Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: FAPbBr3.

Zeitschriftenartikel zum Thema „FAPbBr3“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "FAPbBr3" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Joo, Sung Hwan, Chung Wung Bark und Hyung Wook Choi. „Enhancement of Perovskite Solar-Cell Efficiency Using FAPbBr3/I3 with Methylammonium Chloride“. Journal of Nanoelectronics and Optoelectronics 16, Nr. 6 (01.06.2021): 879–83. http://dx.doi.org/10.1166/jno.2021.3015.

Der volle Inhalt der Quelle
Annotation:
Organic/inorganic metal halide formamidinium lead iodide (FAPbI3) perovskites exhibit excellent optical properties, a suitable band gap, a wide light-absorption range, and superior electron-hole mobility. However, it is difficult to fabricate high-quality α-phase FAPbI3 film due to the relatively easy formation of the more stable δ-FAPbI3 (hexagonal structure). To overcome this, in this study, formamidinium lead bromide (FAPbBr3) was used to induce the synthesis of stable α-phase FAPbI3. The resulting light-absorbing layer was composed of (FAPbI3)0.95 (FAPbBr3)0.05, but δ-phase FAPbI3 could be still observed. To suppress the formation of δ-phase FAPbI3 , methylammonium chloride (MACl) was added to the (FAPbI3)0.95 (FAPbBr3)0.05 precursor solution. At an optimal MACl content of 40 mol%, perovskites with improved crystallinity and large crystallite size could be fabricated, resulting in a perovskite solar-cell efficiency of 18.204%.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhang, Menglong, Weizhe Wang, Fangliang Gao und Dongxiang Luo. „g-C3N4-Stabilised Organic–Inorganic Halide Perovskites for Efficient Photocatalytic Selective Oxidation of Benzyl Alcohol“. Catalysts 11, Nr. 4 (16.04.2021): 505. http://dx.doi.org/10.3390/catal11040505.

Der volle Inhalt der Quelle
Annotation:
The outstanding optoelectronic performance and facile synthetic approach of metal halide perovskites has inspired additional applications well beyond efficient solar cells and light emitting diodes (LEDs). Herein, we present an alternative option available for the optimisation of selective and efficient oxidation of benzylic alcohols through photocatalysis. The materials engineering of hybrids based on formamidine lead bromide (FAPbBr3) and graphic carbon nitride (g-C3N4) is achieved via facile anti-solvent approach. The photocatalytic performance of the hybrids is highly reliant on weight ratio between FAPbBr3 and g-C3N4. Besides, the presence of g-C3N4 dramatically enhances the long-term stability of the hybrids, compared to metal oxides hybrids. Detailed optical, electrical and thermal studies reveal the proposed novel photocatalytic and stability behaviours arising in FAPbBr3 and g-C3N4 hybrid materials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Li, Miaozi, Juanhong Wang, Chaohuang Mai, Yangke Cun, Binbin Zhang, Guohui Huang, Danmu Yu et al. „Bifacial passivation towards efficient FAPbBr3-based inverted perovskite light-emitting diodes“. Nanoscale 12, Nr. 27 (2020): 14724–32. http://dx.doi.org/10.1039/d0nr02323j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Franz, Alexandra, Daniel M. Többens, Frederike Lehmann, Martin Kärgell und Susan Schorr. „The influence of deuteration on the crystal structure of hybrid halide perovskites: a temperature-dependent neutron diffraction study of FAPbBr3“. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 76, Nr. 2 (20.03.2020): 267–74. http://dx.doi.org/10.1107/s2052520620002620.

