Zeitschriftenartikel zum Thema „FAPbBr3“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "FAPbBr3" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Joo, Sung Hwan, Chung Wung Bark und Hyung Wook Choi. „Enhancement of Perovskite Solar-Cell Efficiency Using FAPbBr3/I3 with Methylammonium Chloride“. Journal of Nanoelectronics and Optoelectronics 16, Nr. 6 (01.06.2021): 879–83. http://dx.doi.org/10.1166/jno.2021.3015.
Der volle Inhalt der QuelleZhang, Menglong, Weizhe Wang, Fangliang Gao und Dongxiang Luo. „g-C3N4-Stabilised Organic–Inorganic Halide Perovskites for Efficient Photocatalytic Selective Oxidation of Benzyl Alcohol“. Catalysts 11, Nr. 4 (16.04.2021): 505. http://dx.doi.org/10.3390/catal11040505.
Der volle Inhalt der QuelleLi, Miaozi, Juanhong Wang, Chaohuang Mai, Yangke Cun, Binbin Zhang, Guohui Huang, Danmu Yu et al. „Bifacial passivation towards efficient FAPbBr3-based inverted perovskite light-emitting diodes“. Nanoscale 12, Nr. 27 (2020): 14724–32. http://dx.doi.org/10.1039/d0nr02323j.
Der volle Inhalt der QuelleFranz, Alexandra, Daniel M. Többens, Frederike Lehmann, Martin Kärgell und Susan Schorr. „The influence of deuteration on the crystal structure of hybrid halide perovskites: a temperature-dependent neutron diffraction study of FAPbBr3“. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 76, Nr. 2 (20.03.2020): 267–74. http://dx.doi.org/10.1107/s2052520620002620.
Der volle Inhalt der QuelleTjahjana, Liliana, Kwan Lee, Xin Yu Chin, Landobasa Y. M. Tobing, Gede W. P. Adhyaksa, Dao Hua Zhang, Muhammad Danang Birowosuto und Hong Wang. „Controlling Spontaneous Emission from Perovskite Nanocrystals with Metal–Emitter–Metal Nanostructures“. Crystals 11, Nr. 1 (22.12.2020): 1. http://dx.doi.org/10.3390/cryst11010001.
Der volle Inhalt der QuelleLiu, Jinqiu, Fengrui Hu, Yong Zhou, Chunfeng Zhang, Xiaoyong Wang und Min Xiao. „Polarized emission from single perovskite FAPbBr3 nanocrystals“. Journal of Luminescence 221 (Mai 2020): 117032. http://dx.doi.org/10.1016/j.jlumin.2020.117032.
Der volle Inhalt der QuelleRubino, Andrea, Tahiyat Huq, Jakub Dranczewski, Gabriel Lozano, Mauricio E. Calvo, Stefano Vezzoli, Hernán Míguez und Riccardo Sapienza. „Efficient third harmonic generation from FAPbBr3 perovskite nanocrystals“. Journal of Materials Chemistry C 8, Nr. 45 (2020): 15990–95. http://dx.doi.org/10.1039/d0tc04790b.
Der volle Inhalt der QuellePaul, Tufan, Soumen Maiti, Upasana Mukherjee, Suvankar Mondal, Aditi Sahoo und Kalyan Kumar Chattopadhyay. „Cube shaped FAPbBr3 for piezoelectric energy harvesting devices“. Materials Letters 301 (Oktober 2021): 130264. http://dx.doi.org/10.1016/j.matlet.2021.130264.
Der volle Inhalt der QuelleLiu, Zhenjie, Xulan Xue, Zhihui Kang, Rong Wang, Han Zhang und Wenyu Ji. „Achieving high-performance in situ fabricated FAPbBr3 and electroluminescence“. Optics Letters 46, Nr. 17 (30.08.2021): 4378. http://dx.doi.org/10.1364/ol.439183.
Der volle Inhalt der QuelleZhang, Yongfei, Yongqi Liang, Yajuan Wang, Fengwan Guo, Licheng Sun und Dongsheng Xu. „Planar FAPbBr3 Solar Cells with Power Conversion Efficiency above 10%“. ACS Energy Letters 3, Nr. 8 (02.07.2018): 1808–14. http://dx.doi.org/10.1021/acsenergylett.8b00540.
Der volle Inhalt der QuelleLi, Yulu, Tao Ding, Xiao Luo, Yuyang Tian, Xin Lu und Kaifeng Wu. „Synthesis and Spectroscopy of Monodispersed, Quantum-Confined FAPbBr3 Perovskite Nanocrystals“. Chemistry of Materials 32, Nr. 1 (09.12.2019): 549–56. http://dx.doi.org/10.1021/acs.chemmater.9b04297.
