Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Fan simulator“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Fan simulator" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Fan simulator"
Sheikh-Mohamadi, Mohamad-Hossein, Nematollah Etemadi und Mostafa Arab. „Correlation of Heat and Cold Tolerance in Iranian Tall Fescue Ecotypes with Reactive Oxygen Species Scavenging and Osmotic Adjustment“. HortScience 53, Nr. 7 (Juli 2018): 1062–68. http://dx.doi.org/10.21273/hortsci13088-18.
Der volle Inhalt der QuelleKim, Myung-Il, und Seung-Hae Kim. „Development of a Fan Simulator Using Supercomputer“. Journal of manufacturing engineering & technology 21, Nr. 5 (15.10.2012): 805–13. http://dx.doi.org/10.7735/ksmte.2012.21.5.805.
Der volle Inhalt der QuelleNuckolls, W. E., und W. F. Ng. „Fan Noise Reduction From a Supersonic Inlet During Simulated Aircraft Approach“. Journal of Engineering for Gas Turbines and Power 117, Nr. 2 (01.04.1995): 237–44. http://dx.doi.org/10.1115/1.2814086.
Der volle Inhalt der QuelleBalan, C. „Design Considerations of a Versatile Simulator for High-Bypass Turbofans“. Journal of Engineering for Gas Turbines and Power 117, Nr. 1 (01.01.1995): 31–37. http://dx.doi.org/10.1115/1.2812778.
Der volle Inhalt der QuelleMitchell, Kenneth J. „SYLVER: Modelling the Impact of Silviculture on Yield, Lumber Value, and Economic Return“. Forestry Chronicle 64, Nr. 2 (01.04.1988): 127–31. http://dx.doi.org/10.5558/tfc64127b1-2.
Der volle Inhalt der QuelleSullivan, T. J. „Aerodynamic Performance of a Scale-Model, Counterrotating Unducted Fan“. Journal of Turbomachinery 112, Nr. 4 (01.10.1990): 579–86. http://dx.doi.org/10.1115/1.2927696.
Der volle Inhalt der QuelleFarfán, Ricardo Fabricio Muñoz, Telly Yarita Macías Zambrano, Vicente Paúl Zambrano Valencia und Victor Manuel Delgado Sosa. „Design and construction of a cold production simulator system: chiller“. International journal of physical sciences and engineering 3, Nr. 3 (25.11.2019): 31–40. http://dx.doi.org/10.29332/ijpse.v3n3.367.
Der volle Inhalt der QuelleChoi, Daehyun, Jaemoon Lee und Sehong Min. „A Study on Analyzing the Operation Time of the Sprinkler Head near the Beam with Fire Simulation“. Journal of the Korean Society of Hazard Mitigation 20, Nr. 1 (29.02.2020): 265–72. http://dx.doi.org/10.9798/kosham.2020.20.1.265.
Der volle Inhalt der QuelleLi, Min Xia, Xiu Hui Li und Zhan Zhong Wang. „A Study of Airflow Organization in the Desert Environment Simulation Laboratory“. Advanced Materials Research 171-172 (Dezember 2010): 728–31. http://dx.doi.org/10.4028/www.scientific.net/amr.171-172.728.
Der volle Inhalt der QuelleWang, Ming Yung, und Hsiao Kang Ma. „Numerical Study of Solid Biomass Fuel in a Gasifier System“. Advanced Materials Research 953-954 (Juni 2014): 191–94. http://dx.doi.org/10.4028/www.scientific.net/amr.953-954.191.
Der volle Inhalt der QuelleDissertationen zum Thema "Fan simulator"
Kuřímský, Lukáš. „Zařízení pro automatizovaná testování řídicích jednotek plynových kotlů“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442519.
Der volle Inhalt der QuelleMyre, David D. „Model fan passage flow simulation“. Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23962.
Der volle Inhalt der QuelleLe, Roux Frederick Nicolaas. „The CFD simulation of an axial flow fan“. Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4344.
Der volle Inhalt der QuelleENGLISH ABSTRACT: The purpose of this project is to investigate the method and accuracy of simulating axial ow fans with three-dimensional axisymmetric CFD models. Two models are evaluated and compared with experimental fan data. Veri cation data is obtained from a prototype fan tested in a facility conforming to the BS 848 standards. The ow eld over the blade surfaces is investigated further with a visualization experiment comprising of a stroboscope and wool tufts. Good correlation is found at medium to high ow rates and recommendations are made for simulation at lower ow rates as well as test guidelines at the fan test facility. The results and knowledge gained will be used to amend currently used actuator disc theory for axial ow fan simulation.
