Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Face super-resolution“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Face super-resolution" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Face super-resolution"
Kui Jia und Shaogang Gong. „Generalized Face Super-Resolution“. IEEE Transactions on Image Processing 17, Nr. 6 (Juni 2008): 873–86. http://dx.doi.org/10.1109/tip.2008.922421.
Der volle Inhalt der QuelleXin, Jingwei, Nannan Wang, Xinrui Jiang, Jie Li, Xinbo Gao und Zhifeng Li. „Facial Attribute Capsules for Noise Face Super Resolution“. Proceedings of the AAAI Conference on Artificial Intelligence 34, Nr. 07 (03.04.2020): 12476–83. http://dx.doi.org/10.1609/aaai.v34i07.6935.
Der volle Inhalt der QuelleKanakaraj, Sithara, V. K. Govindan und Saidalavi Kalady. „Face Super Resolution: A Survey“. International Journal of Image, Graphics and Signal Processing 9, Nr. 5 (08.05.2017): 54–67. http://dx.doi.org/10.5815/ijigsp.2017.05.06.
Der volle Inhalt der QuelleLiu, Zhi-Song, Wan-Chi Siu und Yui-Lam Chan. „Reference Based Face Super-Resolution“. IEEE Access 7 (2019): 129112–26. http://dx.doi.org/10.1109/access.2019.2934078.
Der volle Inhalt der QuelleChen, Jin, Jun Chen, Zheng Wang, Chao Liang und Chia-Wen Lin. „Identity-Aware Face Super-Resolution for Low-Resolution Face Recognition“. IEEE Signal Processing Letters 27 (2020): 645–49. http://dx.doi.org/10.1109/lsp.2020.2986942.
Der volle Inhalt der QuelleZHANG, Di, und Jia-Zhong HE. „Feature Space Based Face Super-resolution Reconstruction“. Acta Automatica Sinica 38, Nr. 7 (2012): 1145. http://dx.doi.org/10.3724/sp.j.1004.2012.01145.
Der volle Inhalt der QuelleAn, Le, und Bir Bhanu. „Face image super-resolution using 2D CCA“. Signal Processing 103 (Oktober 2014): 184–94. http://dx.doi.org/10.1016/j.sigpro.2013.10.004.
Der volle Inhalt der QuelleLu, Tao, Lanlan Pan, Yingjie Guan und Kangli Zeng. „Face Super-Resolution by Deep Collaborative Representation“. Journal of Computer-Aided Design & Computer Graphics 31, Nr. 4 (2019): 596. http://dx.doi.org/10.3724/sp.j.1089.2019.17323.
Der volle Inhalt der QuelleGunturk, B. K., A. U. Batur, Y. Altunbasak, M. H. Hayes und R. M. Mersereau. „Eigenface-domain super-resolution for face recognition“. IEEE Transactions on Image Processing 12, Nr. 5 (Mai 2003): 597–606. http://dx.doi.org/10.1109/tip.2003.811513.
Der volle Inhalt der QuelleChen, Chaofeng, Dihong Gong, Hao Wang, Zhifeng Li und Kwan-Yee K. Wong. „Learning Spatial Attention for Face Super-Resolution“. IEEE Transactions on Image Processing 30 (2021): 1219–31. http://dx.doi.org/10.1109/tip.2020.3043093.
Der volle Inhalt der QuelleDissertationen zum Thema "Face super-resolution"
Arachchige, Somi Ruwan Budhagoda. „Face recognition in low resolution video sequences using super resolution /“. Online version of thesis, 2008. http://hdl.handle.net/1850/7770.
Der volle Inhalt der QuelleRoeder, James Roger. „Assessment of super-resolution for face recognition from very-low resolution images“. To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2009. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Der volle Inhalt der QuelleLin, Frank Chi-Hao. „Super-resolution image processing with application to face recognition“. Queensland University of Technology, 2008. http://eprints.qut.edu.au/16703/.
Der volle Inhalt der QuelleYe, Getian Information Technology & Electrical Engineering Australian Defence Force Academy UNSW. „Image registration and super-resolution mosaicing“. Awarded by:University of New South Wales - Australian Defence Force Academy. School of Information Technology and Electrical Engineering, 2005. http://handle.unsw.edu.au/1959.4/38653.
Der volle Inhalt der QuelleQu, Chengchao [Verfasser]. „Facial Texture Super-Resolution by Fitting 3D Face Models / Chengchao Qu“. Karlsruhe : KIT Scientific Publishing, 2018. http://www.ksp.kit.edu.