Der volle Inhalt der QuelleMigunov, D., K. Eidelman, A. Kozmin, D. Saranin, I. Ermanova, D. Gudkov und A. Alekseev. „Atomic Force Microscopy Study of Cross-Sections of Perovskite Layers“. Eurasian Chemico-Technological Journal, Nr. 1 (20.02.2019): 83. http://dx.doi.org/10.18321/ectj795.
Der volle Inhalt der QuelleLiu, Guozhen, Haiying Zheng, Liangzheng Zhu, Ahmed Alsaedi, Tasawar Hayat, Xu Pan, Li'e Mo und Songyuan Dai. „Adjusting the Introduction of Cations for Highly Efficient and Stable Perovskite Solar Cells Based on (FAPbI3 )0.9 (FAPbBr3 )0.1“. ChemSusChem 11, Nr. 14 (03.07.2018): 2436–43. http://dx.doi.org/10.1002/cssc.201800658.
Der volle Inhalt der QuelleWang, Xiaozhe, Qi Wang, Zhijun Chai und Wenzhi Wu. „The thermal stability of FAPbBr3 nanocrystals from temperature-dependent photoluminescence and first-principles calculations“. RSC Advances 10, Nr. 72 (2020): 44373–81. http://dx.doi.org/10.1039/d0ra07668f.
Der volle Inhalt der QuelleMannino, Giovanni, Ioannis Deretzis, Emanuele Smecca, Antonino La Magna, Alessandra Alberti, Davide Ceratti und David Cahen. „Temperature-Dependent Optical Band Gap in CsPbBr3, MAPbBr3, and FAPbBr3 Single Crystals“. Journal of Physical Chemistry Letters 11, Nr. 7 (09.03.2020): 2490–96. http://dx.doi.org/10.1021/acs.jpclett.0c00295.
Der volle Inhalt der QuelleZhang, Feng, Mengna Sun, Xiyu Luo, Dongdong Zhang und Lian Duan. „Modulation of ligand conjugation for efficient FAPbBr3 based green light-emitting diodes“. Materials Chemistry Frontiers 4, Nr. 5 (2020): 1383–89. http://dx.doi.org/10.1039/c9qm00768g.
Der volle Inhalt der QuellePatra, Avijit, Suman Bera, Diptam Nasipuri, Sumit Kumar Dutta und Narayan Pradhan. „Tuning Facets and Controlling Monodispersity in Organic–Inorganic Hybrid Perovskite FAPbBr3 Nanocrystals“. ACS Energy Letters 6, Nr. 8 (07.07.2021): 2682–89. http://dx.doi.org/10.1021/acsenergylett.1c01108.
Der volle Inhalt der QuelleTong, Yu-Long, Ya-Wen Zhang, Kangzhe Ma, Rui Cheng, Fengxiang Wang und Su Chen. „One-Step Synthesis of FA-Directing FAPbBr3 Perovskite Nanocrystals toward High-Performance Display“. ACS Applied Materials & Interfaces 10, Nr. 37 (28.08.2018): 31603–9. http://dx.doi.org/10.1021/acsami.8b10366.
Der volle Inhalt der QuelleYing, Hangkai, Yifan Liu, Yuxi Dou, Jibo Zhang, Zhenli Wu, Qi Zhang, Yi-Bing Cheng und Jie Zhong. „Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells“. Frontiers of Optoelectronics 13, Nr. 3 (20.07.2020): 272–81. http://dx.doi.org/10.1007/s12200-020-1031-1.
Der volle Inhalt der QuelleChen, Lung-Chien, Kuan-Lin Lee, Ching-Ho Tien und Hsiang-Yu Wei. „FAPbBr3−xIx perovskite quantum dots red Light-Emitting diodes with double confinement layer structure“. Materials Science and Engineering: B 264 (Februar 2021): 114969. http://dx.doi.org/10.1016/j.mseb.2020.114969.
Der volle Inhalt der QuelleSui, Laizhi, Guangming Niu, Jutao Jiang, Qingyi Li, Yutong Zhang, Guorong Wu, Feiming Li und Kaijun Yuan. „Pressure Engineered Optical Properties and Carrier Dynamics of FAPbBr3 Nanocrystals Encapsulated by Siliceous Nanosphere“. Journal of Physical Chemistry C 124, Nr. 26 (12.06.2020): 14390–99. http://dx.doi.org/10.1021/acs.jpcc.0c03676.