Der volle Inhalt der Quelle
Annotation:
This paper discusses the full structural solution of the hybrid perovskite formamidinium lead tribromide (FAPbBr3) and its temperature-dependent phase transitions in the range from 3 K to 300 K using neutron powder diffraction and synchrotron X-ray diffraction. Special emphasis is put on the influence of deuteration on formamidinium, its position in the unit cell and disordering in comparison to fully hydrogenated FAPbBr3. The temperature-dependent measurements show that deuteration critically influences the crystal structures, i.e. results in partially-ordered temperature-dependent structural modifications in which two symmetry-independent molecule positions with additional dislocation of the molecular centre atom and molecular angle inclinations are present.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Tjahjana, Liliana, Kwan Lee, Xin Yu Chin, Landobasa Y. M. Tobing, Gede W. P. Adhyaksa, Dao Hua Zhang, Muhammad Danang Birowosuto und Hong Wang. „Controlling Spontaneous Emission from Perovskite Nanocrystals with Metal–Emitter–Metal Nanostructures“. Crystals 11, Nr. 1 (22.12.2020): 1. http://dx.doi.org/10.3390/cryst11010001.

Der volle Inhalt der Quelle
Annotation:
We show the increase of the photoluminescence intensity ratio (PLR) and the emission rate enhancement of perovskite cesium lead bromide (CsPbBr3) and formamidinium lead bromide (FAPbBr3) nanocrystals (NCs) in the presence of single and double gold layer cavities, which we refer to as Metal-Emitter (ME) and Metal-Emitter-Metal (MEM) nanostructures. Up to 1.9-fold PLRs and up to 5.4-fold emission rate enhancements were obtained for FAPbBr3 NCs confined by double gold layers, which are attributed to plasmonic confinement from the gold layers. The experimentally obtained values are validated by analytical calculations and electromagnetic simulations. Such an effective method of manipulation of the spontaneous emission by simple plasmonic nanostructures can be utilized in sensing and detection applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Liu, Jinqiu, Fengrui Hu, Yong Zhou, Chunfeng Zhang, Xiaoyong Wang und Min Xiao. „Polarized emission from single perovskite FAPbBr3 nanocrystals“. Journal of Luminescence 221 (Mai 2020): 117032. http://dx.doi.org/10.1016/j.jlumin.2020.117032.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Rubino, Andrea, Tahiyat Huq, Jakub Dranczewski, Gabriel Lozano, Mauricio E. Calvo, Stefano Vezzoli, Hernán Míguez und Riccardo Sapienza. „Efficient third harmonic generation from FAPbBr3 perovskite nanocrystals“. Journal of Materials Chemistry C 8, Nr. 45 (2020): 15990–95. http://dx.doi.org/10.1039/d0tc04790b.

Der volle Inhalt der Quelle
Annotation:
Experimental evidence and characterization of nonlinear third harmonic generation from hybrid FAPbBr3 perovskite nanocrystals embedded in a porous thin film demonstrate a new potential application of these semiconductors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Paul, Tufan, Soumen Maiti, Upasana Mukherjee, Suvankar Mondal, Aditi Sahoo und Kalyan Kumar Chattopadhyay. „Cube shaped FAPbBr3 for piezoelectric energy harvesting devices“. Materials Letters 301 (Oktober 2021): 130264. http://dx.doi.org/10.1016/j.matlet.2021.130264.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Liu, Zhenjie, Xulan Xue, Zhihui Kang, Rong Wang, Han Zhang und Wenyu Ji. „Achieving high-performance in situ fabricated FAPbBr3 and electroluminescence“. Optics Letters 46, Nr. 17 (30.08.2021): 4378. http://dx.doi.org/10.1364/ol.439183.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zhang, Yongfei, Yongqi Liang, Yajuan Wang, Fengwan Guo, Licheng Sun und Dongsheng Xu. „Planar FAPbBr3 Solar Cells with Power Conversion Efficiency above 10%“. ACS Energy Letters 3, Nr. 8 (02.07.2018): 1808–14. http://dx.doi.org/10.1021/acsenergylett.8b00540.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Li, Yulu, Tao Ding, Xiao Luo, Yuyang Tian, Xin Lu und Kaifeng Wu. „Synthesis and Spectroscopy of Monodispersed, Quantum-Confined FAPbBr3 Perovskite Nanocrystals“. Chemistry of Materials 32, Nr. 1 (09.12.2019): 549–56. http://dx.doi.org/10.1021/acs.chemmater.9b04297.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Migunov, D., K. Eidelman, A. Kozmin, D. Saranin, I. Ermanova, D. Gudkov und A. Alekseev. „Atomic Force Microscopy Study of Cross-Sections of Perovskite Layers“. Eurasian Chemico-Technological Journal, Nr. 1 (20.02.2019): 83. http://dx.doi.org/10.18321/ectj795.

