Methods for Parabolic Boundary Integral Equations“. In Fast Boundary Element Methods in Engineering and Industrial Applications, 185–219. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25670-7_6.
Der volle Inhalt der QuelleDondero, Marco, Adrián P. Cisilino, Alexis Rodriguez Carranza und Georgios Stavroulakis. „Fast Multipole BEM and Genetic Algorithms for the Design of Foams with Functional-Graded Thermal Conductivity“. In Recent Advances in Boundary Element Methods, 57–70. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9710-2_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Fast Boundary Element Methods"
Zuccotti, A., und K. Cools. „Fast and Accurate Time Domain Solver Based on the Exact Calculation of Matrix Entries in Boundary Element Method for Scalar Wave Scattering“. In 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), 1329–30. IEEE, 2024. http://dx.doi.org/10.1109/ap-s/inc-usnc-ursi52054.2024.10686669.
Der volle Inhalt der QuellePtaszny, Jacek. „Parallel fast multipole boundary element method applied to computational homogenization“. In COMPUTER METHODS IN MECHANICS (CMM2017): Proceedings of the 22nd International Conference on Computer Methods in Mechanics. Author(s), 2018. http://dx.doi.org/10.1063/1.5019145.
Der volle Inhalt der QuelleHardesty, Sean. „Approximate Shape Gradients with Boundary Element Methods.“ In Proposed for presentation at the Workshop on Fast Boundary Element Methods in Industrial Applications held October 13-16, 2022 in Hirschegg, Vorarlberg Austria. US DOE, 2022. http://dx.doi.org/10.2172/2005357.
Der volle Inhalt der QuelleB, Dias Júnior, A., und Albuquerque, E. L. „The Fast Multipole Boundary Element Method for plane anisotropic problems“. In XXXVIII Iberian-Latin American Congress on Computational Methods in Engineering. Florianopolis, Brazil: ABMEC Brazilian Association of Computational Methods in Engineering, 2017. http://dx.doi.org/10.20906/cps/cilamce2017-0623.
Der volle Inhalt der QuelleBastos, Emerson, Éder Lima de Albuquerque und Lucas Silveira Campos. „A Fast Multipole Boundary Element Code Written in Julia Language“. In XXXVIII Iberian-Latin American Congress on Computational Methods in Engineering. Florianopolis, Brazil: ABMEC Brazilian Association of Computational Methods in Engineering, 2017. http://dx.doi.org/10.20906/cps/cilamce2017-1262.
Der volle Inhalt der QuelleSchanz, M. „Fast Multipole Accelerated Boundary Element Method for Poroelastodynamics“. In Sixth Biot Conference on Poromechanics. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480779.210.
Der volle Inhalt der QuelleOstanin, I., A. Mikhalev, D. Zorin und I. Oseledets. „Engineering optimization with the fast boundary element method“. In BEM/MRM 38. Southampton, UK: WIT Press, 2015. http://dx.doi.org/10.2495/bem380141.
Der volle Inhalt der QuelleAbboud, Toufic, und Denis Barbier. „Hi-BoX: A generic library of fast solvers for boundary element methods“. In 2016 IEEE Conference on Antenna Measurements & Applications (CAMA). IEEE, 2016. http://dx.doi.org/10.1109/cama.2016.7815803.
Der volle Inhalt der QuelleAl-Jelawy, Sarah, Hayder Al-Jelawy, Zaid Al-Fuhami und Rasha Rahman. „A theoretical and computational study into essential fast multipole boundary element methods (BEM)“. In THE FOURTH AL-NOOR INTERNATIONAL CONFERENCE FOR SCIENCE AND TECHNOLOGY (4NICST2022). AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0202186.
Der volle Inhalt der QuelleGrigoriev, M. M., und G. F. Dargush. „A Fast Multi-Level Boundary Element Method for the Steady Heat Diffusion Equation“. In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47450.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Fast Boundary Element Methods"
Masumoto, Takayuki. The Effect of Applying the Multi-Level Fast Multipole Algorithm to the Boundary Element Method. Warrendale, PA: SAE International, September 2005. http://dx.doi.org/10.4271/2005-08-0589.
Der volle Inhalt der QuelleGRIFFITH, RICHARD O., und KENNETH K. MURATA. Proposed Extension of FETI Methods to the Boundary Element Technique. Office of Scientific and Technical Information (OSTI), Oktober 2001. http://dx.doi.org/10.2172/787646.
Der volle Inhalt der QuelleGray, L. J. (Environmental and geophysical modeling, fracture mechanics, and boundary element methods). Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6369024.
Der volle Inhalt der QuelleT.F. Eibert, J.L. Volakis und Y.E. Erdemli. Hybrid Finite Element-Fast Spectral Domain Multilayer Boundary Integral Modeling of Doubly Periodic Structures. Office of Scientific and Technical Information (OSTI), März 2002. http://dx.doi.org/10.2172/821699.
Der volle Inhalt der QuelleBabuska, I., B. Q. Guo und E. P. Stephan. On the Exponential Convergence of the h-p Version for Boundary Element Galerkin Methods on Polygons. Fort Belvoir, VA: Defense Technical Information Center, Mai 1989. http://dx.doi.org/10.21236/ada215814.
Der volle Inhalt der QuelleTrahan, Corey, Jing-Ru Cheng und Amanda Hines. ERDC-PT : a multidimensional particle tracking model. Engineer Research and Development Center (U.S.), Januar 2023. http://dx.doi.org/10.21079/11681/48057.
Der volle Inhalt der QuelleZhao, George, Grang Mei, Bulent Ayhan, Chiman Kwan und Venu Varma. DTRS57-04-C-10053 Wave Electromagnetic Acoustic Transducer for ILI of Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), März 2005. http://dx.doi.org/10.55274/r0012049.
Der volle Inhalt der Quelle