Der volle Inhalt der QuellePeyrard, Clément. „Single image super-resolution based on neural networks for text and face recognition“. Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI083/document.
Der volle Inhalt der QuelleThis thesis is focussed on super-resolution (SR) methods for improving automatic recognition system (Optical Character Recognition, face recognition) in realistic contexts. SR methods allow to generate high resolution images from low resolution ones. Unlike upsampling methods such as interpolation, they restore spatial high frequencies and compensate artefacts such as blur or jaggy edges. In particular, example-based approaches learn and model the relationship between low and high resolution spaces via pairs of low and high resolution images. Artificial Neural Networks are among the most efficient systems to address this problem. This work demonstrate the interest of SR methods based on neural networks for improved automatic recognition systems. By adapting the data, it is possible to train such Machine Learning algorithms to produce high-resolution images. Convolutional Neural Networks are especially efficient as they are trained to simultaneously extract relevant non-linear features while learning the mapping between low and high resolution spaces. On document text images, the proposed method improves OCR accuracy by +7.85 points compared with simple interpolation. The creation of an annotated image dataset and the organisation of an international competition (ICDAR2015) highlighted the interest and the relevance of such approaches. Moreover, if a priori knowledge is available, it can be used by a suitable network architecture. For facial images, face features are critical for automatic recognition. A two step method is proposed in which image resolution is first improved, followed by specialised models that focus on the essential features. An off-the-shelf face verification system has its performance improved from +6.91 up to +8.15 points. Finally, to address the variability of real-world low-resolution images, deep neural networks allow to absorb the diversity of the blurring kernels that characterise the low-resolution images. With a single model, high-resolution images are produced with natural image statistics, without any knowledge of the actual observation model of the low-resolution image
Al-Hassan, Nadia. „Mathematically inspired approaches to face recognition in uncontrolled conditions : super resolution and compressive sensing“. Thesis, University of Buckingham, 2014. http://bear.buckingham.ac.uk/6/.
Der volle Inhalt der QuelleSvorad, Adam. „Zvýšení kvality v obrazu obličeje s použitím sekvence snímků“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442384.
Der volle Inhalt der QuelleRajnoha, Martin. „Určování podobnosti objektů na základě obrazové informace“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-437979.
Der volle Inhalt der QuelleLee, Kuan-I., und 李冠毅. „Enhancing Face Detection with Super Resolution“. Thesis, 2017. http://ndltd.ncl.edu.tw/handle/ttag7s.
Der volle Inhalt der Quelle國立清華大學
通訊工程研究所
106
Object detection has been a hot research topic for many years to date. Among various task we have achieved so far, recent state-of-the-art face detection through deep learning architecture method have proven to be very robust to many kinds of image scenario. Yet when it comes to very tiny faces, typically faces that has no more than 10~20 in pixel sizes, still remains a challenging task for face detection. Many methods have been proposed to address tiny face detection problem. Most of them are based on image-pyramid or feature-pyramid method. By leveraging multiple sizes in spatial domain or receptive field in convolutional feature layers, it’s a common believe that we can extract more information and thus getting a better result in face detection. Both of these method have their pros and cons. In this paper, we aim our goal to the tiny face detection and introduce a method that utilize super resolution technique which can increase the sample candidate from the existing detection pipeline and enhance the performance without additional image or feature pyramids. We provided detailed comparison and visualization in our work, and the result have shown performance boost in face detection task.
Buchteile zum Thema "Face super-resolution"
Pan, Gang, Shi Han, Zhaohui Wu und Yueming Wang. „Super-Resolution of 3D Face“. In Computer Vision – ECCV 2006, 389–401. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11744047_30.
Der volle Inhalt der QuelleDong, Ning, Xiaoguang Li, Jiafeng Li und Li Zhuo. „Face Super-Resolution via Discriminative-Attributes“. In Pattern Recognition and Computer Vision, 487–97. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31723-2_41.
Der volle Inhalt der QuelleLiu, Jing, Guangda Su, Xiaolong Ren und Jiansheng Chen. „Human Face Super-Resolution Based on NSCT“. In Computer Vision – ACCV 2012, 680–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37444-9_53.
Der volle Inhalt der QuelleGao, Guangwei, und Jian Yang. „Sparse Representation Based Face Image Super-Resolution“. In Intelligent Science and Intelligent Data Engineering, 303–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31919-8_39.
Der volle Inhalt der QuelleZhuo, Hui, und Kin-Man Lam. „Wavelet-Based Eigentransformation for Face Super-Resolution“. In Advances in Multimedia Information Processing - PCM 2010, 226–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15696-0_21.
