Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „False Discovery Proportion control“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "False Discovery Proportion control" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "False Discovery Proportion control"
Genovese, Christopher R., und Larry Wasserman. „Exceedance Control of the False Discovery Proportion“. Journal of the American Statistical Association 101, Nr. 476 (01.12.2006): 1408–17. http://dx.doi.org/10.1198/016214506000000339.
Der volle Inhalt der QuelleDudziński, Marcin, und Konrad Furmańczyk. „A note on control of the false discovery proportion“. Applicationes Mathematicae 36, Nr. 4 (2009): 397–418. http://dx.doi.org/10.4064/am36-4-2.
Der volle Inhalt der QuelleShang, Shulian, Qianhe Zhou, Mengling Liu und Yongzhao Shao. „Sample Size Calculation for Controlling False Discovery Proportion“. Journal of Probability and Statistics 2012 (2012): 1–13. http://dx.doi.org/10.1155/2012/817948.
Der volle Inhalt der QuelleGoeman, Jelle J., Rosa J. Meijer, Thijmen J. P. Krebs und Aldo Solari. „Simultaneous control of all false discovery proportions in large-scale multiple hypothesis testing“. Biometrika 106, Nr. 4 (23.09.2019): 841–56. http://dx.doi.org/10.1093/biomet/asz041.
Der volle Inhalt der QuelleGe, Yongchao, und Xiaochun Li. „Control of the False Discovery Proportion for Independently Tested Null Hypotheses“. Journal of Probability and Statistics 2012 (2012): 1–19. http://dx.doi.org/10.1155/2012/320425.
Der volle Inhalt der QuelleJeng, X. Jessie, und Xiongzhi Chen. „Predictor ranking and false discovery proportion control in high-dimensional regression“. Journal of Multivariate Analysis 171 (Mai 2019): 163–75. http://dx.doi.org/10.1016/j.jmva.2018.12.006.
Der volle Inhalt der QuelleZhang, Xiaohua Douglas. „An Effective Method for Controlling False Discovery and False Nondiscovery Rates in Genome-Scale RNAi Screens“. Journal of Biomolecular Screening 15, Nr. 9 (20.09.2010): 1116–22. http://dx.doi.org/10.1177/1087057110381783.
Der volle Inhalt der QuelleZhang, Xiaohua Douglas, Raul Lacson, Ruojing Yang, Shane D. Marine, Alex McCampbell, Dawn M. Toolan, Tim R. Hare et al. „The Use of SSMD-Based False Discovery and False Nondiscovery Rates in Genome-Scale RNAi Screens“. Journal of Biomolecular Screening 15, Nr. 9 (17.09.2010): 1123–31. http://dx.doi.org/10.1177/1087057110381919.
Der volle Inhalt der QuelleHollister, Megan C., und Jeffrey D. Blume. „4497 Accessible False Discovery Rate Computation“. Journal of Clinical and Translational Science 4, s1 (Juni 2020): 44. http://dx.doi.org/10.1017/cts.2020.164.
Der volle Inhalt der QuelleVentura, Valérie, Christopher J. Paciorek und James S. Risbey. „Controlling the Proportion of Falsely Rejected Hypotheses when Conducting Multiple Tests with Climatological Data“. Journal of Climate 17, Nr. 22 (15.11.2004): 4343–56. http://dx.doi.org/10.1175/3199.1.
Der volle Inhalt der QuelleDissertationen zum Thema "False Discovery Proportion control"
Blain, Alexandre. „Reliable statistical inference : controlling the false discovery proportion in high-dimensional multivariate estimators“. Electronic Thesis or Diss., université Paris-Saclay, 2024. https://theses.hal.science/tel-04935172.