Der volle Inhalt der Quelle
Annotation:
Improvement of methods for imaging of the volume structure of photoactive layers is one of the important directions towards development of highly efficient solar cells. In particular, volume structure of photoactive layer has critical influence on perovskite solar cell performance and life time. In this study, a perovskite photoactive layer cross-section was prepared by using Focused Ion Beam (FIB) and imaged by Atomic Force Microscopy (AFM) methods. The proposed approach allows using advances of AFM for imaging structure of perovskites in volume. Two different types of perovskite layers was investigated: FAPbBr3 and MAPbBr3. The heterogeneous structure inside film, which consist of large crystals penetrating the film as well as small particles with sizes of several tens nanometers, is typical for FAPbBr3. The ordered nanocrystalline structure with nanocrystals oriented at 45 degree to film surface is observed in MAPbBr3. An optimized sample preparation route, which includes FIB surface polishing by low energy Ga ions at the angles around 10 degree to surface plane, is described and optimal parameters of surface treatment are discussed. Use of AFM phase contrast method provides high contrast imaging of perovskite structure due to strong dependence of phase shift of oscillating probe on materials properties. The described method of imaging can be used for controllable tuning of perovskite structure by changes of the sample preparation routes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Liu, Guozhen, Haiying Zheng, Liangzheng Zhu, Ahmed Alsaedi, Tasawar Hayat, Xu Pan, Li'e Mo und Songyuan Dai. „Adjusting the Introduction of Cations for Highly Efficient and Stable Perovskite Solar Cells Based on (FAPbI3 )0.9 (FAPbBr3 )0.1“. ChemSusChem 11, Nr. 14 (03.07.2018): 2436–43. http://dx.doi.org/10.1002/cssc.201800658.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Wang, Xiaozhe, Qi Wang, Zhijun Chai und Wenzhi Wu. „The thermal stability of FAPbBr3 nanocrystals from temperature-dependent photoluminescence and first-principles calculations“. RSC Advances 10, Nr. 72 (2020): 44373–81. http://dx.doi.org/10.1039/d0ra07668f.

Der volle Inhalt der Quelle
Annotation:
The thermal properties of FAPbBr3 perovskite nanocrystals (PNCs) is investigated by use of temperature-dependent steady-state/time-resolved photoluminescence and first-principle calculations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Mannino, Giovanni, Ioannis Deretzis, Emanuele Smecca, Antonino La Magna, Alessandra Alberti, Davide Ceratti und David Cahen. „Temperature-Dependent Optical Band Gap in CsPbBr3, MAPbBr3, and FAPbBr3 Single Crystals“. Journal of Physical Chemistry Letters 11, Nr. 7 (09.03.2020): 2490–96. http://dx.doi.org/10.1021/acs.jpclett.0c00295.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Zhang, Feng, Mengna Sun, Xiyu Luo, Dongdong Zhang und Lian Duan. „Modulation of ligand conjugation for efficient FAPbBr3 based green light-emitting diodes“. Materials Chemistry Frontiers 4, Nr. 5 (2020): 1383–89. http://dx.doi.org/10.1039/c9qm00768g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Patra, Avijit, Suman Bera, Diptam Nasipuri, Sumit Kumar Dutta und Narayan Pradhan. „Tuning Facets and Controlling Monodispersity in Organic–Inorganic Hybrid Perovskite FAPbBr3 Nanocrystals“. ACS Energy Letters 6, Nr. 8 (07.07.2021): 2682–89. http://dx.doi.org/10.1021/acsenergylett.1c01108.