Der volle Inhalt der QuelleSutanto, Albertus A., Valentin I. E. Queloz, Inés Garcia-Benito, Kari Laasonen, Berend Smit, Mohammad Khaja Nazeeruddin, Olga A. Syzgantseva und Giulia Grancini. „Pushing the limit of Cs incorporation into FAPbBr3 perovskite to enhance solar cells performances“. APL Materials 7, Nr. 4 (April 2019): 041110. http://dx.doi.org/10.1063/1.5087246.
Der volle Inhalt der QuelleSlimi, B., M. Mollar, I. Ben Assaker, A. Kriaa, R. Chtourou und Bernabé Marí. „Synthesis and characterization of perovskite FAPbBr3−x I x thin films for solar cells“. Monatshefte für Chemie - Chemical Monthly 148, Nr. 5 (28.03.2017): 835–44. http://dx.doi.org/10.1007/s00706-017-1958-0.
Der volle Inhalt der QuelleGuo, Yongchang, Bingsuo Zou, Fan Yang, Xuan Zheng, Hui Peng und Jianping Wang. „Dielectric polarization effect and transient relaxation in FAPbBr3 films before and after PMMA passivation“. Physical Chemistry Chemical Physics 23, Nr. 17 (2021): 10153–63. http://dx.doi.org/10.1039/d1cp01136g.
Der volle Inhalt der QuelleZhao, Haifeng, Hongting Chen, Sai Bai, Chaoyang Kuang, Xiyu Luo, Pengpeng Teng, Chunyang Yin et al. „High-Brightness Perovskite Light-Emitting Diodes Based on FAPbBr3 Nanocrystals with Rationally Designed Aromatic Ligands“. ACS Energy Letters 6, Nr. 7 (08.06.2021): 2395–403. http://dx.doi.org/10.1021/acsenergylett.1c00812.
Der volle Inhalt der QuelleXu, Long, Yan Meng, Caixia Xu und Ping Chen. „Room temperature two-photon-pumped random lasers in FAPbBr3/polyethylene oxide (PEO) composite perovskite thin film“. RSC Advances 8, Nr. 64 (2018): 36910–14. http://dx.doi.org/10.1039/c8ra07452f.
Der volle Inhalt der QuelleHuang, Haowei, Jiwu Zhao, Yijie Du, Chen Zhou, Menglong Zhang, Zhuan Wang, Yuxiang Weng et al. „Direct Z-Scheme Heterojunction of Semicoherent FAPbBr3/Bi2WO6 Interface for Photoredox Reaction with Large Driving Force“. ACS Nano 14, Nr. 12 (23.06.2020): 16689–97. http://dx.doi.org/10.1021/acsnano.0c03146.
Der volle Inhalt der QuelleSubbiah, Anand S., Sumanshu Agarwal, Neha Mahuli, Pradeep Nair, Maikel van Hest und Shaibal K. Sarkar. „Stable p-i-n FAPbBr3 Devices with Improved Efficiency Using Sputtered ZnO as Electron Transport Layer“. Advanced Materials Interfaces 4, Nr. 8 (10.02.2017): 1601143. http://dx.doi.org/10.1002/admi.201601143.
Der volle Inhalt der QuelleYao, Mengnan, Jizhong Jiang, Deyu Xin, Yao Ma, Wei Wei, Xiaojia Zheng und Liang Shen. „High-Temperature Stable FAPbBr3 Single Crystals for Sensitive X-ray and Visible Light Detection toward Space“. Nano Letters 21, Nr. 9 (21.04.2021): 3947–55. http://dx.doi.org/10.1021/acs.nanolett.1c00700.
Der volle Inhalt der QuelleYang, Shuhui, Xi Ke, Qizan Chen, Runda Huang, Weizhe Wang, Kunqiang Wang, Kaixiang Shu et al. „In-situ growth behavior of FAPbBr3 on two-dimensional materials for photocatalytic reaction to controllable products“. Journal of Catalysis 402 (Oktober 2021): 143–53. http://dx.doi.org/10.1016/j.jcat.2021.08.034.
Der volle Inhalt der QuelleLiu, Yawen, Byeong Jo Kim, Hua Wu, Gerrit Boschloo und Erik M. J. Johansson. „Efficient and Stable FAPbBr3 Perovskite Solar Cells via Interface Modification by a Low-Dimensional Perovskite Layer“. ACS Applied Energy Materials 4, Nr. 9 (16.09.2021): 9276–82. http://dx.doi.org/10.1021/acsaem.1c01512.