Der volle Inhalt der QuelleStatistically controlled variable selection is a fundamental problem encountered in diverse fields where practitioners have to assess the importance of input variables with regards to an outcome of interest. In this context, statistical control aims at limiting the proportion of false discoveries, meaning the proportion of selected variables that are independent of the outcome of interest. In this thesis, we develop methods that aim at statistical control in high-dimensional settings while retaining statistical power. We present four key contributions in this avenue of work. First, we introduce Notip, a non-parametric method that allows users to obtain guarantees on the proportion of true discoveries in any brain region. This procedure improves detection sensitivity over existing methods while retaining false discoveries control. Second, we extend the Knockoff framework by proposing KOPI, a method that provides False Discovery Proportion (FDP) control in probability rather than in expectancy. KOPI is naturally compatible with aggregation of multiple Knockoffs draws, addressing the randomness of traditional Knockoff inference. Third, we develop a diagnostic tool to identify violations of the exchangeability assumption in Knockoffs, accompanied by a novel non-parametric Knockoff generation method that restores false discoveries control. Finally, we introduce CoJER to enhance conformal prediction by providing sharp control of the False Coverage Proportion (FCP) when multiple test points are considered, ensuring more reliable uncertainty estimates. CoJER can also be used to aggregate the confidence intervals provided by different predictive models, thus mitigating the impact of modeling choices. Together, these contributions advance the reliability of statistical inference in high-dimensional settings such as neuroimaging and genomic data
Afriyie, Prince. „Applications of Procedures Controlling the Tail Probability of the False Discovery Proportion“. Diss., Temple University Libraries, 2016. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/367548.
Der volle Inhalt der QuellePh.D.
Multiple testing has been an active area of statistical research in the past decade mainly because of its wide scope of applicability in modern scientific investigations. One major application area of multiple testing is in identifying differentially expressed genes from massive biological data generated by high-throughput genomic technologies where the expression profiles of genes are compared across two or more experimental conditions on a genomic scale. This dissertation briefly reviews modern multiple testing methodologies including types of error control, and multiple testing procedures, before focusing on one of its objectives of identifying differentially expressed genes from high-throughput genomic data. More specifically, we apply multiple testing procedures that control the γ-FDP, the probability of false discovery proportion (FDP) exceeding γ, given some γ∈ [0,1), on two types of high-throughput genomic data, namely, microarray and digital gene expression (DGE) data. In addition, we propose four newer step-up procedures controlling the γ-FDP. The first of these procedures is developed by modifying the Benjamini and Hochberg (1995, J. Roy. Statist. Soc., Ser. B) critical constants, which controls the γ-FDP under both independent and positively dependent test statistics. The second one is a two-stage adaptive procedure developed from these modified Benjamini and Hochberg critical constants and controls the γ-FDP under independence. The third and fourth procedures are also two-stage adaptive procedures controlling the γ-FDP under independence, but developed using critical constants in Lehmann and Romano (2005, Ann. of Statist.) and Delattre and Roquain (2015, Ann. of Statist.) respectively. Results of simulation studies examining performances of our procedures relative to their relevant competitors are presented. We also present a heuristic approach to investigating an unusual problem in the detection of differentially expressed genes from a microarray data. This problem arises when the marginal p-value distribution is an unknown mixture distribution rendering some multiple testing procedures incompetent of eliciting differentially expressed genes. We illustrate why the control of the γ-FDP is preferred in those instances. Future research problems are also discussed.
Temple University--Theses
Benditkis, Julia [Verfasser], Arnold [Akademischer Betreuer] Janssen und Helmut [Akademischer Betreuer] Finner. „Martingale Methods for Control of False Discovery Rate and Expected Number of False Rejections / Julia Benditkis. Gutachter: Arnold Janssen ; Helmut Finner“. Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2015. http://d-nb.info/1077295170/34.
Der volle Inhalt der Quelle„Regaining control of false findings in feature selection, classification, and prediction on neuroimaging and genomics data“. Tulane University, 2018.