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Tong, Yu-Long, Ya-Wen Zhang, Kangzhe Ma, Rui Cheng, Fengxiang Wang und Su Chen. „One-Step Synthesis of FA-Directing FAPbBr3 Perovskite Nanocrystals toward High-Performance Display“. ACS Applied Materials & Interfaces 10, Nr. 37 (28.08.2018): 31603–9. http://dx.doi.org/10.1021/acsami.8b10366.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Ying, Hangkai, Yifan Liu, Yuxi Dou, Jibo Zhang, Zhenli Wu, Qi Zhang, Yi-Bing Cheng und Jie Zhong. „Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells“. Frontiers of Optoelectronics 13, Nr. 3 (20.07.2020): 272–81. http://dx.doi.org/10.1007/s12200-020-1031-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Chen, Lung-Chien, Kuan-Lin Lee, Ching-Ho Tien und Hsiang-Yu Wei. „FAPbBr3−xIx perovskite quantum dots red Light-Emitting diodes with double confinement layer structure“. Materials Science and Engineering: B 264 (Februar 2021): 114969. http://dx.doi.org/10.1016/j.mseb.2020.114969.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Sui, Laizhi, Guangming Niu, Jutao Jiang, Qingyi Li, Yutong Zhang, Guorong Wu, Feiming Li und Kaijun Yuan. „Pressure Engineered Optical Properties and Carrier Dynamics of FAPbBr3 Nanocrystals Encapsulated by Siliceous Nanosphere“. Journal of Physical Chemistry C 124, Nr. 26 (12.06.2020): 14390–99. http://dx.doi.org/10.1021/acs.jpcc.0c03676.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Sutanto, Albertus A., Valentin I. E. Queloz, Inés Garcia-Benito, Kari Laasonen, Berend Smit, Mohammad Khaja Nazeeruddin, Olga A. Syzgantseva und Giulia Grancini. „Pushing the limit of Cs incorporation into FAPbBr3 perovskite to enhance solar cells performances“. APL Materials 7, Nr. 4 (April 2019): 041110. http://dx.doi.org/10.1063/1.5087246.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Slimi, B., M. Mollar, I. Ben Assaker, A. Kriaa, R. Chtourou und Bernabé Marí. „Synthesis and characterization of perovskite FAPbBr3−x I x thin films for solar cells“. Monatshefte für Chemie - Chemical Monthly 148, Nr. 5 (28.03.2017): 835–44. http://dx.doi.org/10.1007/s00706-017-1958-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Guo, Yongchang, Bingsuo Zou, Fan Yang, Xuan Zheng, Hui Peng und Jianping Wang. „Dielectric polarization effect and transient relaxation in FAPbBr3 films before and after PMMA passivation“. Physical Chemistry Chemical Physics 23, Nr. 17 (2021): 10153–63. http://dx.doi.org/10.1039/d1cp01136g.

Der volle Inhalt der Quelle
Annotation:
In organic–inorganic hybrid lead halide perovskites with a naturally arranged layered structure, the dielectric polarization effect caused by the dielectric mismatch between the organic and inorganic layers takes effect in their optical responses.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Zhao, Haifeng, Hongting Chen, Sai Bai, Chaoyang Kuang, Xiyu Luo, Pengpeng Teng, Chunyang Yin et al. „High-Brightness Perovskite Light-Emitting Diodes Based on FAPbBr3 Nanocrystals with Rationally Designed Aromatic Ligands“. ACS Energy Letters 6, Nr. 7 (08.06.2021): 2395–403. http://dx.doi.org/10.1021/acsenergylett.1c00812.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Xu, Long, Yan Meng, Caixia Xu und Ping Chen. „Room temperature two-photon-pumped random lasers in FAPbBr3/polyethylene oxide (PEO) composite perovskite thin film“. RSC Advances 8, Nr. 64 (2018): 36910–14. http://dx.doi.org/10.1039/c8ra07452f.