Der volle Inhalt der QuelleAlehdaghi, Hassan, Anil Kanwat, Mohammad Zirak, Eric Moyen, Won-Chul Choi und Jin Jang. „Quasi-2D organic cation-doped formamidinium lead bromide (FAPbBr3) perovskite light-emitting diodes by long alkyl chain“. Organic Electronics 79 (April 2020): 105626. http://dx.doi.org/10.1016/j.orgel.2020.105626.
Der volle Inhalt der QuelleTrinh, Cong Tai, Duong Nguyen Minh, Kwang Jun Ahn, Youngjong Kang und Kwang-Geol Lee. „Organic–Inorganic FAPbBr3 Perovskite Quantum Dots as a Quantum Light Source: Single-Photon Emission and Blinking Behaviors“. ACS Photonics 5, Nr. 12 (21.11.2018): 4937–43. http://dx.doi.org/10.1021/acsphotonics.8b01130.
Der volle Inhalt der QuellePeng, Shaomin, Zuoliang Wen, Taikang Ye, Xiangtian Xiao, Kaiyang Wang, Junmin Xia, Jiayun Sun et al. „Effective Surface Ligand-Concentration Tuning of Deep-Blue Luminescent FAPbBr3 Nanoplatelets with Enhanced Stability and Charge Transport“. ACS Applied Materials & Interfaces 12, Nr. 28 (22.06.2020): 31863–74. http://dx.doi.org/10.1021/acsami.0c08552.
Der volle Inhalt der QuelleLi, Shuang, Changbo Deng, Lupiao Tao, Zhanpeng Lu, Wenjun Zhang und Weijie Song. „Crystallization Control and Defect Passivation via a Cross-Linking Additive for High-Performance FAPbBr3 Perovskite Solar Cells“. Journal of Physical Chemistry C 125, Nr. 23 (06.06.2021): 12551–59. http://dx.doi.org/10.1021/acs.jpcc.1c02987.
Der volle Inhalt der QuelleZu, Yanqing, Jun Xi, Lu Li, Jinfei Dai, Shuangpeng Wang, Feng Yun, Bo Jiao, Hua Dong, Xun Hou und Zhaoxin Wu. „High-Brightness and Color-Tunable FAPbBr3 Perovskite Nanocrystals 2.0 Enable Ultrapure Green Luminescence for Achieving Recommendation 2020 Displays“. ACS Applied Materials & Interfaces 12, Nr. 2 (23.12.2019): 2835–41. http://dx.doi.org/10.1021/acsami.9b18140.
Der volle Inhalt der QuelleHuo, Benjun, Jie Yang, Yao Bian, Daofu Wu, Julin Feng, Jiaer Zhou, Qiang Huang, Fan Dong und Xiaosheng Tang. „Amino-mediated anchoring of FAPbBr3 perovskite quantum dots on silica spheres for efficient visible light photocatalytic NO removal“. Chemical Engineering Journal 406 (Februar 2021): 126740. http://dx.doi.org/10.1016/j.cej.2020.126740.
Der volle Inhalt der QuelleLiu, Xin, Meng Xu, Yingying Hao, Jinghua Fu, Fangbao Wang, Binbin Zhang, Stephanie Bennett, Paul Sellin, Wanqi Jie und Yadong Xu. „Solution-Grown Formamidinium Hybrid Perovskite (FAPbBr3) Single Crystals for α-Particle and γ-Ray Detection at Room Temperature“. ACS Applied Materials & Interfaces 13, Nr. 13 (25.03.2021): 15383–90. http://dx.doi.org/10.1021/acsami.1c00174.
Der volle Inhalt der QuelleDiroll, Benjamin T., Arun Mannodi-Kanakkithodi, Maria K. Y. Chan und Richard D. Schaller. „Spectroscopic Comparison of Thermal Transport at Organic–Inorganic and Organic-Hybrid Interfaces Using CsPbBr3 and FAPbBr3 (FA = Formamidinium) Perovskite Nanocrystals“. Nano Letters 19, Nr. 11 (11.10.2019): 8155–60. http://dx.doi.org/10.1021/acs.nanolett.9b03502.
Der volle Inhalt der QuelleHan, Dengbao, Muhammad Imran, Mengjiao Zhang, Shuai Chang, Xian-gang Wu, Xin Zhang, Jialun Tang et al. „Efficient Light-Emitting Diodes Based on in Situ Fabricated FAPbBr3 Nanocrystals: The Enhancing Role of the Ligand-Assisted Reprecipitation Process“. ACS Nano 12, Nr. 8 (06.08.2018): 8808–16. http://dx.doi.org/10.1021/acsnano.8b05172.
Der volle Inhalt der QuelleMu, Yan-Fei, Chao Zhang, Meng-Ran Zhang, Wen Zhang, Min Zhang und Tong-Bu Lu. „Direct Z-Scheme Heterojunction of Ligand-Free FAPbBr3/α-Fe2O3 for Boosting Photocatalysis of CO2 Reduction Coupled with Water Oxidation“. ACS Applied Materials & Interfaces 13, Nr. 19 (07.05.2021): 22314–22. http://dx.doi.org/10.1021/acsami.1c01718.
Der volle Inhalt der QuelleMannino, Giovanni, Ioannis Deretzis, Emanuele Smecca, Filippo Giannazzo, Salvatore Valastro, Giuseppe Fisicaro, Antonino La Magna, Davide Ceratti und Alessandra Alberti. „CsPbBr3, MAPbBr3, and FAPbBr3 Bromide Perovskite Single Crystals: Interband Critical Points under Dry N2 and Optical Degradation under Humid Air“. Journal of Physical Chemistry C 125, Nr. 9 (25.02.2021): 4938–45. http://dx.doi.org/10.1021/acs.jpcc.0c10144.
Der volle Inhalt der QuelleWang, Xuemei, Lei Yu, Qi Kang, Lu Chen, Yuchen Jin, Guizheng Zou und Dazhong Shen. „Enhancing electrochemiluminescence of FAPbBr3 nanocrystals by using carbon nanotubes and TiO2 nanoparticles as conductivity and co-reaction accelerator for dopamine determination“. Electrochimica Acta 360 (November 2020): 136992. http://dx.doi.org/10.1016/j.electacta.2020.136992.
Der volle Inhalt der QuelleWu, Yanan, Lihui Liu, Wei Wang, Wenzhu Zhang, Hongtao Yu, Jie Qian, Yanfeng Chen et al. „Enhanced stability and performance of light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals via ligand compensation with n-octylphosphonic acid“. Journal of Materials Chemistry C 8, Nr. 29 (2020): 9936–44. http://dx.doi.org/10.1039/d0tc01694b.
Der volle Inhalt der QuelleLi, Feiming, Lan Yang, Zhixiong Cai, Ke Wei, Fangyuan Lin, Jie You, Tian Jiang, Yiru Wang und Xi Chen. „Enhancing exciton binding energy and photoluminescence of formamidinium lead bromide by reducing its dimensions to 2D nanoplates for producing efficient light emitting diodes“. Nanoscale 10, Nr. 44 (2018): 20611–17. http://dx.doi.org/10.1039/c8nr04986f.
Der volle Inhalt der QuelleNguyen, Lan Anh Thi, Duong Nguyen Minh, Ye Yuan, Sudeshna Samanta, Lin Wang, Dongzhou Zhang, Naohisa Hirao, Jaeyong Kim und Youngjong Kang. „Pressure-induced fluorescence enhancement of FAαPbBr2+α composite perovskites“. Nanoscale 11, Nr. 13 (2019): 5868–73. http://dx.doi.org/10.1039/c8nr09780a.
Der volle Inhalt der QuelleZhang, Yukang, Chuying Wang und Zhengtao Deng. „Colloidal synthesis of monolayer-thick formamidinium lead bromide perovskite nanosheets with a lateral size of micrometers“. Chemical Communications 54, Nr. 32 (2018): 4021–24. http://dx.doi.org/10.1039/c8cc01466c.
Der volle Inhalt der QuelleLu, Na, Di Wang, Meina Han, Bojin Zhao, Guozheng Wu und Zhanggui Hu. „Growth of two-dimensional formamidine lead halide perovskite single-crystalline sheets and their optoelectronic properties“. Chemical Communications 57, Nr. 15 (2021): 1939–42. http://dx.doi.org/10.1039/d0cc06957d.
Der volle Inhalt der QuelleChen, Lung-Chien, Ching-Ho Tien, Zong-Liang Tseng und Jun-Hao Ruan. „Enhanced Efficiency of MAPbI3 Perovskite Solar Cells with FAPbX3 Perovskite Quantum Dots“. Nanomaterials 9, Nr. 1 (19.01.2019): 121. http://dx.doi.org/10.3390/nano9010121.
Der volle Inhalt der QuelleXu, Tianfei, Yan Meng, Miaosheng Wang, Mingxing Li, Mahshid Ahmadi, Zuhong Xiong, Shubin Yan, Ping Chen und Bin Hu. „Poly(ethylene oxide)-assisted energy funneling for efficient perovskite light emission“. Journal of Materials Chemistry C 7, Nr. 27 (2019): 8287–93. http://dx.doi.org/10.1039/c9tc01906e.
Der volle Inhalt der Quelle