Den vollen Inhalt der Quelle findenThe technological advances of past decades have led to the accumulation of large amounts of genomic and neuroimaging data, enabling novel strategies in precision medicine. These largely rely on machine learning algorithms and modern statistical methods for big biological datasets, which are data-driven rather than hypothesis-driven. These methods often lack guarantees on the validity of the research findings. Because it can be a matter of life and death, when computational methods are deployed in clinical practice in medicine, establishing guarantees on the validity of the results is essential for the advancement of precision medicine. This thesis proposes several novel sparse regression and sparse canonical correlation analysis techniques, which by design include guarantees on the false discovery rate in variable selection. Variable selection on biomedical data is essential for many areas of healthcare, including precision medicine, population stratification, drug development, and predictive modeling of disease phenotypes. Predictive machine learning models can directly affect the patient when used to aid diagnosis, and therefore they need to be thoroughly evaluated before deployment. We present a novel approach to validly reuse the test data for performance evaluation of predictive models. The proposed methods are validated in the application on large genomic and neuroimaging datasets, where they confirm results from previous studies and also lead to new biological insights. In addition, this work puts a focus on making the proposed methods widely available to the scientific community though the release of free and open-source scientific software.
1
Alexej Gossmann
Buchteile zum Thema "False Discovery Proportion control"
Romano, Joseph P., und Azeem M. Shaikh. „On stepdown control of the false discovery proportion“. In Institute of Mathematical Statistics Lecture Notes - Monograph Series, 33–50. Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2006. http://dx.doi.org/10.1214/074921706000000383.
Der volle Inhalt der QuellePerone-Pacifico, Marco, und Isabella Verdinelli. „False Discovery Control for Scan Clustering“. In Scan Statistics, 271–87. Boston, MA: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4749-0_13.
Der volle Inhalt der QuelleZhao, Bangxin, und Wenqing He. „Simultaneous Control of False Discovery Rate and Sensitivity Using Least Angle Regressions in High-Dimensional Data Analysis“. In Advances and Innovations in Statistics and Data Science, 55–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08329-7_3.
Der volle Inhalt der QuelleGenovese, C. R. „False Discovery Rate Control“. In Brain Mapping, 501–7. Elsevier, 2015. http://dx.doi.org/10.1016/b978-0-12-397025-1.00323-7.
Der volle Inhalt der QuelleLiu, Fang, und Sanat K. Sarkar. „A New Adaptive Method to Control the False Discovery Rate“. In Recent Advances in Biostatistics, 3–26. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814329804_0001.
Der volle Inhalt der QuelleOmairi, Luiza Barranco, Juliana Silva Barbosa, Andre Luiz Ciclini und Vanessa Cicclini Guerra. „Hepatitis C treatment experience in a dialysis clinic: nephrologist's perspective“. In COLLECTION OF INTERNATIONAL TOPICS IN HEALTH SCIENCE- V1. Seven Editora, 2023. http://dx.doi.org/10.56238/colleinternhealthscienv1-059.
Der volle Inhalt der QuelleCordes, Eugene H. „Take it off! Take it all off! Drugs for weight reduction“. In Hallelujah Moments, 187–216. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190080457.003.0011.
Der volle Inhalt der QuelleTargowski, Andrew. „Information Laws“. In Information Technology and Societal Development, 277–88. IGI Global, 2009. http://dx.doi.org/10.4018/978-1-60566-004-2.ch012.
Der volle Inhalt der QuelleGaneri, Jonardon. „The Enigma of Heteronymy“. In Virtual Subjects, Fugitive Selves, 17–22. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198864684.003.0003.
Der volle Inhalt der QuelleVinayakumar, R., K. P. Soman und Prabaharan Poornachandran. „Evaluation of Recurrent Neural Network and its Variants for Intrusion Detection System (IDS)“. In Deep Learning and Neural Networks, 295–316. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-0414-7.ch018.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "False Discovery Proportion control"
Koka, Taulant, Jasin Machkour und Michael Muma. „False Discovery Rate Control for Gaussian Graphical Models via Neighborhood Screening“. In 2024 32nd European Signal Processing Conference (EUSIPCO), 2482–86. IEEE, 2024. http://dx.doi.org/10.23919/eusipco63174.2024.10715414.
Der volle Inhalt der QuelleXiang, Yu. „Distributed False Discovery Rate Control with Quantization“. In 2019 IEEE International Symposium on Information Theory (ISIT). IEEE, 2019. http://dx.doi.org/10.1109/isit.2019.8849383.
Der volle Inhalt der QuelleMcHugh, J. Mike, Janusz Konrad, Venkatesh Saligrama, Pierre-Marc Jodoin und David Castanon. „Motion detection with false discovery rate control“. In 2008 15th IEEE International Conference on Image Processing - ICIP 2008. IEEE, 2008. http://dx.doi.org/10.1109/icip.2008.4711894.
Der volle Inhalt der QuelleDalleiger, Sebastian, und Jilles Vreeken. „Discovering Significant Patterns under Sequential False Discovery Control“. In KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3534678.3539398.
Der volle Inhalt der QuelleZhang, B., N. Chenouard, J. C. Olivo-Marin und V. Meas-Yedid. „Statistical colocalization in biological imaging with false discovery control“. In 2008 IEEE International Symposium on Biomedical Imaging: From Macro to Nano (ISBI '08). IEEE, 2008. http://dx.doi.org/10.1109/isbi.2008.4541249.
Der volle Inhalt der QuelleVinzamuri, Bhanukiran, und Kush R. Varshney. „FALSE DISCOVERY RATE CONTROL WITH CONCAVE PENALTIES USING STABILITY SELECTION“. In 2018 IEEE Data Science Workshop (DSW). IEEE, 2018. http://dx.doi.org/10.1109/dsw.2018.8439910.
Der volle Inhalt der QuelleNguyen, Hien D., Andrew L. Janke, Nicolas Cherbuin, Geoffrey J. McLachlan, Perminder Sachdev und Kaarin J. Anstey. „Spatial False Discovery Rate Control for Magnetic Resonance Imaging Studies“. In 2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA). IEEE, 2013. http://dx.doi.org/10.1109/dicta.2013.6691531.
Der volle Inhalt der QuelleHalme, Topi, und Visa Koivunen. „Optimal Multi-Stream Quickest Detection with False Discovery Rate Control“. In 2023 57th Asilomar Conference on Signals, Systems, and Computers. IEEE, 2023. http://dx.doi.org/10.1109/ieeeconf59524.2023.10476984.
Der volle Inhalt der QuelleFlasseur, Olivier, Loic Denis, Eric Thiebaut und Maud Langlois. „Finding Meaningful Detections: False Discovery Rate Control in Correlated Detection Maps“. In 2020 28th European Signal Processing Conference (EUSIPCO). IEEE, 2021. http://dx.doi.org/10.23919/eusipco47968.2020.9287847.
Der volle Inhalt der QuelleWang, Shengze, Shichao Feng, Chongle Pan und Xuan Guo. „FineFDR: Fine-grained Taxonomy-specific False Discovery Rates Control in Metaproteomics“. In 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2022. http://dx.doi.org/10.1109/bibm55620.2022.9995401.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "False Discovery Proportion control"
Rankin, Nicole, Deborah McGregor, Candice Donnelly, Bethany Van Dort, Richard De Abreu Lourenco, Anne Cust und Emily Stone. Lung cancer screening using low-dose computed tomography for high risk populations: Investigating effectiveness and screening program implementation considerations: An Evidence Check rapid review brokered by the Sax Institute (www.saxinstitute.org.au) for the Cancer Institute NSW. The Sax Institute, Oktober 2019. http://dx.doi.org/10.57022/clzt5093.
Der volle Inhalt der Quelle