Der volle Inhalt der Quelle
Annotation:
Solution-processed organic–inorganic halide lead perovskites have attracted increasing attention due to their great potential in low-cost, effective, and versatile light emission applications and large-scale portable optoelectronic devices.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Huang, Haowei, Jiwu Zhao, Yijie Du, Chen Zhou, Menglong Zhang, Zhuan Wang, Yuxiang Weng et al. „Direct Z-Scheme Heterojunction of Semicoherent FAPbBr3/Bi2WO6 Interface for Photoredox Reaction with Large Driving Force“. ACS Nano 14, Nr. 12 (23.06.2020): 16689–97. http://dx.doi.org/10.1021/acsnano.0c03146.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Subbiah, Anand S., Sumanshu Agarwal, Neha Mahuli, Pradeep Nair, Maikel van Hest und Shaibal K. Sarkar. „Stable p-i-n FAPbBr3 Devices with Improved Efficiency Using Sputtered ZnO as Electron Transport Layer“. Advanced Materials Interfaces 4, Nr. 8 (10.02.2017): 1601143. http://dx.doi.org/10.1002/admi.201601143.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Yao, Mengnan, Jizhong Jiang, Deyu Xin, Yao Ma, Wei Wei, Xiaojia Zheng und Liang Shen. „High-Temperature Stable FAPbBr3 Single Crystals for Sensitive X-ray and Visible Light Detection toward Space“. Nano Letters 21, Nr. 9 (21.04.2021): 3947–55. http://dx.doi.org/10.1021/acs.nanolett.1c00700.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Yang, Shuhui, Xi Ke, Qizan Chen, Runda Huang, Weizhe Wang, Kunqiang Wang, Kaixiang Shu et al. „In-situ growth behavior of FAPbBr3 on two-dimensional materials for photocatalytic reaction to controllable products“. Journal of Catalysis 402 (Oktober 2021): 143–53. http://dx.doi.org/10.1016/j.jcat.2021.08.034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Liu, Yawen, Byeong Jo Kim, Hua Wu, Gerrit Boschloo und Erik M. J. Johansson. „Efficient and Stable FAPbBr3 Perovskite Solar Cells via Interface Modification by a Low-Dimensional Perovskite Layer“. ACS Applied Energy Materials 4, Nr. 9 (16.09.2021): 9276–82. http://dx.doi.org/10.1021/acsaem.1c01512.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Alehdaghi, Hassan, Anil Kanwat, Mohammad Zirak, Eric Moyen, Won-Chul Choi und Jin Jang. „Quasi-2D organic cation-doped formamidinium lead bromide (FAPbBr3) perovskite light-emitting diodes by long alkyl chain“. Organic Electronics 79 (April 2020): 105626. http://dx.doi.org/10.1016/j.orgel.2020.105626.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Trinh, Cong Tai, Duong Nguyen Minh, Kwang Jun Ahn, Youngjong Kang und Kwang-Geol Lee. „Organic–Inorganic FAPbBr3 Perovskite Quantum Dots as a Quantum Light Source: Single-Photon Emission and Blinking Behaviors“. ACS Photonics 5, Nr. 12 (21.11.2018): 4937–43. http://dx.doi.org/10.1021/acsphotonics.8b01130.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Peng, Shaomin, Zuoliang Wen, Taikang Ye, Xiangtian Xiao, Kaiyang Wang, Junmin Xia, Jiayun Sun et al. „Effective Surface Ligand-Concentration Tuning of Deep-Blue Luminescent FAPbBr3 Nanoplatelets with Enhanced Stability and Charge Transport“. ACS Applied Materials & Interfaces 12, Nr. 28 (22.06.2020): 31863–74. http://dx.doi.org/10.1021/acsami.0c08552.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Li, Shuang, Changbo Deng, Lupiao Tao, Zhanpeng Lu, Wenjun Zhang und Weijie Song. „Crystallization Control and Defect Passivation via a Cross-Linking Additive for High-Performance FAPbBr3 Perovskite Solar Cells“. Journal of Physical Chemistry C 125, Nr. 23 (06.06.2021): 12551–59. http://dx.doi.org/10.1021/acs.jpcc.1c02987.