AFRIKAANSE OPSOMMING: Die doel van hierdie projek is om die metode en akkuraatheid om aksiaalvloeiwaaiers met drie-dimensionele BVM modelle te simuleer, te ondersoek. Twee modelle word geëvalueer en met eksperimentele waaiertoetse vergelyk. Veri- kasie data is verkry vanaf 'n prototipe waaier wat in 'n fasiliteit getoets is en wat aan die BS 848 standaarde voldoen. Die vloeiveld oor die lemoppervlaktes word ondersoek met 'n visualisering eksperiment wat uit 'n stroboskoop en wolletjies bestaan. Goeie korrelasie word gevind vir medium tot hoë massavloeie en aanbevelings word gemaak vir die simulasie by laer massavloeie met riglyne vir toetswerk in die toets-fasiliteit. Die resultate en kennis opgedoen sal gebruik word in die verbetering van huidige aksieskyfteorie vir numeriese aksiaalvloeiwaaier simulasies.
Tapp, Eric A. „Development of a cascade simulation of fan-passage flow“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA277234.
Der volle Inhalt der QuelleSubramanya, Shreyasu. „Modelling and Simulation of Fan Performance using CFD Group“. Thesis, Linköpings universitet, Mekanisk värmeteori och strömningslära, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-171106.
Der volle Inhalt der QuelleAbuelyaman, Eltayeb Salih. „Sequential circuits fault simulation using fan out stem based techniques“. Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184466.
Der volle Inhalt der QuelleSeaton, M. Scot. „Performance measurements, flow visualization, and numerical simulation of a crossflow fan“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Mar%5FSeaton.pdf.
Der volle Inhalt der QuelleThesis advisor(s): Garth V. Hobson, Raymond P. Shreeve. Includes bibliographical references (p. 69-70). Also available online.
Kummer, Joseph. „Simulation of the cross-flow fan and application to a propulsive airfoil concept“. Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2006. http://proquest.umi.com/login?COPT=REJTPTU0NWQmSU5UPTAmVkVSPTI=&clientId=3739.
Der volle Inhalt der QuelleCollins, Christopher C. „Preliminary investigation of the shock-boundary layer interaction in a simulated fan passage“. Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/28460.
Der volle Inhalt der QuelleGolden, William L. „Static pressure measurements of the shock-boundary layer interaction in a simulated fan passage“. Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23778.
Der volle Inhalt der QuelleBücher zum Thema "Fan simulator"
Myre, David D. Model fan passage flow simulation. Monterey, Calif: Naval Postgraduate School, 1992.
Den vollen Inhalt der Quelle findenFang zhen xi tong fen xi yu she ji. Beijing Shi: Guo fang gong ye chu ban she, 2010.
Den vollen Inhalt der Quelle findenJanus, J. Mark. Unsteady flowfield simulation of ducted prop-fan configurations. Washington, D. C: American Institute of Aeronautics and Astronautics, 1992.
Den vollen Inhalt der Quelle findenKong jian huan jing jian mo yu ke shi hua fang zhen ji shu. Beijing: Guo fang gong ye chu ban she, 2012.
Den vollen Inhalt der Quelle findenXi tong fang zhen. [Peking]: Guo fang gong ye chu ban she, 1985.
Den vollen Inhalt der Quelle findenYuyang, You, und You Junsheng, Hrsg. Chi xu zai he fei xing fang zhen ji shu yu gong cheng she ji: Sustained Acceleration Flight Simulation Technology and Engineering Design. Beijing: Guo fang gong ye chu ban she, 2013.
Den vollen Inhalt der Quelle findenDeckert, W. H. The lift-fan aircraft: Lessons learned. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1995.
Den vollen Inhalt der Quelle findenFang zhen ke xue ji shu ji gong cheng. Beijing: Ke xue chu ban she, 2013.
Den vollen Inhalt der Quelle findenauthor, Yao Xinyu, Hrsg. Lian xu xi tong fang zhen. Beijing: Guo fang ke ji da xue chu ban she, 2014.
Den vollen Inhalt der Quelle findenChang di di zhen fan ying fen xi dao lun. Beijing Shi: Zhongguo tie dao chu ban she, 2010.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Fan simulator"
Kim, Myung-Il, Dong-Kyun Kim, Byung-Yeon Park und Seung-Hae Kim. „Fan Simulator Using Supercomputer“. In Lecture Notes in Electrical Engineering, 81–88. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5076-0_9.
Der volle Inhalt der QuelleXu, Xian-wei, Jin-bao Xu, Yang Liu, Nan Hu und JIan-xin Gao. „Saving Energy Control of Auxiliary Fan“. In Advanced Research on Computer Education, Simulation and Modeling, 33–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21802-6_6.
Der volle Inhalt der QuelleKitagawa, K., H. Tatsuke, Y. Tsujimoto und Y. Yoshida. „A Numerical Simulation of Cross Flow Fan“. In Boundary Elements in Fluid Dynamics, 3–20. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2876-6_1.
Der volle Inhalt der QuelleSun, Tao, Yu Li, YueHan Xu und ZhongYi Wang. „Numerical Simulation and Optimization of Centrifugal Fan“. In Advances in Mechanical and Electronic Engineering, 311–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31507-7_51.
Der volle Inhalt der QuelleJuanola-Parramon, Roser. „Far-infrared Interferometer Instrument Simulator (FIInS)“. In A Far-Infrared Spectro-Spatial Space Interferometer, 73–99. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29400-1_4.