Der volle Inhalt der QuelleZheng, Jun, und Olac Fuentes. „A Stochastic Method for Face Image Super-Resolution“. In Advances in Visual Computing, 762–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10331-5_71.
Der volle Inhalt der QuelleYu, Xin, Basura Fernando, Bernard Ghanem, Fatih Porikli und Richard Hartley. „Face Super-Resolution Guided by Facial Component Heatmaps“. In Computer Vision – ECCV 2018, 219–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01240-3_14.
Der volle Inhalt der QuelleHuang, Kebin, Ruimin Hu, Junjun Jiang, Zhen Han und Feng Wang. „Face Image Super-Resolution Through Improved Neighbor Embedding“. In MultiMedia Modeling, 409–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27671-7_34.
Der volle Inhalt der QuelleFang, Yuchun, Qicai Ran und Yifan Li. „Fractal Residual Network for Face Image Super-Resolution“. In Artificial Neural Networks and Machine Learning – ICANN 2020, 15–26. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61609-0_2.
Der volle Inhalt der QuelleHu, Xiaobin, Wenqi Ren, John LaMaster, Xiaochun Cao, Xiaoming Li, Zechao Li, Bjoern Menze und Wei Liu. „Face Super-Resolution Guided by 3D Facial Priors“. In Computer Vision – ECCV 2020, 763–80. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58548-8_44.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Face super-resolution"
Abello, Antonio Augusto, und R. Hirata. „Optimizing Super Resolution for Face Recognition“. In 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). IEEE, 2019. http://dx.doi.org/10.1109/sibgrapi.2019.00034.
Der volle Inhalt der QuelleJia, K., S. Gong und A. P. Leung. „Coupling Face Registration and Super-Resolution“. In British Machine Vision Conference 2006. British Machine Vision Association, 2006. http://dx.doi.org/10.5244/c.20.47.
Der volle Inhalt der QuelleBilgazyev, Emil, Boris Efraty, Shishir K. Shah und Ioannis A. Kakadiaris. „Improved face recognition using super-resolution“. In 2011 IEEE International Joint Conference on Biometrics (IJCB). IEEE, 2011. http://dx.doi.org/10.1109/ijcb.2011.6117554.
Der volle Inhalt der QuelleHu, Shuowen, Robert Maschal, S. Susan Young, Tsai Hong Hong und Jonathon P. Phillips. „Super-resolution benefit for face recognition“. In SPIE Defense, Security, and Sensing, herausgegeben von Sárka O. Southern, Kevin N. Montgomery, Carl W. Taylor, Bernhard H. Weigl, B. V. K. Vijaya Kumar, Salil Prabhakar und Arun A. Ross. SPIE, 2011. http://dx.doi.org/10.1117/12.882956.
Der volle Inhalt der QuelleLiu Li und YiDing Wang. „Face super-resolution using a hybrid model“. In 2008 9th International Conference on Signal Processing (ICSP 2008). IEEE, 2008. http://dx.doi.org/10.1109/icosp.2008.4697334.
Der volle Inhalt der QuelleYao, Yi, Besma Abidi, Nathan D. Kalka, Natalia Schmid und Mongi Abidi. „Super-resolution for high magnification face images“. In Defense and Security Symposium, herausgegeben von Salil Prabhakar und Arun A. Ross. SPIE, 2007. http://dx.doi.org/10.1117/12.720113.
Der volle Inhalt der QuelleWheeler, Frederick W., Xiaoming Liu und Peter H. Tu. „Multi-Frame Super-Resolution for Face Recognition“. In 2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems. IEEE, 2007. http://dx.doi.org/10.1109/btas.2007.4401949.
Der volle Inhalt der QuelleWang, Zhifei, und Zhenjiang Miao. „Feature-based super-resolution for face recognition“. In 2008 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2008. http://dx.doi.org/10.1109/icme.2008.4607748.
Der volle Inhalt der QuelleHuang, Hua, Ning Wu, Xin Fan und Chun Qi. „Face image super resolution by linear transformation“. In 2010 17th IEEE International Conference on Image Processing (ICIP 2010). IEEE, 2010. http://dx.doi.org/10.1109/icip.2010.5651255.
Der volle Inhalt der QuelleNasrollahi, Kamal, und Thomas B. Moeslund. „Hybrid super resolution using refined face logs“. In 2010 2nd International Conference on Image Processing Theory, Tools and Applications (IPTA). IEEE, 2010. http://dx.doi.org/10.1109/ipta.2010.5586769.
Der volle Inhalt der Quelle