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Zu, Yanqing, Jun Xi, Lu Li, Jinfei Dai, Shuangpeng Wang, Feng Yun, Bo Jiao, Hua Dong, Xun Hou und Zhaoxin Wu. „High-Brightness and Color-Tunable FAPbBr3 Perovskite Nanocrystals 2.0 Enable Ultrapure Green Luminescence for Achieving Recommendation 2020 Displays“. ACS Applied Materials & Interfaces 12, Nr. 2 (23.12.2019): 2835–41. http://dx.doi.org/10.1021/acsami.9b18140.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Huo, Benjun, Jie Yang, Yao Bian, Daofu Wu, Julin Feng, Jiaer Zhou, Qiang Huang, Fan Dong und Xiaosheng Tang. „Amino-mediated anchoring of FAPbBr3 perovskite quantum dots on silica spheres for efficient visible light photocatalytic NO removal“. Chemical Engineering Journal 406 (Februar 2021): 126740. http://dx.doi.org/10.1016/j.cej.2020.126740.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Liu, Xin, Meng Xu, Yingying Hao, Jinghua Fu, Fangbao Wang, Binbin Zhang, Stephanie Bennett, Paul Sellin, Wanqi Jie und Yadong Xu. „Solution-Grown Formamidinium Hybrid Perovskite (FAPbBr3) Single Crystals for α-Particle and γ-Ray Detection at Room Temperature“. ACS Applied Materials & Interfaces 13, Nr. 13 (25.03.2021): 15383–90. http://dx.doi.org/10.1021/acsami.1c00174.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Diroll, Benjamin T., Arun Mannodi-Kanakkithodi, Maria K. Y. Chan und Richard D. Schaller. „Spectroscopic Comparison of Thermal Transport at Organic–Inorganic and Organic-Hybrid Interfaces Using CsPbBr3 and FAPbBr3 (FA = Formamidinium) Perovskite Nanocrystals“. Nano Letters 19, Nr. 11 (11.10.2019): 8155–60. http://dx.doi.org/10.1021/acs.nanolett.9b03502.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Han, Dengbao, Muhammad Imran, Mengjiao Zhang, Shuai Chang, Xian-gang Wu, Xin Zhang, Jialun Tang et al. „Efficient Light-Emitting Diodes Based on in Situ Fabricated FAPbBr3 Nanocrystals: The Enhancing Role of the Ligand-Assisted Reprecipitation Process“. ACS Nano 12, Nr. 8 (06.08.2018): 8808–16. http://dx.doi.org/10.1021/acsnano.8b05172.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Mu, Yan-Fei, Chao Zhang, Meng-Ran Zhang, Wen Zhang, Min Zhang und Tong-Bu Lu. „Direct Z-Scheme Heterojunction of Ligand-Free FAPbBr3/α-Fe2O3 for Boosting Photocatalysis of CO2 Reduction Coupled with Water Oxidation“. ACS Applied Materials & Interfaces 13, Nr. 19 (07.05.2021): 22314–22. http://dx.doi.org/10.1021/acsami.1c01718.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Mannino, Giovanni, Ioannis Deretzis, Emanuele Smecca, Filippo Giannazzo, Salvatore Valastro, Giuseppe Fisicaro, Antonino La Magna, Davide Ceratti und Alessandra Alberti. „CsPbBr3, MAPbBr3, and FAPbBr3 Bromide Perovskite Single Crystals: Interband Critical Points under Dry N2 and Optical Degradation under Humid Air“. Journal of Physical Chemistry C 125, Nr. 9 (25.02.2021): 4938–45. http://dx.doi.org/10.1021/acs.jpcc.0c10144.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Wang, Xuemei, Lei Yu, Qi Kang, Lu Chen, Yuchen Jin, Guizheng Zou und Dazhong Shen. „Enhancing electrochemiluminescence of FAPbBr3 nanocrystals by using carbon nanotubes and TiO2 nanoparticles as conductivity and co-reaction accelerator for dopamine determination“. Electrochimica Acta 360 (November 2020): 136992. http://dx.doi.org/10.1016/j.electacta.2020.136992.