Der volle Inhalt der QuelleLiu, Jialu, Yu Niu und Yanhua Liu. „Optimal Design of Axial Flow Fan Using Numerical Simulation“. In Environmental Science and Engineering, 1165–74. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9528-4_118.
Der volle Inhalt der QuelleYi, Hua, Ji Jie, He Hanfeng, Jiang Aiguo, Han Chongwei und Luo Chenglong. „Optimized Simulation for PV-TW System Using DC Fan“. In Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 1617–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75997-3_332.
Der volle Inhalt der QuelleByrne, Aidan. „Medical Simulation: the Journey So Far“. In Essential Simulation in Clinical Education, 11–25. Oxford, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118748039.ch2.
Der volle Inhalt der QuelleJuanola-Parramon, Roser. „Simulated Observations with FIInS“. In A Far-Infrared Spectro-Spatial Space Interferometer, 127–41. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29400-1_6.
Der volle Inhalt der QuelleKim, Taedong, Byoung K. Choi, Keyhoon Ko und Donghun Kang. „Gantt Chart Simulation for FAB Scheduling“. In Communications in Computer and Information Science, 333–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45289-9_29.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Fan simulator"
Balan, Chellappa. „Design Considerations of a Versatile Simulator for High Bypass Turbofans“. In ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/93-gt-014.
Der volle Inhalt der QuelleChuang, H. Andrew, und Joseph M. Verdon. „A Nonlinear Numerical Simulator for Three-Dimensional Flows Through Vibrating Blade Rows“. In ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-018.
Der volle Inhalt der QuelleZou, Jing, Zhanli Hu, Jianbao Gui, Junyan Rong, Yanming Li und Hairong Zheng. „Geant4-Based Monte Carlo Simulator for Fan-and Cone-Beam X-ray CT“. In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5514746.
Der volle Inhalt der QuelleNuckolls, W. E., und W. F. Ng. „Fan Noise Reduction From a Supersonic Inlet During Simulated Aircraft Approach“. In ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/93-gt-279.
Der volle Inhalt der QuelleHughes, Christopher E., Gary G. Podboy, Richard P. Woodward und Robert J. Jeracki. „The Effect of Bypass Nozzle Exit Area on Fan Aerodynamic Performance and Noise in a Model Turbofan Simulator“. In ASME Turbo Expo 2005: Power for Land, Sea, and Air. ASMEDC, 2005. http://dx.doi.org/10.1115/gt2005-68573.
Der volle Inhalt der QuelleKhaletskiy, Yuri, und Victor Mileshin. „Experimental Study of 700-mm Fan Model Noise at CIAM Anechoic Chamber“. In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-94454.
Der volle Inhalt der QuelleBOLDMAN, D., C. IEK, D. HWANG, R. JERACKI und M. LARKIN. „Evaluation of panel code predictions with experimental results of inlet performance for a 17-inch ducted prop/fan simulator operating at Mach 0.2“. In 27th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-3354.
Der volle Inhalt der QuellePanindre, Prabodh, Sunil Kumar, Atulya Narendranath, Vinay Kanive Manjunath, Venkata Pushkar Chintaluri und Vishal Prajapati. „Optimization of Positive Pressure Ventiliation Tactic for Wind Driven High Rise Fires“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62908.
Der volle Inhalt der QuelleGuoqi, Li, Lin Peifeng, Cui Baoling, Jin Yingzi, Hu Yongjun und Lin Zhe. „Numerical Simulation on Flow Field of Bladeless Fan“. In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-21770.
Der volle Inhalt der QuelleMawid, M. A., C. A. Arana und B. Sekar. „Application of a Thermal-Hydraulic Management Model to Gas Turbine Combustors and Fuel Systems“. In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-054.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Fan simulator"
Brito, Pedro, Júlio Costa, João Brito und Pedro Figueiredo. Simulated Soccer Games Protocols: What we Know so far—A Systematic Review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Februar 2021. http://dx.doi.org/10.37766/inplasy2021.2.0080.
Der volle Inhalt der QuelleCastiglioni, Whitmaur, Alex Himmel und Bryan Ramson. Simulation Studies Of Photon Signal Reconstruction In The DUNE Single Phase Far Detector With Xe Doping. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1614720.
Der volle Inhalt der QuelleClausen, Jay, Michael Musty, Anna Wagner, Susan Frankenstein und Jason Dorvee. Modeling of a multi-month thermal IR study. Engineer Research and Development Center (U.S.), Juli 2021. http://dx.doi.org/10.21079/11681/41060.
Der volle Inhalt der QuelleMalej, Matt, und Fengyan Shi. Suppressing the pressure-source instability in modeling deep-draft vessels with low under-keel clearance in FUNWAVE-TVD. Engineer Research and Development Center (U.S.), Mai 2021. http://dx.doi.org/10.21079/11681/40639.
Der volle Inhalt der Quelle