Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Falling ball dynamics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Falling ball dynamics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Falling ball dynamics"
Zhao, Yanling, Gang Zhou und Qiyu Wang. „Discrete Dynamics of Balls in Cageless Ball Bearings“. Symmetry 14, Nr. 11 (25.10.2022): 2242. http://dx.doi.org/10.3390/sym14112242.
Der volle Inhalt der QuelleXue, Jingbin, Jingyan Cai, Haocong Ding, Zhiwang Mao und Zhuoning Jin. „Comparative Analysis of Viscosity Measurement Techniques Poiseuille Method versus Falling Ball Method“. Highlights in Science, Engineering and Technology 93 (08.05.2024): 270–78. http://dx.doi.org/10.54097/n187sw27.
Der volle Inhalt der QuelleBarlet, A., und N. Malhomme. „Suction-ejection of a ping-pong ball in a falling water-filled cup“. Emergent Scientist 6 (2022): 2. http://dx.doi.org/10.1051/emsci/2022002.
Der volle Inhalt der QuelleButler, Jason E. „Suspension dynamics: moving beyond steady“. Journal of Fluid Mechanics 752 (04.07.2014): 1–4. http://dx.doi.org/10.1017/jfm.2014.278.
Der volle Inhalt der QuelleSenot, Patrice, Sylvain Baillet, Bernard Renault und Alain Berthoz. „Cortical Dynamics of Anticipatory Mechanisms in Interception: A Neuromagnetic Study“. Journal of Cognitive Neuroscience 20, Nr. 10 (Oktober 2008): 1827–38. http://dx.doi.org/10.1162/jocn.2008.20129.
Der volle Inhalt der QuelleZago, Myrka, Gianfranco Bosco, Vincenzo Maffei, Marco Iosa, Yuri P. Ivanenko und Francesco Lacquaniti. „Internal Models of Target Motion: Expected Dynamics Overrides Measured Kinematics in Timing Manual Interceptions“. Journal of Neurophysiology 91, Nr. 4 (April 2004): 1620–34. http://dx.doi.org/10.1152/jn.00862.2003.
Der volle Inhalt der QuelleKLYCHEV, SHAVKAT, BAKHRAMOV SAGDULLA, VALERIY KHARCHENKO und VLADIMIR PANCHENKO. „DYNAMICS OF THERMAL LOSSES BY CONVECTION AND RADIATION OF THE SPHERICAL HEAT ACCUMULATOR OF SOLAR PLANTS“. Elektrotekhnologii i elektrooborudovanie v APK 4, Nr. 41 (Dezember 2020): 57–62. http://dx.doi.org/10.22314/2658-4859-2020-67-4-57-62.
Der volle Inhalt der QuelleTóthová, Jana, Katarína Paulovičová und Vladimír Lisý. „Viscosity Measurements of Dilute Poly(2-ethyl-2-oxazoline) Aqueous Solutions Near Theta Temperature Analyzed within the Joint Rouse-Zimm Model“. International Journal of Polymer Science 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/690136.
Der volle Inhalt der QuelleAcuña, Luis, Fernando Sepliarsky, Eleana Spavento, Roberto D. Martínez und José-Antonio Balmori. „Modelling of Impact Falling Ball Test Response on Solid and Engineered Wood Flooring of Two Eucalyptus Species“. Forests 11, Nr. 9 (26.08.2020): 933. http://dx.doi.org/10.3390/f11090933.
Der volle Inhalt der QuelleVarma, Bandaru Nithin Kumar. „Falling Ball Viscometer using Inductive Proximity Sensor“. International Journal for Research in Applied Science and Engineering Technology 9, Nr. 11 (30.11.2021): 326–28. http://dx.doi.org/10.22214/ijraset.2021.38085.
Der volle Inhalt der QuelleDissertationen zum Thema "Falling ball dynamics"
Paschoal, Mateus Faria de Andrade. „Mouvement de particules magnétiques dans un fluide à seuil“. Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0240.
Der volle Inhalt der QuelleThis thesis presents an in-depth investigation, using experimental and numerical approaches, on a modified falling ball viscometer used to determine the rheological properties of fluids. The fluid studied here is Carbopol, modeled as a Herschel-Bulkley type fluid. This is a range of fluids called viscoplastic fluids, characterized by a yield stress and shear-thinning behavior under flow. Initially, the classic configuration of the viscometer, i.e., a ball subject to gravity falling in a tube filled with viscoplastic fluid, was analyzed experimentally. The experimental results for this classic configuration align with the literature: for low yield stress values, the ball falls with a constant vertical velocity. The analysis of the data obtained under these conditions revealed confinement effects, highlighting the challenge of reproducibility in the classic falling ball experiment. To address this issue, a new viscometer configuration was proposed by introducing a permanent magnet into the system to control the dynamics of the ball during its fall, thus ensuring reproducible data. In this new device, understanding all the forces acting on the ball and their influence on its dynamics is crucial. First, efforts focused on determining the magnetic force through analytical and numerical approaches, validated by experimental measurements. The trajectories of the experimental data from the modified viscometer were then compared to validate the calculation of this newly added force. The results show that while the analysis of the radial position remains difficult, the vertical position data align with the simulations. To complement the literature data, the drag force alone was also studied in the classic viscometer configuration. A detailed development was carried out to study the static drag force, and the result obtained matches the well-known value in the literature. Through analytical and numerical approaches, we arrive at a new correlation for the drag coefficient that includes this static force, the rheological properties of the Herschel-Bulkley fluid, as well as geometric parameters, notably the tube-to-ball radius ratio. This work enriches the existing literature by providing original results and presenting new perspectives by adding a known volumetric force that modifies the ball’s dynamics
Hou, Peiwen. „Numerical study of particle dynamics in a falling-ball viscometer“. Thesis, 2000. http://library1.njit.edu/etd/fromwebvoyage.cfm?id=njit-etd2000-021.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Falling ball dynamics"
Pasternak, Viktoriya, Artem Ruban, Yurii Horbachenko und Sergii Vavreniuk. „Computer Modelling of the Process of Separation of Heterogeneous Elements (Spheres)“. In International Scientific Applied Conference "Problems of Emergency Situations", 127–36. Switzerland: Trans Tech Publications Ltd, 2024. http://dx.doi.org/10.4028/p-5aamef.
Der volle Inhalt der QuelleKarjalainen, J. P., R. Karjalainen und K. Huhtala. „Developed Measuring Methods for Hydraulic Fluid Dynamics and Viscosity at Extreme Pressures and Temperatures“. In ASME/BATH 2014 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fpmc2014-7853.
Der volle Inhalt der QuelleKandiel, Youssef E., Farouk I. Metwalli, Rafik E. Khalaf, Gamal M. Attia und Omar Mahmoud. „Synergistic Effect of MgO Nanoparticles and SDS Surfactant on Interfacial Tension Reduction for Enhanced Oil Recovery“. In Mediterranean Offshore Conference. SPE, 2024. http://dx.doi.org/10.2118/223166-ms.
Der volle Inhalt der QuelleRafi, Mahir D., Ali M. Sadegh und Zelda Frankel. „Impact Analysis of Bubble Soccer to Prevent Head Injuries“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10650.
Der volle Inhalt der Quelle