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Wu, Yanan, Lihui Liu, Wei Wang, Wenzhu Zhang, Hongtao Yu, Jie Qian, Yanfeng Chen et al. „Enhanced stability and performance of light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals via ligand compensation with n-octylphosphonic acid“. Journal of Materials Chemistry C 8, Nr. 29 (2020): 9936–44. http://dx.doi.org/10.1039/d0tc01694b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Li, Feiming, Lan Yang, Zhixiong Cai, Ke Wei, Fangyuan Lin, Jie You, Tian Jiang, Yiru Wang und Xi Chen. „Enhancing exciton binding energy and photoluminescence of formamidinium lead bromide by reducing its dimensions to 2D nanoplates for producing efficient light emitting diodes“. Nanoscale 10, Nr. 44 (2018): 20611–17. http://dx.doi.org/10.1039/c8nr04986f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Nguyen, Lan Anh Thi, Duong Nguyen Minh, Ye Yuan, Sudeshna Samanta, Lin Wang, Dongzhou Zhang, Naohisa Hirao, Jaeyong Kim und Youngjong Kang. „Pressure-induced fluorescence enhancement of FAαPbBr2+α composite perovskites“. Nanoscale 11, Nr. 13 (2019): 5868–73. http://dx.doi.org/10.1039/c8nr09780a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Zhang, Yukang, Chuying Wang und Zhengtao Deng. „Colloidal synthesis of monolayer-thick formamidinium lead bromide perovskite nanosheets with a lateral size of micrometers“. Chemical Communications 54, Nr. 32 (2018): 4021–24. http://dx.doi.org/10.1039/c8cc01466c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Lu, Na, Di Wang, Meina Han, Bojin Zhao, Guozheng Wu und Zhanggui Hu. „Growth of two-dimensional formamidine lead halide perovskite single-crystalline sheets and their optoelectronic properties“. Chemical Communications 57, Nr. 15 (2021): 1939–42. http://dx.doi.org/10.1039/d0cc06957d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Chen, Lung-Chien, Ching-Ho Tien, Zong-Liang Tseng und Jun-Hao Ruan. „Enhanced Efficiency of MAPbI3 Perovskite Solar Cells with FAPbX3 Perovskite Quantum Dots“. Nanomaterials 9, Nr. 1 (19.01.2019): 121. http://dx.doi.org/10.3390/nano9010121.

Der volle Inhalt der Quelle
Annotation:
We describe a method to enhance power conversion efficiency (PCE) of MAPbI3 perovskite solar cell by inserting a FAPbX3 perovskite quantum dots (QD-FAPbX3) layer. The MAPbI3 and QD-FAPbX3 layers were prepared using a simple, rapid spin-coating method in a nitrogen-filled glove box. The solar cell structure consists of ITO/PEDOT:PSS/MAPbI3/QD-FAPbX3/C60/Ag, where PEDOT:PSS, MAPbI3, QD-FAPbX3, and C60 were used as the hole transport layer, light-absorbing layer, absorption enhance layer, and electron transport layer, respectively. The MAPbI3/QD-FAPbX3 solar cells exhibit a PCE of 7.59%, an open circuit voltage (Voc) of 0.9 V, a short-circuit current density (Jsc) of 17.4 mA/cm2, and a fill factor (FF) of 48.6%, respectively.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Xu, Tianfei, Yan Meng, Miaosheng Wang, Mingxing Li, Mahshid Ahmadi, Zuhong Xiong, Shubin Yan, Ping Chen und Bin Hu. „Poly(ethylene oxide)-assisted energy funneling for efficient perovskite light emission“. Journal of Materials Chemistry C 7, Nr. 27 (2019): 8287–93. http://dx.doi.org/10.1039/c9tc01906e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie